JP2012238565A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2012238565A
JP2012238565A JP2011238400A JP2011238400A JP2012238565A JP 2012238565 A JP2012238565 A JP 2012238565A JP 2011238400 A JP2011238400 A JP 2011238400A JP 2011238400 A JP2011238400 A JP 2011238400A JP 2012238565 A JP2012238565 A JP 2012238565A
Authority
JP
Japan
Prior art keywords
positive electrode
niobium
hydrogen storage
active material
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238400A
Other languages
Japanese (ja)
Inventor
Atsutoshi Akaho
篤俊 赤穗
Yu Matsui
雄 松井
Yoshifumi Magari
佳文 曲
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011238400A priority Critical patent/JP2012238565A/en
Publication of JP2012238565A publication Critical patent/JP2012238565A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline storage battery having excellent initial output characteristics and high endurance so that the output drop during enduring can be inhibited.SOLUTION: An alkaline storage battery 10 in accordance with an embodiment of the present invention comprises an electrode group comprising a negative electrode 12 containing a hydrogen absorbing alloy as a negative electrode active material, a positive electrode 11 containing nickel hydroxide as a main positive electrode active material, and a separator 13 separating the negative electrode and the positive electrode, and an alkaline electrolytic solution in an outer can 16. The hydrogen absorbing alloy is represented by the formula: LnMgNiAlM, where Ln represents at least one kind of element selected from rare earth elements including Y, and Zr and Ti, M represents at least one kind of element selected from V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B, 0.05≤x≤0.30, 0.05≤a≤0.30, 0≤b≤0.50, and 2.8≤y≤3.9. The positive electrode 11 contains niobium (Nb).

Description

本発明は、ハイブリッド自動車(HEV)などの高出力用途に好適なアルカリ蓄電池に係り、特に、水酸化ニッケルを主正極活物質とする焼結式ニッケル正極と、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、これらの水素吸蔵合金負極と焼結式ニッケル正極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery suitable for high output applications such as a hybrid vehicle (HEV), and in particular, a sintered nickel positive electrode using nickel hydroxide as a main positive electrode active material and a hydrogen storage alloy as a negative electrode active material. The present invention relates to an alkaline storage battery provided with an electrode group composed of a hydrogen storage alloy negative electrode and a separator for separating these hydrogen storage alloy negative electrode and sintered nickel positive electrode together with an alkaline electrolyte in an outer can.

近年、二次電池の用途が拡大して、携帯電話、パーソナルコンピュータ、電動工具、ハイブリッド自動車(HEV)、電気自動車(PEV)など広範囲に亘って用いられるようになった。このうち特に、ハイブリッド自動車(HEV)のような高出力用途においてはアルカリ蓄電池が用いられるようになり、高出力化に関する数多くの技術開発がなされるようになった。ここで、アルカリ蓄電池の負極に用いられる水素吸蔵合金については、AB5型構造のものが用いられてきた。ところが、このAB5型構造の水素吸蔵合金を負極に用いると、十分な初期の出力特性を確保することができず、かつハイレートで充放電を繰返した耐久後には、負極のAB5型構造の水素吸蔵合金に含まれるCo,Mnが溶出し、導電性を有するCo−Mn酸化物となってセパレータ中に介在することでショートを引起すという問題を生じた。 In recent years, the use of secondary batteries has expanded, and has come to be used over a wide range such as mobile phones, personal computers, electric tools, hybrid vehicles (HEV), and electric vehicles (PEV). Among these, in particular, alkaline storage batteries have been used in high output applications such as hybrid vehicles (HEV), and many technical developments related to high output have been made. Here, as the hydrogen storage alloy used for the negative electrode of the alkaline storage battery, an AB 5 type structure has been used. However, the use of hydrogen-absorbing alloy of this AB 5 type structure in the negative electrode, it is impossible to ensure sufficient initial output characteristics, and the post-durability was repeatedly charged and discharged at high rate, the AB 5 type structure of the anode Co and Mn contained in the hydrogen storage alloy were eluted to form a Co—Mn oxide having conductivity, and the short circuit was caused by being interposed in the separator.

そこで、一般式がLnl-xMgxNiy-a-bAlab(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素)と表される水素吸蔵合金を用いることで、耐久後のショートが抑制されるようになった。また、一方でHEV用途にて必要となる高出力化のため、高平衡圧化や高量論比化を行うことにより、水素吸蔵合金中のニッケル(Ni)の含有量を向上させて、反応抵抗を低減する手法が、特許文献1(特開2008−300108号公報)や、特許文献2(特開2009−054514号公報)や、特許文献3(特開2009−087631号公報)などにおいて提案されるようになった。 Therefore, the general formula is Ln lx Mg x Ni yab Al a M b (where Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is V, Nb , Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B). Became to be suppressed. On the other hand, in order to increase the output required for HEV applications, by increasing the equilibrium pressure and increasing the stoichiometric ratio, the content of nickel (Ni) in the hydrogen storage alloy is improved and the reaction is performed. Methods for reducing the resistance are proposed in Patent Document 1 (Japanese Patent Laid-Open No. 2008-300108), Patent Document 2 (Japanese Patent Laid-Open No. 2009-054514), Patent Document 3 (Japanese Patent Laid-Open No. 2009-087431), and the like. It came to be.

特開2008−300108号公報JP 2008-300108 A 特開2009−054514号公報JP 2009-054514 A 特開2009−087631号公報JP 2009-07631 A

ここで、上述した特許文献1〜3にて提案されるように、Lnl-xMgxNiy-a-bAlabと表される水素吸蔵合金を用いることで、ある程度は初期段階での出力特性が向上し、かつハイレートで充放電を繰返した耐久後のショートの抑制が可能となった。
しかしながら、Lnl-xMgxNiy-a-bAlabと表される水素吸蔵合金を用いた場合、マグネシウム(Mg)がニッケル正極へ移動することで充電電圧が上昇して酸素発生が起こり易くなり、高温充電特性が低下するという新たな問題を生じた。また、酸素発生が起こり易くなることで、ハイレートで充放電を繰返した耐久後に水素吸蔵合金が劣化して出力特性が低下するという新たな問題も生じた。
Here, as proposed in Patent Documents 1 to 3 described above, by using a hydrogen storage alloy expressed as Ln lx Mg x Ni yab Al a M b , the output characteristics at the initial stage are improved to some extent. In addition, it is possible to suppress short-circuiting after endurance after repeated charge and discharge at a high rate.
However, when a hydrogen storage alloy expressed as Ln lx Mg x Ni yab Al a M b is used, the charge voltage increases due to the migration of magnesium (Mg) to the nickel positive electrode, and oxygen generation is likely to occur. A new problem has arisen that the charging characteristics deteriorate. In addition, since oxygen generation is likely to occur, a new problem has arisen in that the hydrogen storage alloy deteriorates after the endurance of repeated charge and discharge at a high rate, resulting in a decrease in output characteristics.

そこで、本発明は上記の如き問題を解決するためになされたものであって、初期の出力特性が向上し、かつ耐久後の出力特性の低下を抑制できて、高耐久なアルカリ蓄電池を提供することを目的としてなされたものである。   Therefore, the present invention has been made to solve the above-described problems, and provides a highly durable alkaline storage battery that can improve initial output characteristics and suppress a decrease in output characteristics after durability. It was made for the purpose.

本発明のアルカリ蓄電池は、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、水酸化ニッケルを主正極活物質とする焼結式ニッケル正極と、これらの水素吸蔵合金負極と焼結式ニッケル正極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えている。そして、上記目的を達成するため、水素吸蔵合金負極に用いられた水素吸蔵合金は、一般式がLnl-xMgxNiy-a-bAlab(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表されるとともに、焼結式ニッケル正極はニオブ(Nb)を含有していることを特徴とする。 The alkaline storage battery of the present invention includes a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, a sintered nickel positive electrode using nickel hydroxide as a main positive electrode active material, and these hydrogen storage alloy negative electrode and sintered nickel. An electrode group consisting of a separator that separates the positive electrode is provided in an outer can together with an alkaline electrolyte. In order to achieve the above object, the hydrogen storage alloy used for the hydrogen storage alloy negative electrode has a general formula of Ln lx Mg x Ni yab Al a M b (where Ln is a rare earth element including Y and Zr). And at least one element selected from Ti, and M is at least one element selected from V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B And is expressed as 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9), The sintered nickel positive electrode contains niobium (Nb).

