JP2011233423A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2011233423A
JP2011233423A JP2010104006A JP2010104006A JP2011233423A JP 2011233423 A JP2011233423 A JP 2011233423A JP 2010104006 A JP2010104006 A JP 2010104006A JP 2010104006 A JP2010104006 A JP 2010104006A JP 2011233423 A JP2011233423 A JP 2011233423A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
nickel
charge
nickel positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010104006A
Other languages
Japanese (ja)
Inventor
Mitsunori Tokuda
光紀 徳田
Makoto Ochi
誠 越智
Kazuhiro Kitaoka
和洋 北岡
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010104006A priority Critical patent/JP2011233423A/en
Publication of JP2011233423A publication Critical patent/JP2011233423A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent capacity drop after charge-discharge cycle is repeated, by suppressing the generation of NiOH in a nickel positive electrode.SOLUTION: In the alkaline storage battery 10, the ratio X/Y is 15 or greater where X and Y are the length and the height of a nickel positive electrode 11, respectively. Under the charge-discharge condition in which charge of the amount of charge of the battery to target SOC without full charge of battery capacity under the current value condition in which current density is 100 It/mor less, and/or discharge to target SOC without complete discharge are performed, after charge and discharge are repeated until the total discharge quantity of electricity reaches 10 kAh, internal resistance is regulated to be 114% or less of the initial value and NiOH is regulated not to exist at the surface of the nickel positive electrode and the abundance ratio of NiOH in the nickel positive electrode is regulated to be 40% or less.

Description

本発明は、ハイブリッド自動車(HEV)、電気自動車(PEV)などの車両用途に好適なアルカリ蓄電池に係り、特に、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、焼結基板に水酸化ニッケルを主成分とする正極活物質が充填されたニッケル正極と、セパレータとからなる電極群をアルカリ電解液とともに電池容器内に収納されて密閉されたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery suitable for use in a vehicle such as a hybrid vehicle (HEV) or an electric vehicle (PEV), and more particularly, a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, and a hydroxide on a sintered substrate. The present invention relates to an alkaline storage battery in which an electrode group consisting of a nickel positive electrode filled with a positive electrode active material mainly composed of nickel and a separator is housed in a battery container together with an alkaline electrolyte and sealed.

近年、二次電池の用途は、例えば、携帯電話、パーソナルコンピュータ、電動工具、ハイブリッド自動車(HEV)、電気自動車(PEV)など多岐に亘るようになり、これらの用途にアルカリ蓄電池が用いられるようになった。これらのうち、特に、携帯電話やパーソナルコンピュータや電動工具などのような民生用の用途に用いられるアルカリ蓄電池においては、高容量の観点から、焼結基板に代えてパンチングメタルや発泡メタルなどの金属基板を備えた非焼結式ニッケル正極が用いられるようになった。一方、ハイブリッド自動車(HEV)や電気自動車(PEV)などの車両用の用途に用いられるアルカリ蓄電池においては、長寿命化を実現しやすいといった使い方の観点から、焼結基板を備えた焼結式ニッケル正極が用いられるようになった。   In recent years, secondary batteries have been used in a wide variety of applications such as mobile phones, personal computers, electric tools, hybrid vehicles (HEV), electric vehicles (PEV), etc., and alkaline storage batteries are used for these applications. became. Of these, in particular, alkaline storage batteries used for consumer applications such as mobile phones, personal computers, electric tools, etc., from the viewpoint of high capacity, metals such as punching metal and foam metal instead of sintered substrates Non-sintered nickel positive electrodes with substrates have come to be used. On the other hand, in alkaline storage batteries used for vehicles such as hybrid vehicles (HEV) and electric vehicles (PEV), sintered nickel provided with a sintered substrate from the viewpoint of easy use, such as long life. A positive electrode has been used.

この場合、長寿命化を実現するための焼結式ニッケル正極を備えたアルカリ蓄電池においては、さらなる高寿命化、高信頼性に対する市場の要望が一層高まっている。なお、非焼結式ニッケル正極においては、自己放電を防止するために正極集電体(金属基板)と正極活物質層との間にNi23Hの層を配置することが、例えば、特許文献1(特開2000−323139号公報)にて提案されている。また、活物質利用率を向上させるために、正極活物質層にNi23Hを添加することが、例えば、特許文献2(特開2004−311144号公報)にて提案されている。しかしながら、非焼結式ニッケル正極を備えたアルカリ蓄電池においては、高容量である反面、長寿命化を達成できないという問題があった。 In this case, in the alkaline storage battery including the sintered nickel positive electrode for realizing a long life, market demands for further long life and high reliability are increasing. In the non-sintered nickel positive electrode, in order to prevent self-discharge, disposing a Ni 2 O 3 H layer between the positive electrode current collector (metal substrate) and the positive electrode active material layer, for example, It is proposed in Patent Document 1 (Japanese Patent Laid-Open No. 2000-323139). Further, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2004-31144) proposes to add Ni 2 O 3 H to the positive electrode active material layer in order to improve the active material utilization rate. However, the alkaline storage battery provided with the non-sintered nickel positive electrode has a problem that it cannot achieve a long life while having a high capacity.