ここで、一般式がLnl-xMgxNiy-a-bAlab(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素)と表され、かつ、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす水素吸蔵合金を水素吸蔵合金負極に用いると、水素吸蔵合金中のマグネシウム(Mg)が焼結式ニッケル正極へ移動することで、充電電圧が上昇して酸素発生が起こりやすくなるため、高温充電特性の低下を引き起こし易くなる。また、酸素発生が起こり易くなることで、ハイレートで部分充放電を繰返した耐久後に水素吸蔵合金が劣化して出力性能が低下することとなる。 Here, the general formula is Ln lx Mg x Ni yab Al a M b (where Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B), and 0.05 ≦ x ≦ 0.30 , 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9, when a hydrogen storage alloy satisfying the following conditions is used for the hydrogen storage alloy negative electrode, magnesium in the hydrogen storage alloy Since (Mg) moves to the sintered nickel positive electrode, the charging voltage is increased and oxygen generation is likely to occur, so that the high-temperature charging characteristics are likely to be deteriorated. In addition, since oxygen generation is likely to occur, the hydrogen storage alloy deteriorates after the endurance of repeated partial charge and discharge at a high rate, and the output performance decreases.

このため、本発明においては、焼結式ニッケル正極はニオブ(Nb)を含有するようにしている。このように焼結式ニッケル正極にニオブ(Nb)を存在させると、水素吸蔵合金負極から溶出したマグネシウム(Mg)が焼結式ニッケル正極に到達する際、当該正極表面に存在していたニオブ(Nb)が焼結式ニッケル正極の内部(活物質層中)へ移動し易くなる。これにより、正極表面のニオブ(Nb)が存在していた位置は反応面積を向上させる多孔体となって反応抵抗が低減され、出力特性が向上するものと推定される。また、正極表面から正極の内部(活物質層中)へニオブ(Nb)が移動することで、結果として、酸素発生が抑制されて高温充電特性の低下が抑制されるものと推定される。また、サイクル中の酸素発生が抑制されて、ハイレートで充放電を繰返した耐久後の出力低下を抑制できるものと推定される。なお、水素吸蔵合金組成中の希土類は資源量が豊富で安価、かつ特性バラツキの小さいLa,Nd,Sm,Yを用いるのが好ましい。   For this reason, in the present invention, the sintered nickel positive electrode contains niobium (Nb). When niobium (Nb) is present in the sintered nickel positive electrode in this way, when the magnesium (Mg) eluted from the hydrogen storage alloy negative electrode reaches the sintered nickel positive electrode, niobium ( Nb) easily moves into the sintered nickel positive electrode (in the active material layer). Thereby, it is estimated that the position where niobium (Nb) was present on the positive electrode surface becomes a porous body that improves the reaction area, the reaction resistance is reduced, and the output characteristics are improved. Moreover, it is estimated that niobium (Nb) moves from the positive electrode surface to the inside of the positive electrode (in the active material layer), and as a result, generation of oxygen is suppressed and deterioration of high-temperature charging characteristics is suppressed. In addition, it is presumed that the generation of oxygen during the cycle is suppressed, and the decrease in output after endurance after repeated charge and discharge at a high rate can be suppressed. In addition, it is preferable to use La, Nd, Sm, and Y, which are rare in the hydrogen storage alloy composition, have abundant resources, are inexpensive, and have small characteristic variations.

この場合、焼結式ニッケル正極に含有されるニオブ(Nb)の含有量は、正極活物質中の金属ニッケル(Ni)の質量に対して0.2質量%以上であるのが望ましい。そして、焼結式ニッケル正極にニオブ(Nb)を含有させる方法としては、水酸化ニッケルからなる主正極活物質が充填された焼結式ニッケル正極をニオブ(Nb)を含有するアルカリ水溶液中に浸漬する方法や、予めニオブ(Nb)を担持させたセパレータを用いて、電池内でニオブ(Nb)をセパレータから電解液中に溶解させ、溶解したニオブ(Nb)を焼結式ニッケル正極の表面へ移動させる方法により得られたものであるのが望ましい。   In this case, the content of niobium (Nb) contained in the sintered nickel positive electrode is preferably 0.2% by mass or more with respect to the mass of metallic nickel (Ni) in the positive electrode active material. As a method for incorporating niobium (Nb) into the sintered nickel positive electrode, the sintered nickel positive electrode filled with the main positive electrode active material made of nickel hydroxide is immersed in an aqueous alkaline solution containing niobium (Nb). Or using a separator on which niobium (Nb) is previously supported, niobium (Nb) is dissolved in the electrolyte from the separator in the battery, and the dissolved niobium (Nb) is applied to the surface of the sintered nickel positive electrode. It is desirable that it is obtained by a moving method.

ここで、アルカリ水溶液中に浸漬する方法においては、ニオブ(Nb)の含有量を増加させたり、含有量を制御することが容易であるというメリットがある。一方、セパレータから電解液中に溶解させる方法においては、大幅な生産プロセスの変更が不要になるというメリットを有する反面、正極への直接付与より効果が小さくなるとデメリットを生じることとなる。このため、この場合は、負極の水素吸蔵合金中のマグネシウム(Mg)の含有量を少なくすることが望ましく、水素吸蔵合金を一般式Lnl-xMgxNiy-a-bAlabで表した場合に、0.05≦x≦0.30の範囲内、好ましくは0.09≦x≦0.13の範囲内になるような含有量とするのが好ましい。 Here, the method of immersing in an alkaline aqueous solution has an advantage that it is easy to increase the content of niobium (Nb) or to control the content. On the other hand, the method of dissolving in the electrolytic solution from the separator has the merit that no significant change in the production process is required, but it has a demerit if the effect is smaller than the direct application to the positive electrode. Therefore, in this case, it is desirable to reduce the content of magnesium (Mg) in the hydrogen storage alloy of the negative electrode, and when the hydrogen storage alloy is represented by the general formula Ln lx Mg x Ni yab Al a M b , The content is preferably in the range of 0.05 ≦ x ≦ 0.30, preferably in the range of 0.09 ≦ x ≦ 0.13.

なお、ニオブ(Nb)の含有量が多過ぎると、電池容量が低下することで、大電流充放電でのCレートを上昇させて抵抗増加を招くこととなる。このため、ニオブ(Nb)の含有量は最大でも正極活物質中の金属ニッケル(Ni)の質量に対して5.0質量%以下とするのが望ましい。さらに、アルカリ電解液中にタングステン(W)を含有させると、電池の耐久後にタングステン(W)が焼結式ニッケル正極の表面へ移動するようになって、酸素発生が抑制されるため、なお好ましい。   In addition, when there is too much content of niobium (Nb), battery capacity will fall, and it will raise C resistance in large current charging / discharging, and will cause resistance increase. For this reason, the content of niobium (Nb) is desirably 5.0% by mass or less with respect to the mass of metallic nickel (Ni) in the positive electrode active material at the maximum. Furthermore, when tungsten (W) is contained in the alkaline electrolyte, tungsten (W) moves to the surface of the sintered nickel positive electrode after the endurance of the battery, and oxygen generation is suppressed. .

本発明においては、焼結式ニッケル正極はニオブ(Nb)を含有するようにしているので、充放電の初期段階での出力特性の向上が可能になるとともに、酸素発生を抑制することが可能となることで、ハイレートで充放電を繰返した耐久後の出力低下が抑制されることとなって、高耐久なアルカリ蓄電池を提供することが可能になる。   In the present invention, since the sintered nickel positive electrode contains niobium (Nb), it is possible to improve output characteristics at the initial stage of charge / discharge and to suppress generation of oxygen. As a result, a decrease in output after endurance after repeated charge and discharge at a high rate is suppressed, and a highly durable alkaline storage battery can be provided.

本発明のニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-hydrogen storage battery of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.焼結式ニッケル正極
焼結式ニッケル正極11は、基板となるニッケル焼結基板の多孔内に水酸化ニッケルと水酸化コバルトと水酸化亜鉛とが所定の充填量となるように充填されて形成されている。
この場合、ニッケル焼結基板は以下のようにして作製したものを用いている。即ち、ニッケル粉末に、増粘剤となるメチルセルロース(MC)と高分子中空微小球体(例えば、孔径が60μmのもの)と水とを混合、混練してニッケルスラリーを作製した。
ついで、ニッケルめっき鋼板からなるパンチドメタルの両面にニッケルスラリーを塗着した後、還元性雰囲気中で1000℃で加熱して、増粘剤や高分子中空微小球体を消失させるとともにニッケル粉末同士を焼結することにより作製した。なお、作製されたニッケル焼結基板の多孔度を水銀圧入式ポロシメータ(ファイソンズ インスツルメント製 Pascal 140)で測定したところ、多孔度が85%であることが分かった。
1. Sintered Nickel Positive Electrode Sintered nickel positive electrode 11 is formed by filling nickel hydroxide, cobalt hydroxide, and zinc hydroxide into a predetermined amount of pores in a nickel sintered substrate serving as a substrate. ing.
In this case, a nickel sintered substrate manufactured as follows is used. That is, a nickel slurry was prepared by mixing and kneading methyl cellulose (MC) as a thickener, polymer hollow microspheres (for example, those having a pore diameter of 60 μm), and water with nickel powder.
Next, after applying nickel slurry on both sides of the punched metal made of nickel-plated steel sheet, heating at 1000 ° C. in a reducing atmosphere causes the thickener and polymer hollow microspheres to disappear and the nickel powders to It was produced by sintering. In addition, when the porosity of the produced nickel sintered substrate was measured with a mercury intrusion porosimeter (Pascal 140 manufactured by Faisons Instruments), it was found that the porosity was 85%.

そして、得られたニッケル焼結基板を以下のような含浸液に含浸する含浸処理と、アルカリ処理液によるアルカリ処理とを所定回数繰り返すことにより、ニッケル焼結基板の多孔内に所定量の水酸化ニッケルと水酸化コバルトと水酸化亜鉛とを充填した。この後、所定の寸法に裁断することにより、正極活物質が充填された焼結式ニッケル正極11を作製した。この場合、含浸液としては、硝酸ニッケルと硝酸コバルトと硝酸亜鉛とをモル比で100:15:5となる含浸液を比重が1.8となるように調製したものを用いた。また、アルカリ処理液としては、比重が1.3の水酸化ナトリウム(NaOH)水溶液を用いた。   Then, by impregnating the obtained nickel-sintered substrate into the impregnating liquid as described below and alkali treatment with the alkali-treating liquid a predetermined number of times, a predetermined amount of hydroxylation is introduced into the pores of the nickel-sintered substrate. Filled with nickel, cobalt hydroxide and zinc hydroxide. Thereafter, the sintered nickel positive electrode 11 filled with the positive electrode active material was produced by cutting into a predetermined size. In this case, as the impregnating liquid, an impregnating liquid prepared by mixing nickel nitrate, cobalt nitrate, and zinc nitrate in a molar ratio of 100: 15: 5 so as to have a specific gravity of 1.8 was used. Further, as the alkali treatment liquid, a sodium hydroxide (NaOH) aqueous solution having a specific gravity of 1.3 was used.

この場合、まず、ニッケル焼結基板を含浸液に浸漬して、ニッケル焼結基板の細孔内に含浸液を含浸させた後、乾燥させ、ついで、アルカリ処理液に浸漬してアルカリ処理を行った。これにより、ニッケル塩やコバルト塩や亜鉛塩を水酸化ニッケルや水酸化コバルトや水酸化亜鉛に転換させた。この後、充分に水洗してアルカリ溶液を除去した後、乾燥させた。このような、含浸液の含浸、乾燥、アルカリ処理液への浸漬、水洗、および乾燥という一連の正極活物質の充填操作を6回繰り返すことにより、所定量の正極活物質がニッケル焼結基板に充填されることとなる。   In this case, first, the nickel sintered substrate is immersed in the impregnating solution, the impregnating solution is impregnated in the pores of the nickel sintered substrate, and then dried, and then immersed in the alkali processing solution to perform the alkali treatment. It was. Thereby, nickel salt, cobalt salt, and zinc salt were converted into nickel hydroxide, cobalt hydroxide, and zinc hydroxide. Thereafter, the substrate was sufficiently washed with water to remove the alkaline solution and then dried. A series of positive electrode active material filling operations such as impregnation with an impregnation solution, drying, immersion in an alkali treatment solution, washing with water, and drying are repeated six times, whereby a predetermined amount of the positive electrode active material is applied to the nickel sintered substrate. It will be filled.

ついで、液温が70℃になるように加温された水酸化カリウム(KOH)水溶液に酸化ニオブ(Nb25)粉末を添加したアルカリ水溶液を用意した。ついで、上述のようにして所定量の正極活物質がニッケル焼結基板に充填された焼結式ニッケル正極11を酸化ニオブ(Nb25)粉末が添加されたアルカリ水溶液に浸漬した。これにより、ニオブ(Nb)が一旦、僅かにアルカリ水溶液中に溶解した後に、焼結式ニッケル正極11に析出し、乾燥させることで、ニオブ(Nb)を含有した焼結式ニッケル正極a、bを作製した。 Next, an alkaline aqueous solution in which niobium oxide (Nb 2 O 5 ) powder was added to a potassium hydroxide (KOH) aqueous solution heated to a liquid temperature of 70 ° C. was prepared. Subsequently, the sintered nickel positive electrode 11 in which a predetermined amount of the positive electrode active material was filled in the nickel sintered substrate as described above was immersed in an alkaline aqueous solution to which niobium oxide (Nb 2 O 5 ) powder was added. Thus, after niobium (Nb) is slightly dissolved in the alkaline aqueous solution, the niobium (Nb) is deposited on the sintered nickel positive electrode 11 and dried, so that the sintered nickel positive electrode a, b containing niobium (Nb) is dried. Was made.

この場合、ニオブ(Nb)の含有量が正極活物質中の金属ニッケル(Ni)の質量に対して0.1質量%のものを焼結式ニッケル正極aとし、ニオブ(Nb)の含有量が正極活物質中の金属ニッケル(Ni)の質量に対して0.2質量%のものを焼結式ニッケル正極bとした。ここで、ニオブ(Nb)の含有量はアルカリ水溶液中への浸漬時間を変えることで制御した。なお、酸化ニオブ(Nb25)粉末が添加されたアルカリ水溶液に浸漬することなく、得られた焼結式ニッケル正極11をそのまま用いたものを焼結式ニッケル正極xとした。 In this case, the content of niobium (Nb) is 0.1% by mass with respect to the mass of metallic nickel (Ni) in the positive electrode active material as a sintered nickel positive electrode a, and the content of niobium (Nb) is The sintered nickel positive electrode b was 0.2% by mass relative to the mass of metallic nickel (Ni) in the positive electrode active material. Here, the content of niobium (Nb) was controlled by changing the immersion time in the alkaline aqueous solution. A sintered nickel positive electrode x was obtained by using the obtained sintered nickel positive electrode 11 as it was without being immersed in an alkaline aqueous solution to which niobium oxide (Nb 2 O 5 ) powder was added.