特開2000−323139号公報JP 2000-323139 A 特開2004−311144号公報JP 2004-31144 A

ところで、長寿命化を目的とした焼結式ニッケル正極を備えたアルカリ蓄電池においては、所定の充放電サイクルを繰り返した後においては、電池の内部抵抗が上昇して電池容量が低下するという問題があった。特に、この種の焼結式ニッケル正極を備えたアルカリ蓄電池を大電流にて充電して過充電状態にした場合においては、内部抵抗が格段に上昇し易いという問題があった。そこで、内部抵抗上昇の要因を分析したところ、焼結式ニッケル正極の内部でNi23Hが生成されていることが原因であることが分かった。 By the way, in the alkaline storage battery provided with the sintered nickel positive electrode for the purpose of extending the life, there is a problem that the internal resistance of the battery increases and the battery capacity decreases after repeating a predetermined charge / discharge cycle. there were. In particular, when an alkaline storage battery provided with this type of sintered nickel positive electrode is charged with a large current and brought into an overcharged state, there is a problem that the internal resistance is remarkably increased. Then, when the cause of the internal resistance increase was analyzed, it was found that Ni 2 O 3 H was generated inside the sintered nickel positive electrode.

ここで、粉末X線回折装置(XRD:X-Ray Diffractometer)を用いて焼結式ニッケル正極の表面解析を行ったところ、Ni23Hの回折ピークが出現することはないことが明らかになった。このことから、Ni23Hの生成は焼結式ニッケル正極の表面ではなく、その内部であることが確認された。これにより、焼結式ニッケル正極の内部でのNi23Hの生成が抵抗増加の要因となって、内部での抵抗増加に起因して実質的に取り出せる容量が低下し、耐久性能が低下することが明らかになった。 Here, when a surface analysis of the sintered nickel positive electrode was performed using a powder X-ray diffractometer (XRD), it was clear that a Ni 2 O 3 H diffraction peak did not appear. became. From this, it was confirmed that the generation of Ni 2 O 3 H was not in the surface of the sintered nickel positive electrode but in the inside thereof. As a result, the generation of Ni 2 O 3 H inside the sintered nickel positive electrode causes an increase in resistance, the capacity that can be taken out substantially decreases due to the increase in internal resistance, and the durability performance decreases. It became clear to do.

また、この種の長寿命化を目的とした焼結式ニッケル正極を備えたアルカリ蓄電池市場の成長に伴い、長寿命化に加えて小型、軽量化に対する要望が増大するようになった。この場合、アルカリ蓄電池を小型化するために、正・負極の高さ(幅)を短くする必要があるが、焼結式ニッケル正極の高さ(幅)を短くすると、厚み方向での電流密度がより高密度になる。これにより、焼結式ニッケル正極の内部でのNi23Hの生成に起因する抵抗増加がより顕著になり、所定の充放電サイクルを繰り返した後に十分な容量が得られなくなるという問題を生じた。 Further, along with the growth of the alkaline storage battery market equipped with a sintered nickel positive electrode for the purpose of extending the life of this kind, demands for miniaturization and weight reduction in addition to the long life have increased. In this case, in order to reduce the size of the alkaline storage battery, it is necessary to shorten the height (width) of the positive and negative electrodes. However, if the height (width) of the sintered nickel positive electrode is shortened, the current density in the thickness direction is reduced. Becomes more dense. As a result, the increase in resistance due to the formation of Ni 2 O 3 H inside the sintered nickel positive electrode becomes more remarkable, and there is a problem that sufficient capacity cannot be obtained after repeating a predetermined charge / discharge cycle. It was.

そこで、本発明は、長寿命化に加えて小型、軽量化したアルカリ蓄電池において、ニッケル正極内部でのNi23Hの生成を抑制できるようにして、所定の充放電サイクルを繰り返した後の容量低下を防止することを目的としてなされたものである。 Therefore, the present invention provides an alkaline storage battery that is reduced in size and weight in addition to extending its life, and is capable of suppressing the formation of Ni 2 O 3 H inside the nickel positive electrode, and after repeating a predetermined charge / discharge cycle. It was made for the purpose of preventing capacity reduction.

上記目的を達成するため、本発明のアルカリ蓄電池においては、ニッケル正極の長さをXとし、高さ(幅)をYとした場合、高さ(幅)に対する長さの比(X/Y)が15以上(X/Y≧15)であるとともに、ニッケル正極に対する電流密度が100It/m2を超えない範囲の電流値条件で電池の充電量を電池容量に対し満充電を行わない目標SOCまでの充電、および/または完全放電を行わない目標SOCまでの放電を行う充放電条件にて、総放電電気量で10kAhまで充放電を繰り返した後の内部抵抗が初期の内部抵抗に対して114%以下で、ニッケル正極内のNi23Hがニッケル正極表面から0.01mmの範囲内には存在しておらず、かつCu−Kαを用いた粉末X線回折において、Ni23Hの(120)面でのピーク強度がNi(OH)2の(001)面でのピーク強度に対して40%以下になるように規制している。 In order to achieve the above object, in the alkaline storage battery of the present invention, when the length of the nickel positive electrode is X and the height (width) is Y, the ratio of the length to the height (width) (X / Y) Is equal to or greater than 15 (X / Y ≧ 15), and the target SOC that does not fully charge the battery capacity with respect to the battery capacity under a current value condition in which the current density with respect to the nickel positive electrode does not exceed 100 It / m 2 The internal resistance after repeating charge / discharge up to 10 kAh in terms of the total discharge electricity is 114% of the initial internal resistance under the charge / discharge conditions in which the battery is charged and / or discharged to the target SOC without complete discharge. In the following, Ni 2 O 3 H in the nickel positive electrode does not exist within a range of 0.01 mm from the surface of the nickel positive electrode, and in powder X-ray diffraction using Cu-Kα, Ni 2 O 3 H Pi on (120) plane The peak strength is regulated to 40% or less with respect to the peak strength on the (001) plane of Ni (OH) 2 .

ここで、電池を小型化するためには、電極の高さ(幅)を短くする必要が、電極の高さ(幅)を短くすると反応表面積が減少するため、電極の高さ(幅)を短くした分だけ、その長さを長くして反応表面積を確保する必要がある。この場合、ニッケル正極の長さをXとし、高さ(幅)をYとした場合、高さ(幅)に対する長さの比(X/Y)が15より小さいと、長さに対して高さ(幅)が相対的に大きくなって電池の小型化を達成することが困難になる。このため、電池の小型化を達成するためには、高さ(幅)に対する長さの比(X/Y)を15以上(X/Y≧15)にする必要がある。   Here, in order to reduce the size of the battery, it is necessary to shorten the height (width) of the electrode. However, if the height (width) of the electrode is shortened, the reaction surface area decreases, so the height (width) of the electrode is reduced. It is necessary to secure the reaction surface area by increasing the length by the shortened amount. In this case, when the length of the nickel positive electrode is X and the height (width) is Y, if the ratio of the length to the height (width) (X / Y) is smaller than 15, the length is higher than the length. The thickness (width) becomes relatively large, and it becomes difficult to achieve downsizing of the battery. For this reason, in order to achieve downsizing of the battery, the ratio of length to height (width) (X / Y) needs to be 15 or more (X / Y ≧ 15).

なお、高さ(幅)に対する長さの比(X/Y)が大きくなればなるほど、この電極に流れる電流密度が大きくなって、ニッケル正極内部でのNi23Hが生成し易くなって、抵抗増加が生じ、容量低下が惹起されて容量が低下し、耐久性性能が低下することとなる。この場合、高さ(幅)に対する長さの比(X/Y)が27以下であれば、ニッケル正極内部でのNi23Hの生成比率がそれほど大きくないことが分かった。このことからすると、ニッケル正極の高さ(幅)に対する長さの比(X/Y)は27以下であるのが望ましいということができる。結局、ニッケル正極の高さ(幅)に対する長さの比(X/Y)は15以上で27以下(15≦X/Y≦27)が好ましいこととなる。 As the ratio of length to height (width) (X / Y) increases, the density of current flowing through this electrode increases, and Ni 2 O 3 H is easily generated inside the nickel positive electrode. As a result, the resistance is increased, the capacity is lowered, the capacity is lowered, and the durability performance is lowered. In this case, it was found that if the ratio of length to height (width) (X / Y) is 27 or less, the generation ratio of Ni 2 O 3 H inside the nickel positive electrode is not so large. From this, it can be said that the ratio (X / Y) of the length to the height (width) of the nickel positive electrode is desirably 27 or less. After all, the ratio (X / Y) of the length to the height (width) of the nickel positive electrode is preferably 15 or more and 27 or less (15 ≦ X / Y ≦ 27).

また、セパレータを介して正・負極を対向させた電極群を渦巻状に巻回して同じ直径の渦巻状電極群を作製する場合、厚みを薄くしてその分長さを長くした電極を用いた方が、厚みを厚くしてその分長さを短くした電極を用いたよりも、反応表面積が増大して大容量の電池が得られることとなる。この場合、所定の充放電を繰り返した後の内部抵抗が初期の内部抵抗に対して114%以下になるのが望ましい。   In addition, when a spiral electrode group having the same diameter was produced by spirally winding an electrode group with the positive and negative electrodes facing each other through a separator, an electrode with a reduced thickness and a correspondingly longer length was used. However, rather than using an electrode with a larger thickness and a shorter length, the reaction surface area is increased and a battery with a large capacity can be obtained. In this case, it is desirable that the internal resistance after repeated predetermined charging / discharging is 114% or less with respect to the initial internal resistance.

ここで、所定の充放電条件にて総放電電気量で10kAhまで充放電を繰り返した後、Ni23Hがニッケル正極内での存在比率が40%より多く存在するとニッケル正極の抵抗が大きく増加するようになって、電池容量が大きく低下し、耐久性が著しく低下する要因となる。このため、ニッケル正極表面(この場合、ニッケル正極表面は表面から0.01mmまでの範囲を意味する)にはNi23Hが存在しておらず、かつニッケル正極内でのNi23Hの存在比率が40%以下になるように規制する必要がある。この場合、Ni23Hの存在比率は、Cu−Kαを用いた粉末X線回折において、Ni23Hの(120)面でのピーク強度とNi(OH)2の(001)面でのピーク強度との比率を意味する。 Here, after repeating charge / discharge up to 10 kAh in terms of the total discharge electricity under predetermined charge / discharge conditions, the resistance of the nickel positive electrode increases when Ni 2 O 3 H is present in a nickel positive electrode in an amount of more than 40%. As the battery capacity increases, the battery capacity is greatly reduced and the durability is significantly reduced. Therefore, the nickel positive electrode surface (in this case, the nickel positive electrode surface means a range from the surface to 0.01 mm) does not exist Ni 2 O 3 H in, and Ni 2 O 3 in the nickel positive electrode It is necessary to regulate so that the abundance ratio of H is 40% or less. In this case, Ni content ratio of 2 O 3 H, in the powder X-ray diffraction using Cu-Kα, Ni 2 O 3 H in (120) plane peak intensity at the Ni (OH) 2 in (001) plane It means the ratio with the peak intensity.