2.水素吸蔵合金負極
まず、水素吸蔵合金を以下のようにして作製した。この場合、Yを含む希土類元素とZrとTiとから選択された少なくとも1種の元素でありLnで表される元素(この場合は、ネオジウム(Nd)とした)と、マグネシウム(Mg)と、ニッケル(Ni)と、アルミニウム(Al)とを所定のモル比の割合で混合し、この混合物をアルゴンガス雰囲気中で溶解させ、これを溶湯急冷してNd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金のインゴットを作製した。
2. Hydrogen Storage Alloy Negative Electrode First, a hydrogen storage alloy was prepared as follows. In this case, an element represented by Ln which is at least one element selected from rare earth elements including Y, Zr, and Ti (in this case, neodymium (Nd)), magnesium (Mg), nickel (Ni), and aluminum (Al) were mixed at a predetermined molar ratio, the mixture is dissolved in an argon gas atmosphere, which is expressed as Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 was melt-quenching An ingot of a hydrogen storage alloy was prepared.

ついで、得られた水素吸蔵合金のインゴットについて、アルゴン雰囲気中において、融点よりも30℃だけ低い温度で所定時間(この場合は10時間)の熱処理を行い、A27型構造と同定される水素吸蔵合金を得た。 Next, the obtained hydrogen storage alloy ingot is heat-treated at a temperature lower by 30 ° C. than the melting point for a predetermined time (in this case, 10 hours) in an argon atmosphere, and is identified as an A 2 B 7 type structure. A hydrogen storage alloy was obtained.

ついで、この水素吸蔵合金を不活性雰囲気中で機械的に粉砕することにより、Nd0.9Mg0.1Ni3.3Al0.2となる水素吸蔵合金粉末を得た。なお、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定すると、質量積分50%にあたる平均粒径は25μmであった。これを水素吸蔵合金粉末とした。この後、得られた水素吸蔵合金粉末100質量部に対し、非水溶性高分子結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、増粘剤としてのCMC(カルボキシメチルセルロース)0.03質量部と、添加剤としてのカーボンブラック0.5質量部と、適量の水(あるいは純水)を加えて混練して、水素吸蔵合金スラリーを調製した。 Subsequently, this hydrogen storage alloy was mechanically pulverized in an inert atmosphere to obtain a hydrogen storage alloy powder of Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 . When the particle size distribution was measured with a laser diffraction / scattering type particle size distribution measuring device, the average particle size corresponding to 50% of the mass integral was 25 μm. This was used as a hydrogen storage alloy powder. Thereafter, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble polymer binder and 100 parts by mass of CMC (carboxymethyl cellulose) as a thickener with respect to 100 parts by mass of the obtained hydrogen storage alloy powder. 0.03 part by mass, 0.5 part by mass of carbon black as an additive, and an appropriate amount of water (or pure water) were added and kneaded to prepare a hydrogen storage alloy slurry.

そして、得られた水素吸蔵合金スラリーをパンチドメタル(ニッケルメッキ鋼板製)からなる負極芯体の両面に塗着した後、100℃で乾燥させ、所定の充填密度になるように圧延した。この後、所定の寸法に裁断することにより、水素吸蔵合金活物質が充填された水素吸蔵合金負極12を作製した。   And after apply | coating the obtained hydrogen storage alloy slurry to both surfaces of the negative electrode core body which consists of punched metal (made by nickel plating steel plate), it dried at 100 degreeC and rolled so that it might become a predetermined | prescribed filling density. Then, the hydrogen storage alloy negative electrode 12 filled with the hydrogen storage alloy active material was produced by cutting into a predetermined dimension.

3.セパレータ
セパレータ13は、ポリオレフィン系合成樹脂の繊維からなる不織布に、親水化処理を施したものを用いている。ポリオレフィン系合成樹脂としては、例えば、ポリエチレン、ポリプロピレンなどの合成樹脂を用いることができる。そして、セパレータ13は、極細繊維と複合繊維とを主成分として含む。極細繊維は、断面形状が略円形をなし、例えば、1種類のポリオレフィン系樹脂からなる単一構造を有する。極細繊維は、紡糸口金部で海成分中に口金規制しながら海島型の繊維を押し出し、得られた繊維の海成分を除去して残った島成分を極細繊維として用いることができる。
3. Separator The separator 13 is a non-woven fabric made of polyolefin synthetic resin and subjected to a hydrophilic treatment. As the polyolefin-based synthetic resin, for example, synthetic resins such as polyethylene and polypropylene can be used. And the separator 13 contains an ultrafine fiber and a composite fiber as a main component. The ultrafine fiber has a substantially circular cross-sectional shape, and has a single structure made of, for example, one type of polyolefin resin. The ultrafine fiber can be used as the ultrafine fiber by extruding the sea-island type fiber while regulating the die into the sea component at the spinneret, and removing the sea component from the obtained fiber.

複合繊維は、断面形状が略円形をなし、例えば、芯鞘型構造を有し、芯材の表面の少なくとも一部若しくは全部が、鞘材で覆われている。芯材及び鞘材は、互いに異なるポリオレフィン系樹脂からなり、鞘材のポリオレフィン系樹脂の融点は、芯材のポリオレフィン系樹脂の融点よりも低い。不織布においては、極細繊維と複合繊維との間及び複合繊維同士の間が、鞘材を介した融着により結合される。複合繊維は、例えば、溶融紡糸された複合未延伸糸を延伸処理して製造することができる。なお、複合繊維は、偏心型構造又は海島型構造を有していてもよく、外周面の少なくとも一部に、極細繊維及び複合繊維を結合するための融着部として、他の部分よりも融点が低い部分を含んでいればよい。   The composite fiber has a substantially circular cross-sectional shape, and has, for example, a core-sheath structure, and at least a part or all of the surface of the core material is covered with the sheath material. The core material and the sheath material are made of different polyolefin resins, and the melting point of the polyolefin resin of the sheath material is lower than the melting point of the polyolefin resin of the core material. In the nonwoven fabric, the ultrafine fibers and the composite fibers and the composite fibers are bonded to each other by fusion via a sheath material. The composite fiber can be produced by, for example, drawing a melt-spun composite undrawn yarn. The composite fiber may have an eccentric structure or a sea-island structure, and has a melting point higher than that of other parts as a fusion part for bonding the ultrafine fiber and the composite fiber to at least a part of the outer peripheral surface. As long as it contains a low part.

セパレータ13の目付量は、例えば、30g/m2以上で、60g/m2以下の範囲内にあり、厚さは、例えば、0.04mm以上で、0.12mm以下の範囲内にある。以上のようにして得られたセパレータ13をセパレータaとした。また、セパレータaの表面に、酸化ニオブ(Nb25)粉末及び結着剤を含む溶液を塗布し、乾燥したものを、セパレータbとした。 The basis weight of the separator 13 is, for example, 30 g / m 2 or more and 60 g / m 2 or less, and the thickness is, for example, 0.04 mm or more and 0.12 mm or less. The separator 13 obtained as described above was designated as a separator a. A separator b was prepared by applying a solution containing niobium oxide (Nb 2 O 5 ) powder and a binder to the surface of the separator a and drying it.

4.ニッケル−水素蓄電池
ついで、上述のようにして作製したニッケル正極11(a,b,x)と水素吸蔵合金負極12とを用い、これらの間に、ポリオレフィン製不織布からなるセパレータ13(a)を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の上部にはニッケル正極11の芯体露出部11aが露出しており、その下部には水素吸蔵合金負極12の芯体露出部12aが露出している。ついで、得られた渦巻状電極群の上端面に露出するニッケル正極11の芯体露出部11aの上に正極集電体14を溶接するとともに、渦巻状電極群の下端面に露出する芯体露出部12aに負極集電体15を溶接して、電極体とした。
4). Nickel-hydrogen storage battery Next, a nickel positive electrode 11 (a, b, x) and a hydrogen storage alloy negative electrode 12 produced as described above are used, and a separator 13 (a) made of a polyolefin non-woven fabric is interposed therebetween. Thus, a spiral electrode group was produced by winding in a spiral shape. The core exposed portion 11a of the nickel positive electrode 11 is exposed at the upper part of the spiral electrode group thus manufactured, and the core exposed portion 12a of the hydrogen storage alloy negative electrode 12 is exposed at the lower part. ing. Next, the positive electrode current collector 14 is welded onto the core exposed portion 11a of the nickel positive electrode 11 exposed at the upper end surface of the obtained spiral electrode group, and the core body exposed at the lower end surface of the spiral electrode group. The negative electrode current collector 15 was welded to the part 12a to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納した後、負極集電体15を外装缶16の内底面に溶接した。一方、正極集電体14より延出する集電リード部14aを正極端子を兼ねるとともに外周部に絶縁ガスケット18が装着された封口体17の底部に溶接した。なお、封口体17には正極キャップ17aが設けられていて、この正極キャップ17a内に所定の圧力になると変形する弁体17bとスプリング17cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body is accommodated in a bottomed cylindrical outer can 16 in which nickel is plated on iron (the outer surface of the bottom surface becomes a negative electrode external terminal) 16, the negative electrode current collector 15 is attached to the outer can 16. Welded to the inner bottom. On the other hand, the current collecting lead portion 14a extending from the positive electrode current collector 14 was welded to the bottom portion of the sealing body 17 which also served as the positive electrode terminal and was fitted with the insulating gasket 18 on the outer peripheral portion. The sealing body 17 is provided with a positive electrode cap 17a, and a pressure valve (not shown) including a valve body 17b and a spring 17c which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 17a.

ついで、外装缶16の上部外周部に環状溝部16aを形成した後、アルカリ電解液を注液し、外装缶16の上部に形成された環状溝部16aの上に封口体17の外周部に装着された絶縁ガスケット18を載置した。この後、外装缶16の開口端縁16bをかしめることにより、公称容量が6Ahのニッケル−水素蓄電池10(A,B,X)を作製した。この場合、アルカリ電解液としては、水酸化ナトリウム(NaOH)と水酸化カリウム(KOH)と水酸化リチウム(LiOH)との混合水溶液とし、濃度が7.0モル/リットルとなるように調製されものを用いた。   Next, after forming the annular groove portion 16 a on the upper outer peripheral portion of the outer can 16, an alkaline electrolyte is injected, and the outer peripheral portion of the sealing body 17 is mounted on the annular groove portion 16 a formed on the upper portion of the outer can 16. An insulating gasket 18 was placed. After that, the nickel-hydrogen storage battery 10 (A, B, X) having a nominal capacity of 6 Ah was produced by caulking the opening edge 16 b of the outer can 16. In this case, the alkaline electrolyte is prepared as a mixed aqueous solution of sodium hydroxide (NaOH), potassium hydroxide (KOH) and lithium hydroxide (LiOH) so that the concentration is 7.0 mol / liter. Was used.

ここで、ニッケル正極aを用いたものを電池Aとし、ニッケル正極bを用いたものを電池Bとした。また、ニッケル正極xを用いたものを電池Xとした。ついで、これらの各電池A,B,Xを用い、25℃の温度雰囲において、電池容量(公称容量)に対して、1Itの充電々流で電池容量の160%まで充電(SOC160%充電)し、1時間休止した後、70℃の温度雰囲で24時間放置した。その後、25℃の温度雰囲で1Itの放電々流で電池電圧が0.3Vになるまで放電させた。このような充電・休止・放置・放電を2サイクル繰り返して行って、各電池A,B,Xの活性化処理(熟成処理)を行った。   Here, a battery using the nickel positive electrode a was designated as a battery A, and a battery using the nickel positive electrode b was designated as a battery B. A battery X using a nickel positive electrode x was used. Next, using each of these batteries A, B, and X, the battery capacity (nominal capacity) is charged to 160% of the battery capacity with a charge current of 1 It (SOC 160% charge) in a temperature atmosphere of 25 ° C. Then, after resting for 1 hour, it was left in a temperature atmosphere at 70 ° C. for 24 hours. Thereafter, the battery was discharged in a temperature atmosphere of 25 ° C. with a discharge current of 1 It until the battery voltage became 0.3V. Such charging, resting, leaving, and discharging were repeated for two cycles to perform activation processing (aging treatment) for each of the batteries A, B, and X.

一方、電池Bを用い、25℃の温度雰囲気において、電池容量(公称容量)に対して、1Itの充電々流で電池容量の160%まで充電(SOC160%充電)し、1時間休止した後、70℃の温度雰囲で24時間放置した。その後、25℃の温度雰囲で1Itの放電々流で電池電圧が0.3Vになるまで放電させた。このような充電・休止・高温放置・放電を2サイクル繰り返して行った後、追加の熟成処理(60℃で1日放置)を施したものを電池Cとした。また、この電池Cにおいて、セパレータ13として、予めニオブ(Nb)を担持させたセパレータbを使用したものを電池Dとした。さらに、電池Cにおいて、アルカリ電解液として、予めタングステン(W)を含有させたアルカリ電解液を使用したものを電池Eとした。   On the other hand, using the battery B, in a temperature atmosphere of 25 ° C., the battery capacity (nominal capacity) is charged to 160% of the battery capacity (SOC 160% charge) with a charging current of 1 It, and after resting for 1 hour, It was allowed to stand for 24 hours in a temperature atmosphere of 70 ° C. Thereafter, the battery was discharged in a temperature atmosphere of 25 ° C. with a discharge current of 1 It until the battery voltage became 0.3V. A battery C was obtained by repeating such charging, resting, leaving at high temperature, and discharging two cycles and then performing an additional aging treatment (leaving at 60 ° C. for 1 day). Further, in this battery C, a battery D in which a separator b on which niobium (Nb) was previously supported was used as the separator 13 was designated as a battery D. Furthermore, in the battery C, a battery E using an alkaline electrolyte containing tungsten (W) in advance as the alkaline electrolyte was used.

5.電池試験
(1)初期の出力特性
上述のように活性化処理(熟成処理)あるいは追加の熟成処理した後、これらの各電池A,B,C,D,E,Xを、25℃の温度雰囲気で、1Itの充電々流でSOC(State Of Charge:充電深度)の50%まで充電(SOC50%充電)した。この後、20A充電→40A放電→40A充電→80A放電→60A充電→120A放電→80A充電→160A放電→100A充電→200A放電の順で充放電々流を増加させた。
5. Battery test (1) Initial output characteristics After the activation process (aging process) or the additional aging process as described above, each of these batteries A, B, C, D, E, and X is subjected to a temperature atmosphere of 25 ° C. Then, the battery was charged to 50% of SOC (State Of Charge: charging depth) at a charging current of 1 It (SOC 50% charge). Thereafter, the charging / discharging current was increased in the order of 20A charging → 40A discharging → 40A charging → 80A discharging → 60A charging → 120A discharging → 80A charging → 160A discharging → 100A charging → 200A discharging.

このとき、各ステップの間に10分間の休止期間を設け、20秒間の充電→10分間休止→10秒間放電→10分間休止の順で充放電を行った。そして、この10秒間経過時点における電池電圧を放電々流に対してプロットし、最小二乗法にて求めた直線が0.9Vに達したときの電流値と0.9Vの積を出力(W)として求めた。
この場合、求めた電池Xの出力(W)を基準(100)とし、これとの相対比(対電池X)を電池A,B,C,D,Eの初期の出力特性として算出すると、下記の表1に示すような結果となった。
At this time, a pause period of 10 minutes was provided between each step, and charging / discharging was performed in the order of charging for 20 seconds → pause for 10 minutes → discharge for 10 seconds → pause for 10 minutes. Then, the battery voltage at the time point of 10 seconds is plotted against the discharge current, and the product of the current value and 0.9V when the straight line obtained by the least square method reaches 0.9V is output (W) As sought.
In this case, when the calculated output (W) of the battery X is the reference (100) and the relative ratio (vs. the battery X) is calculated as the initial output characteristics of the batteries A, B, C, D, and E, The results shown in Table 1 were obtained.