なお、所定の充放電条件とは、ニッケル正極に対する電流密度が100It/m2を超えない範囲の電流値条件で、電池の充電量を電池容量に対し満充電を行わない目標SOCまでの充電、および/または完全放電を行わない目標SOCまでの放電を行わせて、総放電電気量が10kAhになるまで充放電を繰り返して行うものである。この場合、所定の充放電条件にて総放電電気量で10kAhまで充放電を繰り返した後、ニッケル正極内でのNi23Hの存在比率が10%以下になるように規制すると、ニッケル正極の抵抗増加を更に抑制できて、電池容量の低下も更に抑制できるようになるので好ましい。そして、満充電を行わない目標SOCは電池容量に対して90%以下であり、完全放電を行わない目標SOCは電池容量に対して20%以上であることを意味する。 The predetermined charge / discharge condition is a current value condition in which the current density with respect to the nickel positive electrode does not exceed 100 It / m 2 , and the battery charge amount is charged to a target SOC that does not fully charge the battery capacity. And / or discharge is performed up to the target SOC that does not perform complete discharge, and charging and discharging are repeated until the total amount of discharged electricity reaches 10 kAh. In this case, if charging / discharging is repeated up to 10 kAh in terms of total discharge electricity under predetermined charging / discharging conditions, and the Ni 2 O 3 H abundance ratio in the nickel positive electrode is restricted to 10% or less, the nickel positive electrode This is preferable because an increase in resistance can be further suppressed and a decrease in battery capacity can be further suppressed. The target SOC that does not perform full charge is 90% or less with respect to the battery capacity, and the target SOC that does not perform full discharge is 20% or more with respect to the battery capacity.

本発明においては、充放電を繰り返した後においてもニッケル正極内部でのNi23Hの存在比率を抑制することができるので、所定の充放電を繰り返した後のニッケル正極の抵抗増加による容量低下を抑制することが可能となる。 In the present invention, since the Ni 2 O 3 H abundance ratio inside the nickel positive electrode can be suppressed even after repeated charge / discharge, the capacity due to the increase in resistance of the nickel positive electrode after repeated predetermined charge / discharge It is possible to suppress the decrease.

本発明のアルカリ蓄電池の一実施例となるニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-hydrogen storage battery used as one Example of the alkaline storage battery of this invention. Ni23Hの存在比率(%)に対する容量比率(%)の関係を示すグラフである。Ni is a graph showing the relationship between the 2 O 3 H capacity ratio proportions (%) of (%).

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.ニッケル正極
(1)焼結基板
ニッケル焼結基板は以下のようにして作製したものを用いている。例えば、ニッケル粉末に、増粘剤となるメチルセルロース(MC)と高分子中空微小球体(例えば、孔径が60μmのもの)と水とを混合、混練してニッケルスラリーを作製した。ついで、ニッケルめっき鋼板からなるパンチングメタルの両面にニッケルスラリーを所定の厚みになるように塗着した後、還元性雰囲気中で1000℃で加熱して、増粘剤や高分子中空微小球体を消失させるとともにニッケル粉末同士を焼結させることにより作製した。ここで、焼結後の厚みが0.35mmになるように作製されたものをニッケル焼結基板αとし、焼結後の厚みが0.40mmになるように作製されたものをニッケル焼結基板βとした。
1. Nickel positive electrode
(1) Sintered substrate
A nickel sintered substrate manufactured as follows is used. For example, nickel slurry was prepared by mixing and kneading methyl cellulose (MC) as a thickener, polymer hollow microspheres (for example, having a pore size of 60 μm), and water with nickel powder. Next, after applying nickel slurry to both sides of the punching metal made of nickel-plated steel plate to a predetermined thickness, it was heated at 1000 ° C in a reducing atmosphere, and the thickener and polymer hollow microspheres disappeared. And nickel powders were sintered together. Here, what was produced so that the thickness after sintering would be 0.35 mm was used as the nickel sintered substrate α, and what was produced so that the thickness after sintering would be 0.40 mm would be the nickel sintered substrate. β.

(2)焼結式ニッケル正極
焼結式ニッケル正極11は、上述のようにして作製されたニッケル焼結基板α,βの多孔内に水酸化ニッケルと水酸化コバルトと水酸化亜鉛とが所定の充填量になるように充填して作製した。この場合、得られたニッケル焼結基板α,βに以下のような含浸液を含浸する含浸処理と、アルカリ処理液によるアルカリ処理とを所定回数繰り返すことにより、ニッケル焼結基板の多孔内に所定量の水酸化ニッケルと水酸化コバルトと水酸化亜鉛とを充填した後、所定の寸法に裁断することにより、正極活物質が充填された焼結式ニッケル正極11(a,b)を作製した。
(2) Sintered nickel positive electrode
The sintered nickel positive electrode 11 is filled with nickel hydroxide, cobalt hydroxide, and zinc hydroxide in a predetermined filling amount in the pores of the nickel sintered substrates α, β produced as described above. Made. In this case, the obtained nickel sintered substrates α and β are impregnated with the following impregnating solution and the alkali treatment with the alkali treating solution is repeated a predetermined number of times to place the nickel sintered substrates in the pores of the nickel sintered substrate. After filling fixed amounts of nickel hydroxide, cobalt hydroxide, and zinc hydroxide, the sintered nickel positive electrode 11 (a, b) filled with the positive electrode active material was prepared by cutting into predetermined dimensions.

この場合、含浸液としては、硝酸ニッケルと硝酸コバルトと硝酸亜鉛を所定のモル比(例えば、100:5:5)となるように調製した混合水溶液を用い、アルカリ処理液としては、比重が1.3の水酸化ナトリウム(NaOH)水溶液を用いた。そして、ニッケル焼結基板を含浸液に浸漬して、ニッケル焼結基板の細孔内に含浸液を含浸させた後、乾燥させ、ついで、アルカリ処理液に浸漬してアルカリ処理を行った。これにより、ニッケル塩や亜鉛塩を水酸化ニッケルや水酸化亜鉛に転換させた。この後、充分に水洗してアルカリ溶液を除去した後、乾燥させた。このような、含浸液の含浸、乾燥、アルカリ処理液への浸漬、水洗、および乾燥という一連の正極活物質の充填操作を6回繰り返すことにより、所定量の正極活物質をニッケル焼結基板α,βに充填させた。   In this case, a mixed aqueous solution prepared from nickel nitrate, cobalt nitrate, and zinc nitrate at a predetermined molar ratio (for example, 100: 5: 5) is used as the impregnation liquid, and the specific gravity is 1 as the alkali treatment liquid. .3 aqueous sodium hydroxide (NaOH) solution was used. Then, the nickel sintered substrate was immersed in an impregnating solution, the impregnating solution was impregnated in the pores of the nickel sintered substrate, dried, and then immersed in an alkali processing solution to perform an alkali treatment. Thereby, nickel salt and zinc salt were converted into nickel hydroxide and zinc hydroxide. Thereafter, the substrate was sufficiently washed with water to remove the alkaline solution and then dried. A series of positive electrode active material filling operations such as impregnation with an impregnation solution, drying, immersion in an alkali treatment solution, washing with water, and drying are repeated six times, whereby a predetermined amount of the positive electrode active material is added to the nickel sintered substrate α. , Β.

なお、ニッケル焼結基板α(厚みが0.35mmのもの)を用い、長さ(X)が950mmで高さ(幅:Y)が50mm(X/Y=19.0)の寸法になるように裁断して作製されたものを焼結式ニッケル正極aとした。また、ニッケル焼結基板β(厚みが0.40mmのもの)を用い、長さ(X)が750mmで高さ(幅:Y)が50mm(X/Y=15.0)の寸法になるように裁断して作製されたものを焼結式ニッケル正極bとした。   A nickel sintered substrate α (thickness of 0.35 mm) is used, and the length (X) is 950 mm and the height (width: Y) is 50 mm (X / Y = 19.0). The one produced by cutting into a sintered nickel positive electrode a was obtained. Also, using a nickel sintered substrate β (thickness of 0.40 mm), the length (X) is 750 mm and the height (width: Y) is 50 mm (X / Y = 15.0). The one produced by cutting into a sintered nickel positive electrode b was obtained.

(3)非焼結式ニッケル正極
非焼結式ニッケル正極11は、発泡ニッケルからなる正極基板に活物質スラリー(ニッケルスラリー)を充填して作製した。この場合、活物質スラリーは以下のようにして調製した。即ち、活物質としてニッケル:コバルト:亜鉛のモル比が100:5:5となるように、硫酸ニッケルと硫酸コバルトと硫酸亜鉛からなる混合水溶液を撹拌しながら、水酸化ナトリウム水溶液を徐々に添加し、反応液中のpHを13〜14に安定させて、複合粒子からなる水酸化ニッケルを溶出させた。この後、得られた複合粒子からなる水酸化ニッケルに対して、10倍量の純水で3回洗浄した後、脱水、乾燥させることにより、水酸化ニッケル活物質を調製した。
(3) Non-sintered nickel positive electrode
The non-sintered nickel positive electrode 11 was produced by filling a positive electrode substrate made of foamed nickel with an active material slurry (nickel slurry). In this case, the active material slurry was prepared as follows. That is, an aqueous sodium hydroxide solution was gradually added while stirring a mixed aqueous solution composed of nickel sulfate, cobalt sulfate and zinc sulfate so that the molar ratio of nickel: cobalt: zinc as an active material was 100: 5: 5. The pH in the reaction solution was stabilized at 13 to 14, and nickel hydroxide consisting of composite particles was eluted. Thereafter, the nickel hydroxide composed of the obtained composite particles was washed three times with 10 times the amount of pure water, and then dehydrated and dried to prepare a nickel hydroxide active material.

ついで、得られた水酸化ニッケル活物質に40質量%のHPCディスパージョン液を混合して、活物質スラリーを調製した。さらに、得られた活物質スラリーの所定量を発泡ニッケル(例えば、多孔度が95%で、平均孔径が200μmのもの)からなる正極基板に所定の充填密度になるように充填し、乾燥後、所定の厚みになるように圧延し、所定の寸法になるように切断して、非焼結式ニッケル正極11xとした。なお、この場合は、厚みが0.40mmになるようにし、かつ、長さ(X)が750mmで高さ(幅:Y)が50mm(X/Y=15.0)になるように作製し、非焼結式ニッケル正極cとした。   Subsequently, 40 mass% HPC dispersion liquid was mixed with the obtained nickel hydroxide active material to prepare an active material slurry. Further, a predetermined amount of the obtained active material slurry is charged to a positive electrode substrate made of foamed nickel (for example, having a porosity of 95% and an average pore diameter of 200 μm) so as to have a predetermined packing density, and after drying, The non-sintered nickel positive electrode 11x was rolled to a predetermined thickness and cut to a predetermined size. In this case, the thickness is 0.40 mm, the length (X) is 750 mm, and the height (width: Y) is 50 mm (X / Y = 15.0). A non-sintered nickel positive electrode c was obtained.