(2)部分充放電サイクル後(耐久後)の出力特性
また、上述のように活性化処理(熟成処理)あるいは追加の熟成処理した後、これらの各電池A,B,C,D,E,Xを用い、25℃の温度雰囲気において、10Itの充電々流にて、初期容量に対するSOC(State Of Charge:充電深度)が80%となる電圧(上限電圧)まで充電した後、10Itの放電々流にてSOCが20%となる電圧(下限電圧)まで放電させるという充放電サイクルを2ヶ月間繰り返す部分充放電サイクル試験(耐久試験)を行った。
その後、上述と同様にして各電池A,B,C,D,E,Xの出力の評価を行った。そして、求めた電池Xの耐久後の出力(W)を基準(100)とし、これとの相対比(対電池X)を電池A,B,C,D,Eの耐久後の出力特性として算出すると、下記の表1に示すような結果となった。
(2) Output characteristics after partial charge / discharge cycle (after endurance) In addition, after the activation process (aging process) or additional aging process as described above, each of these batteries A, B, C, D, E, After charging to a voltage (upper limit voltage) at which the SOC (State Of Charge) with respect to the initial capacity is 80% at a charging current of 10 It in a temperature atmosphere of 25 ° C. using X, discharge of 10 It A partial charge / discharge cycle test (endurance test) was repeated in which the charge / discharge cycle of discharging to a voltage (lower limit voltage) at which the SOC was 20% was repeated for 2 months.
Thereafter, the outputs of the batteries A, B, C, D, E, and X were evaluated in the same manner as described above. Then, the obtained output (W) of the battery X after endurance is used as the reference (100), and the relative ratio (with respect to the battery X) is calculated as the output characteristics after endurance of the batteries A, B, C, D, and E. Then, the results shown in Table 1 below were obtained.

(3)充電効率
さらに、上述のように活性化処理(熟成処理)あるいは追加の熟成処理した後、これらの各電池A,B,C,D,E,Xを用い、25℃の温度雰囲気において、0.5Itの充電々流にて、初期容量に対するSOC(State Of Charge:充電深度)が80%となる電圧(上限電圧)まで充電し、直後に1Itの放電々流で終止電圧が0.9Vになるまで放電させた。そして、1.0V時点での放電容量を求めるとともに、この時の充電容量に対する放電容量の割合を充電効率(%)として算出した。そして、求めた電池Xの充電効率(%)を基準(100)とし、これとの相対比(対電池X)を電池A,B,C,D,Eの充電効率(%)として算出すると、下記の表1に示すような結果となった。
(3) Charging efficiency Further, after the activation process (aging process) or additional aging process as described above, these batteries A, B, C, D, E, and X are used in a temperature atmosphere of 25 ° C. At a current of 0.5 It, the battery is charged up to a voltage (upper limit voltage) at which the SOC (State Of Charge) is 80% with respect to the initial capacity, and immediately after that, a final voltage of 0. The battery was discharged until 9V was reached. And while calculating | requiring the discharge capacity in 1.0V time point, the ratio of the discharge capacity with respect to the charge capacity at this time was computed as charge efficiency (%). Then, the charging efficiency (%) of the obtained battery X is set as a reference (100), and the relative ratio (vs. battery X) is calculated as the charging efficiency (%) of the batteries A, B, C, D, E. The results shown in Table 1 below were obtained.

Figure 2012238565
Figure 2012238565

上記表1の結果から明らかなように、酸化ニオブ(Nb25)粉末を添加したアルカリ水溶液に浸漬することなく作製された焼結式ニッケル正極xを備えた電池Xにおいては、初期の出力特性および耐久後の出力特性が低く、かつ充電効率も低いことが分かる。これは、水素吸蔵合金負極12中のマグネシウム(Mg)が焼結式ニッケル正極11へ移動することで、充電電圧が上昇して酸素発生が起こりやすくなるため、高温充電特性の低下を引き起こし易くなったためであると考えられる。また、酸素発生が起こり易くなることで、ハイレートで部分充放電を繰返した耐久後に水素吸蔵合金が劣化して出力性能が低下したためと考えられる。 As is clear from the results in Table 1 above, in the battery X including the sintered nickel positive electrode x prepared without being immersed in an aqueous alkaline solution to which niobium oxide (Nb 2 O 5 ) powder was added, the initial output It can be seen that the characteristics and the output characteristics after durability are low, and the charging efficiency is also low. This is because magnesium (Mg) in the hydrogen storage alloy negative electrode 12 moves to the sintered nickel positive electrode 11, so that the charging voltage is increased and oxygen is likely to be generated. This is probably because In addition, it is considered that the generation of oxygen is likely to occur, so that the hydrogen storage alloy deteriorates after the endurance of repeated partial charge and discharge at a high rate and the output performance decreases.

一方、酸化ニオブ(Nb25)粉末を添加したアルカリ水溶液に浸漬することで作製された正極活物質中の金属ニッケル(Ni)に対して0.1質量%のニオブ(Nb)を含有させた焼結式ニッケル正極aを備えた電池Aにおいては、耐久後に充電効率向上効果が確認できた。これは、アルカリ水溶液中に焼結式ニッケル正極を浸漬することで、焼結式ニッケル正極に僅かにニオブ(Nb)量が含有され、充放電を繰返した耐久試験後には酸素発生抑制の効果により高温充電効率向上効果が発現することによると考えられる。 On the other hand, 0.1 mass% niobium (Nb) is included with respect to metallic nickel (Ni) in the positive electrode active material produced by immersing in an alkaline aqueous solution to which niobium oxide (Nb 2 O 5 ) powder is added. In the battery A provided with the sintered nickel positive electrode a, the effect of improving the charging efficiency could be confirmed after the endurance. This is because the sintered nickel positive electrode contains a slight amount of niobium (Nb) by immersing the sintered nickel positive electrode in an alkaline aqueous solution. It is considered that the effect of improving the high temperature charging efficiency is exhibited.

また、酸化ニオブ(Nb25)粉末を添加したアルカリ水溶液に浸漬することで作製された正極活物質中の金属ニッケル(Ni)に対して0.2質量%のニオブ(Nb)を含有させた焼結式ニッケル正極bを備えた電池Bにおいては、初期の出力特性および耐久後の出力特性ならび充電効率が向上していることが分かる。これは、水素吸蔵合金負極12から溶出したマグネシウム(Mg)が焼結式ニッケル正極11に到達することで、焼結式ニッケル正極11の表面に存在していたニオブ(Nb)が正極活物質層の内部へ移動し易くなったためと考えられる。これにより、焼結式ニッケル正極11の表面のニオブ(Nb)が存在していた位置は反応面積を向上させる多孔体となって反応抵抗が低減されることとなり、結果的に初期の出力特性が向上したと考えられる。このことから、ニオブ(Nb)の含有量は、正極活物質中の金属ニッケル(Ni)に対して0.2質量%以上となるように含有させるのが好ましいといえる。 Moreover, 0.2 mass% niobium (Nb) is included with respect to metallic nickel (Ni) in the positive electrode active material produced by immersing in an alkaline aqueous solution to which niobium oxide (Nb 2 O 5 ) powder is added. In the battery B provided with the sintered nickel positive electrode b, it can be seen that the initial output characteristics, the output characteristics after the endurance, and the charging efficiency are improved. This is because magnesium (Mg) eluted from the hydrogen storage alloy negative electrode 12 reaches the sintered nickel positive electrode 11, and niobium (Nb) present on the surface of the sintered nickel positive electrode 11 is converted into the positive electrode active material layer. It is thought that it became easy to move to the inside of the. As a result, the position where niobium (Nb) on the surface of the sintered nickel positive electrode 11 was present becomes a porous body that improves the reaction area, and the reaction resistance is reduced. As a result, the initial output characteristics are reduced. It is thought that it improved. From this, it can be said that it is preferable to contain niobium (Nb) so that it may become 0.2 mass% or more with respect to the metal nickel (Ni) in a positive electrode active material.