2.水素吸蔵合金負極
水素吸蔵合金負極12はパンチングメタルからなる負極芯体に水素吸蔵合金スラリーを塗布して作製した。この場合、例えば、水素吸蔵合金の塊(インゴット)をアルゴンガス雰囲気で熱処理を行ってインゴットにおける結晶構造を調整した後、不活性雰囲気中で機械的に粉砕して水素吸蔵合金粉末とした。この後、得られた水素吸蔵合金粉末100質量部に対し、非水溶性高分子結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、増粘剤としてCMC(カルボキシメチルセルロース)を0.03質量部と、適量の純水を加えて混練して、水素吸蔵合金スラリーを調製した。そして、得られた水素吸蔵合金スラリーをパンチングメタル(ニッケルメッキ鋼板製)からなる負極芯体の両面に塗着した後、乾燥させ、所定の充填密度になるように圧延した後、所定の寸法に裁断して水素吸蔵合金負極12(x,y)を作製した。
2. Hydrogen storage alloy negative electrode
The hydrogen storage alloy negative electrode 12 was prepared by applying a hydrogen storage alloy slurry to a negative electrode core made of punching metal. In this case, for example, a hydrogen storage alloy lump (ingot) was heat-treated in an argon gas atmosphere to adjust the crystal structure in the ingot, and then mechanically pulverized in an inert atmosphere to obtain a hydrogen storage alloy powder. Thereafter, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble polymer binder and CMC (carboxymethylcellulose) as a thickener are added to 100 parts by mass of the obtained hydrogen storage alloy powder. 0.03 parts by mass and an appropriate amount of pure water were added and kneaded to prepare a hydrogen storage alloy slurry. And after apply | coating the obtained hydrogen storage alloy slurry to both surfaces of the negative electrode core body which consists of punching metal (made of nickel plating steel plate), it is made to dry and is rolled so that it may become a predetermined packing density, Then, it is set to a predetermined dimension. The hydrogen storage alloy negative electrode 12 (x, y) was produced by cutting.

なお、一般式がLa0.6Sm0.4Mg0.1Ni3.6Al0.05と表される水素吸蔵合金(A成分(LaとMgのモル比)に対するB成分(NiとAlのモル比)の量論比は3.3(AB3.3))を用い、長さが100mmで、高さ(幅)が50mmで、厚みが0.20mmになるように作製したものを水素吸蔵合金負極xとした。また、一般式がMmNi4.0Co0.6Al0.5Mn0.2と表される水素吸蔵合金(A成分(Mmのモル比)に対するB成分(NiとCoとAlのMnのモル比)の量論比は5.3(AB5.3))を用い、長さが850mmで、高さ(幅)が50mmで、厚みが0.25mmになるように作製したものを水素吸蔵合金負極yとした。 Note that the stoichiometric ratio of the B component (molar ratio of Ni and Al) to the hydrogen storage alloy (the molar ratio of La and Mg) expressed as La 0.6 Sm 0.4 Mg 0.1 Ni 3.6 Al 0.05 is 3 .3 (AB 3.3 )), the one produced to have a length of 100 mm, a height (width) of 50 mm, and a thickness of 0.20 mm was designated as a hydrogen storage alloy negative electrode x. The stoichiometric ratio of the B component (molar ratio of Mn of Ni, Co, and Al) to the hydrogen storage alloy (M component (molar ratio of Mm)) represented by the general formula MmNi 4.0 Co 0.6 Al 0.5 Mn 0.2 is 5 .3 (AB 5.3 )), a length of 850 mm, a height (width) of 50 mm, and a thickness of 0.25 mm was used as a hydrogen storage alloy negative electrode y.

3.ニッケル−水素蓄電池
ついで、上述のようにして作製したニッケル正極11(a,b,c)と、水素吸蔵合金負極12(x,y)とを用い、これらの間に、ポリオレフィン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の上部にはニッケル正極11の芯体露出部11cが露出しており、その下部には水素吸蔵合金電極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部12cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル電極11の芯体露出部11cの上に正極集電体15を溶接して、電極体とした。
3. Nickel-hydrogen storage battery
Next, the nickel positive electrode 11 (a, b, c) produced as described above and the hydrogen storage alloy negative electrode 12 (x, y) are used, and a separator 13 made of a polyolefin nonwoven fabric is interposed therebetween. Thus, a spiral electrode group was produced by winding in a spiral shape. The core exposed part 11c of the nickel positive electrode 11 is exposed at the upper part of the spiral electrode group thus produced, and the core exposed part 12c of the hydrogen storage alloy electrode 12 is exposed at the lower part. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 12c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 11c of the nickel electrode 11 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、負極集電体14を外装缶17の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子を兼ねるとともに外周部に絶縁ガスケット19が装着された封口体18の底部に溶接した。なお、封口体18には正極キャップ18aが設けられていて、この正極キャップ18a内に所定の圧力になると変形する弁体18bとスプリング18cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body was accommodated in a bottomed cylindrical outer can in which nickel was plated on iron (the outer surface of the bottom surface becomes a negative external terminal) 17, the negative electrode current collector 14 was attached to the outer can 17. Welded to the inner bottom. On the other hand, the current collecting lead portion 15a extending from the positive electrode current collector 15 was also welded to the bottom portion of the sealing body 18 which also served as the positive electrode terminal and was fitted with the insulating gasket 19 on the outer peripheral portion. The sealing body 18 is provided with a positive electrode cap 18a, and a pressure valve (not shown) composed of a valve body 18b and a spring 18c, which are deformed when a predetermined pressure is reached, is disposed in the positive electrode cap 18a.

ついで、外装缶17の上部外周部に環状溝部17aを形成した後、アルカリ電解液を注液し、外装缶17の上部に形成された環状溝部17aの上に封口体18の外周部に装着された絶縁ガスケット19を載置した。この後、外装缶17の開口端縁17bをかしめることにより、公称容量は6Ah(直径が32mmで、高さが60mm)のニッケル−水素蓄電池10(A,B,C)を作製した。   Next, after forming the annular groove portion 17 a on the outer periphery of the upper portion of the outer can 17, an alkaline electrolyte is injected, and the outer periphery portion of the sealing body 18 is mounted on the annular groove portion 17 a formed on the upper portion of the outer can 17. An insulating gasket 19 was placed. Thereafter, the open end edge 17b of the outer can 17 was caulked to produce a nickel-hydrogen storage battery 10 (A, B, C) having a nominal capacity of 6 Ah (diameter: 32 mm, height: 60 mm).

ここで、焼結式ニッケル正極aと水素吸蔵合金負極xとを用いたものを電池Aとした。また、焼結式ニッケル正極bと水素吸蔵合金負極yとを用いたものを電池Bとし、非焼結式ニッケル正極cと水素吸蔵合金負極yとを用いたものを電池Cとした。なお、これらの電池A,B,Cの内部抵抗値を測定した結果、電池Aは1.51mΩで、電池Bは1.28mΩで、電池Cは2.33mΩであることが分かった。   Here, the battery A was formed using the sintered nickel positive electrode a and the hydrogen storage alloy negative electrode x. Also, a battery B was formed using the sintered nickel positive electrode b and the hydrogen storage alloy negative electrode y, and a battery C was formed using the non-sintered nickel positive electrode c and the hydrogen storage alloy negative electrode y. As a result of measuring the internal resistance values of these batteries A, B, and C, it was found that battery A was 1.51 mΩ, battery B was 1.28 mΩ, and battery C was 2.33 mΩ.

4.電池試験
(1)部分充放電サイクル後のニッケル正極でのNi23Hの存在比率の測定
これらの各電池A,B,Cを用い、25℃の温度雰囲において、1Itの充電電流(電流密度は電池Aにおいては21.0It/m2となり、電池B,Cにおいては26.7It/m2となる)にて、初期容量に対するSOC(State Of Charge:充電深度)が90%となる電圧まで充電した後、1Itの放電電流(電流密度は電池Aにおいては21.0It/m2となり、電池B,Cにおいては26.7It/m2となる)にてSOCが20%となる電圧まで放電させるというサイクルを繰り返す部分充放電サイクル試験を行った。そして、このような部分充放電サイクルを総放電電気量が10kAhとなるまで繰り返した。
4). Battery test
(1) Measurement of the abundance ratio of Ni 2 O 3 H at the nickel positive electrode after the partial charge / discharge cycle
Using each of these batteries A, B, and C, a charging current of 1 It (current density is 21.0 It / m 2 for battery A and 26.7 It / m for batteries B and C in a temperature atmosphere of 25 ° C. m 2 ), after charging to a voltage at which the SOC (State Of Charge) with respect to the initial capacity is 90%, a discharge current of 1 It (current density is 21.0 It / m 2 in the battery A) In the case of batteries B and C, a partial charge / discharge cycle test was repeated, in which the battery was discharged to a voltage at which the SOC became 20% at 26.7 It / m 2 . Then, such a partial charge / discharge cycle was repeated until the total electric discharge amount reached 10 kAh.

ついで、上述のような部分充放電サイクル後のニッケル−水素蓄電池を解体して、焼結式ニッケル正極a,bおよび非焼結式ニッケル正極cを取り出した。この後、粉末X線回折装置(XRD:X-Ray Diffractometer)を用いて、取り出した焼結式ニッケル正極a,bおよび非焼結式ニッケル正極cの各表面でのX線回折による解析を行ったところ、各ニッケル正極の表面(ニッケル正極表面から0.01mmの範囲内を意味する)でのNi23Hによる回折ピークは認められなかった。 Subsequently, the nickel-hydrogen storage battery after the partial charge / discharge cycle as described above was disassembled, and the sintered nickel positive electrodes a and b and the non-sintered nickel positive electrode c were taken out. Thereafter, using a powder X-ray diffractometer (XRD), analysis is performed by X-ray diffraction on each surface of the extracted sintered nickel positive electrodes a and b and non-sintered nickel positive electrode c. As a result, a diffraction peak due to Ni 2 O 3 H on the surface of each nickel positive electrode (meaning within a range of 0.01 mm from the surface of the nickel positive electrode) was not observed.