また、水素吸蔵合金中のマグネシウム(Mg)が焼結式ニッケル正極11に到達することによる高温充電特性の低下よりも、焼結式ニッケル正極11の表面から正極活物質層の内部へニオブ(Nb)が移動することによる高温充電特性向上効果が大きくなったためと考えられる。この結果、部分充放電サイクル中の酸素ガスの発生が抑制されて、耐久後の出力特性の低下が抑制できたと考えられる。焼結式ニッケル正極11中のニオブ(Nb)の含有量は正極活物質中の金属ニッケル(Ni)に対して0.2質量%以上であることが望ましい。一方、焼結式ニッケル正極11中のニオブ(Nb)の含有量が多過ぎると、電池容量が低下することで、大電流充放電でのCレートを上昇させて抵抗増加を招くため、焼結式ニッケル正極11中のニオブ(Nb)の含有量の最大値は、正極活物質中の金属ニッケル(Ni)に対して5質量%以下とするのが望ましい。   In addition, the magnesium (Mg) in the hydrogen storage alloy reaches niobium (Nb) from the surface of the sintered nickel positive electrode 11 to the inside of the positive electrode active material layer, rather than the deterioration of the high temperature charging characteristics due to the arrival of the sintered nickel positive electrode 11. This is considered to be because the effect of improving the high-temperature charging characteristics due to the movement of) increased. As a result, it is considered that the generation of oxygen gas during the partial charge / discharge cycle was suppressed, and the deterioration of output characteristics after durability could be suppressed. The content of niobium (Nb) in the sintered nickel positive electrode 11 is desirably 0.2% by mass or more with respect to metallic nickel (Ni) in the positive electrode active material. On the other hand, if the content of niobium (Nb) in the sintered nickel positive electrode 11 is too large, the battery capacity is reduced, so that the C rate in large current charge / discharge is increased and the resistance is increased. The maximum value of the content of niobium (Nb) in the formula nickel positive electrode 11 is desirably 5% by mass or less with respect to metallic nickel (Ni) in the positive electrode active material.

さらに、酸化ニオブ(Nb25)粉末を含有させたアルカリ水溶液に浸漬することでニオブ(Nb)を含有させた焼結式ニッケル正極bとし、さらに、この焼結式ニッケル正極bを備えた電池を追加の熟成処理(60℃で1日放置)を行うことで作製された電池Cにおいては、初期の出力特性および耐久後の出力特性ならび充電効率が電池Bよりもさらに向上していることが分かる。 Further, the sintered nickel positive electrode b containing niobium (Nb) was immersed in an alkaline aqueous solution containing niobium oxide (Nb 2 O 5 ) powder, and the sintered nickel positive electrode b was further provided. In the battery C produced by subjecting the battery to additional aging treatment (left at 60 ° C. for 1 day), the initial output characteristics, the output characteristics after durability, and the charging efficiency are further improved as compared with the battery B. I understand.

これは、追加の熟成処理を行うことで、ニオブ(Nb)を含有させた焼結式ニッケル正極bの活物質形態の形成が促進されたためと考えられる。即ち、焼結式ニッケル正極11の表面に存在していたニオブ(Nb)が正極活物質層の内部へさらに移動し易くなって、焼結式ニッケル正極表面のニオブ(Nb)が存在していた位置は、さらに反応面積を向上させる多孔体となる。これにより、更に抵抗が低減されることで、初期の出力特性および耐久後の出力特性が向上し、さらに好ましい結果になったということができる。   This is presumably because the formation of the active material form of the sintered nickel positive electrode b containing niobium (Nb) was promoted by performing an additional aging treatment. That is, niobium (Nb) present on the surface of the sintered nickel positive electrode 11 is more easily moved into the positive electrode active material layer, and niobium (Nb) on the surface of the sintered nickel positive electrode is present. The position is a porous body that further improves the reaction area. As a result, the resistance is further reduced, so that the initial output characteristics and the output characteristics after endurance are improved, and it can be said that a more preferable result is obtained.

この場合、水素吸蔵合金負極12と焼結式ニッケル正極11との隔離に用いるセパレータ13として、あらかじめ酸化ニオブ(Nb25)粉末を担持させたセパレータbを用いた電池Dでは、電池Cに対して耐久試験後の充電効率がさらに向上していることが分かる。これは、充放電の経過とともにニオブ(Nb)が正極表面から活物質層内部へ移動することで正極表面付近のニオブ(Nb)量が減少するが、一方でセパレータ中にあらかじめ担持されたニオブ(Nb)が耐久試験の経過とともにセパレータ13から電解液中に溶解し、溶解したニオブ(Nb)が焼結式ニッケル正極11の表面へ移動し、焼結式ニッケル正極11の表面付近での酸素発生を抑制するためと考えられる。 In this case, in the battery D using the separator b previously supporting niobium oxide (Nb 2 O 5 ) powder as the separator 13 used for separating the hydrogen storage alloy negative electrode 12 and the sintered nickel positive electrode 11, the battery C includes In contrast, it can be seen that the charging efficiency after the durability test is further improved. This is because niobium (Nb) moves from the surface of the positive electrode to the inside of the active material layer as the charge and discharge progress, so that the amount of niobium (Nb) near the surface of the positive electrode decreases. Nb) dissolves in the electrolyte solution from the separator 13 with the progress of the durability test, and the dissolved niobium (Nb) moves to the surface of the sintered nickel positive electrode 11 to generate oxygen near the surface of the sintered nickel positive electrode 11. This is considered to suppress the above.

この手法はセパレータ単独でも有効な手段となる。このようなニオブ(Nb)の付与手法は、大幅な生産プロセスの変更が不要になるというメリットを有するが、反面、焼結式ニッケル正極11への直接付与より効果は小さくなる。このため、水素吸蔵合金中のMg量は少ない方が好ましく、水素吸蔵合金を一般式Lnl-xMgxNiy-a-bAlabと表した場合に、0.05≦x≦0.30の範囲内、好ましくは0.09≦x≦0.13の範囲内になる含有量とするのが好ましい。またセパレータ13に担持させるニオブ(Nb)量が多過ぎると、性能バラツキが大きくなるため、セパレータ13に担持させるニオブ(Nb)の最大量は、正極活物質中の金属ニッケル(Ni)に対して3質量%以下であることが好ましい。 This technique is an effective means even with a separator alone. Such an application method of niobium (Nb) has the advantage that no significant change in the production process is required, but on the other hand, the effect is less than direct application to the sintered nickel positive electrode 11. For this reason, it is preferable that the amount of Mg in the hydrogen storage alloy is small. When the hydrogen storage alloy is represented by the general formula Ln lx Mg x Ni yab Al a M b , it is within the range of 0.05 ≦ x ≦ 0.30. The content is preferably in the range of 0.09 ≦ x ≦ 0.13. In addition, when the amount of niobium (Nb) supported on the separator 13 is too large, the performance variation increases. Therefore, the maximum amount of niobium (Nb) supported on the separator 13 is larger than the metal nickel (Ni) in the positive electrode active material. It is preferable that it is 3 mass% or less.

さらに、水酸化ナトリウム(NaOH)と水酸化カリウム(KOH)と水酸化リチウム(LiOH)との混合水溶液であるアルカリ電解液中に、タングステン(W)を添加した電池Eでは、電池Cに対して耐久試験後の充電効率がさらに向上していることが分かる。これは、充放電の経過とともにニオブ(Nb)が焼結式ニッケル正極11の表面から活物質層内部へ移動することにより、焼結式ニッケル正極11の表面付近のニオブ(Nb)量が減少するが、一方で、アルカリ電解液中に含まれるタングステン(W)が耐久試験の経過とともに焼結式ニッケル正極11の表面へ移動し、焼結式ニッケル正極11の表面付近での酸素発生を抑制するためと考えられる。このようなタングステン(W)の添加による充電効率向上効果は、単独でも効果を発現できる。   Furthermore, in the battery E in which tungsten (W) is added to an alkaline electrolyte that is a mixed aqueous solution of sodium hydroxide (NaOH), potassium hydroxide (KOH), and lithium hydroxide (LiOH), It can be seen that the charging efficiency after the durability test is further improved. This is because the amount of niobium (Nb) near the surface of the sintered nickel positive electrode 11 decreases as niobium (Nb) moves from the surface of the sintered nickel positive electrode 11 to the inside of the active material layer as charge and discharge progress. However, on the other hand, tungsten (W) contained in the alkaline electrolyte moves to the surface of the sintered nickel positive electrode 11 with the progress of the durability test, and suppresses oxygen generation in the vicinity of the surface of the sintered nickel positive electrode 11. This is probably because of this. The effect of improving the charging efficiency due to the addition of tungsten (W) can be manifested alone.

なお、上述した実施形態においては、Nd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金を用いる例について説明したが、水素吸蔵合金としては、一般式がLnl-xMgxNiy-a-bAlab(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素)と表され、かつ、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす水素吸蔵合金であれば、どのようなものを用いてもよい。 In the above-described embodiment, an example in which a hydrogen storage alloy represented by Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 is used has been described. However, as a hydrogen storage alloy, the general formula is Ln lx Mg x Ni yab Al a M b (wherein Ln is at least one element selected from rare earth elements including Y and Zr and Ti, and M is V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn) , In, Cu, Si, P, B) and 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ Any hydrogen storage alloy that satisfies the conditions of 0.50, 2.8 ≦ y ≦ 3.9 may be used.

10…ニッケル−水素蓄電池、11…ニッケル電極、11a…芯体露出部、12…水素吸蔵合金電極、12a…芯体露出部、13…セパレータ、14…正極集電体、14a…集電リード部、15…負極集電体、16…外装缶、16a…環状溝部、16b…開口端縁、17…封口体、17a…正極キャップ、17b…弁板、17c…スプリング、18…絶縁ガスケット DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Nickel electrode, 11a ... Core body exposed part, 12 ... Hydrogen storage alloy electrode, 12a ... Core body exposed part, 13 ... Separator, 14 ... Positive electrode collector, 14a ... Current collection lead part 15 ... negative electrode current collector, 16 ... exterior can, 16a ... annular groove, 16b ... opening edge, 17 ... sealing body, 17a ... positive electrode cap, 17b ... valve plate, 17c ... spring, 18 ... insulating gasket

Claims (5)

水酸化ニッケルを主正極活物質とする焼結式ニッケル正極と、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、これらの水素吸蔵合金負極と焼結式ニッケル正極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金負極に用いられた水素吸蔵合金は、一般式がLnl-xMgxNiy-a-bAlab(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表されるとともに、
前記焼結式ニッケル正極はニオブ(Nb)を含有していることを特徴とするアルカリ蓄電池。
A sintered nickel positive electrode using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, and a separator separating the hydrogen storage alloy negative electrode and the sintered nickel positive electrode; An alkaline storage battery comprising an electrode group consisting of an alkaline electrolyte and an outer can,
The hydrogen storage alloy used for the hydrogen storage alloy negative electrode has a general formula of Ln lx Mg x Ni yab Al a M b (where Ln is at least selected from a rare earth element including Y, Zr and Ti). M is at least one element selected from V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B; 05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9),
2. The alkaline storage battery, wherein the sintered nickel positive electrode contains niobium (Nb).
前記焼結式ニッケル正極に含有されたニオブ(Nb)の含有量は、正極活物質中の正極活物質中の金属ニッケル(Ni)の質量に対して0.2質量%以上であることを特徴とする請求項1に記載のアルカリ蓄電池。   The content of niobium (Nb) contained in the sintered nickel positive electrode is 0.2% by mass or more based on the mass of metallic nickel (Ni) in the positive electrode active material in the positive electrode active material. The alkaline storage battery according to claim 1. 前記焼結式ニッケル正極に含有されたニオブ(Nb)は水酸化ニッケルからなる主正極活物質が含浸された後、ニオブ(Nb)を含有するアルカリ水溶液に前記焼結式ニッケル正極を浸漬することにより得られたものであることを特徴とする請求項1に記載のアルカリ蓄電池。   After the niobium (Nb) contained in the sintered nickel positive electrode is impregnated with a main positive electrode active material made of nickel hydroxide, the sintered nickel positive electrode is immersed in an alkaline aqueous solution containing niobium (Nb). The alkaline storage battery according to claim 1, wherein the alkaline storage battery is obtained. 前記焼結式ニッケル正極に含有されたニオブ(Nb)は、ニオブ(Nb)化合物を含有するセパレータを用いることにより得られたものであることを特徴とする請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the niobium (Nb) contained in the sintered nickel positive electrode is obtained by using a separator containing a niobium (Nb) compound. 前記外装缶内のアルカリ電解液はタングステン(W)を含有することを特徴とする請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the alkaline electrolyte in the outer can contains tungsten (W).
JP2011238400A 2011-04-28 2011-10-31 Alkaline storage battery Pending JP2012238565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238400A JP2012238565A (en) 2011-04-28 2011-10-31 Alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011100417 2011-04-28
JP2011100417 2011-04-28
JP2011238400A JP2012238565A (en) 2011-04-28 2011-10-31 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2012238565A true JP2012238565A (en) 2012-12-06

Family

ID=47461279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238400A Pending JP2012238565A (en) 2011-04-28 2011-10-31 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2012238565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068868A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Nickel metal hydride storage battery and storage battery system
WO2014068867A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Storage battery module and storage battery system
JP2015103497A (en) * 2013-11-28 2015-06-04 Fdk株式会社 Nickel hydrogen secondary battery
CN110931786A (en) * 2019-12-11 2020-03-27 河南创力新能源科技股份有限公司 Preparation method of iron-nickel battery cathode silicate crystal material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068868A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Nickel metal hydride storage battery and storage battery system
WO2014068867A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Storage battery module and storage battery system
JPWO2014068867A1 (en) * 2012-10-30 2016-09-08 三洋電機株式会社 Storage battery module and storage battery system
JP2015103497A (en) * 2013-11-28 2015-06-04 Fdk株式会社 Nickel hydrogen secondary battery
CN110931786A (en) * 2019-12-11 2020-03-27 河南创力新能源科技股份有限公司 Preparation method of iron-nickel battery cathode silicate crystal material

Similar Documents

Publication Publication Date Title
JP5241188B2 (en) Alkaline storage battery system
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP5196938B2 (en) Alkaline storage battery system
JP5119577B2 (en) Nickel metal hydride battery
JP2011233423A (en) Alkaline storage battery
JP5405167B2 (en) Alkaline storage battery system
JP2012238565A (en) Alkaline storage battery
JP2013114888A (en) Alkali storage battery, and alkali storage battery system with the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5849768B2 (en) Alkaline storage battery and alkaline storage battery system
JP5868669B2 (en) Alkaline storage battery
JP5853799B2 (en) Alkaline storage battery
JP6024295B2 (en) Alkaline storage battery
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP2013134904A (en) Alkaline storage battery and alkaline storage battery system including the same
JP6263983B2 (en) Alkaline storage battery and method for manufacturing the same
JP2016069692A (en) Hydrogen storage material, electrode and nickel hydride storage battery
JPWO2014050075A1 (en) Storage battery system.
JP3895984B2 (en) Nickel / hydrogen storage battery
JP5334498B2 (en) Alkaline storage battery
JP5147190B2 (en) Alkaline storage battery and method for producing positive electrode used therefor
JP2004127590A (en) Hydrogen storing alloy electrode and alkaline storage battery using the same
JP2003187805A (en) Nickel/hydrogen storage battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140529