また、これらのニッケル正極a,b,cから活物質を脱落させた後、Cu−Kαを用いた粉末X線回折を行った結果、Ni23Hに起因する回折ピークが認められ、このときニッケル正極aのNi23H:(120)面のピーク強度はNi(OH)2:(001)面のピーク強度に対して8%であった。また、ニッケル正極bのNi23H:(120)面のピーク強度はNi(OH)2:(001)面のピーク強度に対して52%であった。一方、ニッケル正極cにおいてはNi23Hは存在していないことが分かった。 Further, after removing the active material from these nickel positive electrodes a, b and c, powder X-ray diffraction using Cu-Kα was performed, and as a result, a diffraction peak due to Ni 2 O 3 H was observed. The peak intensity of the Ni 2 O 3 H: (120) plane of the nickel positive electrode a was 8% with respect to the peak intensity of the Ni (OH) 2 : (001) plane. Further, the peak intensity of the Ni 2 O 3 H: (120) plane of the nickel positive electrode b was 52% with respect to the peak intensity of the Ni (OH) 2 : (001) plane. On the other hand, it was found that Ni 2 O 3 H was not present in the nickel positive electrode c.

(2)容量比率の測定
上述のように部分充放電サイクルを総放電電気量が10kAhとなるまで繰り返した各ニッケル−水素蓄電池A,B,Cにおいて、1Itの充電々流ににてSOCの100%まで充電を行った後、1時間休止させた。ついで、1Itの放電々流にて電池電圧が0.9Vになるまで放電させて、放電時間から部分充放電サイクル後の各電池A,B,Cの容量(Ah)を測定した。この後、部分充放電サイクル行っていない電池Aの容量(Ah)を100として、これとの比を容量比率(%)として求めると、下記の表1に示すような結果が得られた。

Figure 2011233423
(2) Capacity ratio measurement
In each of the nickel-hydrogen batteries A, B, and C, in which the partial charge / discharge cycle is repeated until the total discharge electricity amount becomes 10 kAh as described above, after charging to 100% of the SOC at a charging current of 1 It. 1 hour rest. Next, the battery was discharged at a discharge current of 1 It until the battery voltage became 0.9 V, and the capacity (Ah) of each battery A, B, C after the partial charge / discharge cycle was measured from the discharge time. Thereafter, when the capacity (Ah) of the battery A that was not subjected to the partial charge / discharge cycle was set to 100 and the ratio thereof was determined as the capacity ratio (%), the results shown in Table 1 below were obtained.
Figure 2011233423

上記表1の結果から明らかなように、非焼結式ニッケル正極を用いた電池Cにおいては、内部抵抗値が2.33mΩと大きな値を示すとともに、部分充放電サイクル後の容量比率が31%と大きく低下していることが分かる。これは、電池Cにおいては非焼結式ニッケル正極を用いていることから、内部抵抗値が大きくなり、かつ非焼結式ニッケル正極内でのNi23Hの存在比率に関係なく、部分充放電サイクルを繰り返した場合においては、水酸化ニッケル(Ni(OH)2)の固溶成分であるコバルト(Co)の電解液中への溶出量が多くなるため、容量比率が大きく低下したと考えられる。 As is clear from the results in Table 1 above, in the battery C using the non-sintered nickel positive electrode, the internal resistance value was as large as 2.33 mΩ, and the capacity ratio after the partial charge / discharge cycle was 31%. It turns out that it has fallen greatly. This is because the battery C uses a non-sintered nickel positive electrode, so that the internal resistance value is large, and the Ni 2 O 3 H abundance ratio in the non-sintered nickel positive electrode When the charge / discharge cycle was repeated, the elution amount of cobalt (Co), which is a solid solution component of nickel hydroxide (Ni (OH) 2 ), into the electrolyte increased, and the capacity ratio was greatly reduced. Conceivable.

また、焼結式ニッケル正極を用いた電池Bにおいては、電池Aに比較して、内部抵抗値が1.51mΩと大きな値を示すとともに、容量比率も58%で低下が大きいことが分かる。これは、焼結式ニッケル正極を用いた電池Bにおいては、詳細なメカニズムは不明ではあるが、内部抵抗値が1.51mΩと大きめであるため、部分充放電サイクルを繰り返した後のニッケル正極内のNi23Hの存在比率が52%に増大するため、部分充放電サイクル後の内部抵抗がさらに増大して容量比率が大きく低下したと考えられる。 In addition, in the battery B using the sintered nickel positive electrode, the internal resistance value is as large as 1.51 mΩ as compared with the battery A, and the capacity ratio is also 58% and the decrease is large. In the battery B using the sintered nickel positive electrode, although the detailed mechanism is unknown, the internal resistance value is as large as 1.51 mΩ, so the inside of the nickel positive electrode after repeating the partial charge / discharge cycle The Ni 2 O 3 H abundance ratio increases to 52%, so that the internal resistance after the partial charge / discharge cycle is further increased and the capacity ratio is greatly reduced.

これらに対して、焼結式ニッケル正極を用いた電池Aにおいては、内部抵抗値が1.28mΩと小さく、かつ容量比率も95%で容量の低下が極めて小さいことが分かる。これは、焼結式ニッケル正極を用いた電池Aにおいては、詳細なメカニズムは不明ではあるが、内部抵抗値が1.28mΩと小さく、部分充放電サイクルを繰り返した後のニッケル正極内のNi23Hの存在比率も8%と小さいため、部分充放電サイクル後においても内部抵抗が増大することはなく、容量比率の低下が殆ど生じなかっためと考えられる。
以上のことから、焼結式ニッケル正極を用い、かつ内部抵抗値が小さくなるように構成して、部分充放電サイクルを繰り返した後のニッケル正極内のNi23Hの存在比率が小さくなるようにすれば、部分充放電サイクル後の容量比率の低下が生じないニッケル−水素蓄電池を得ることが可能となることが分かる。
On the other hand, in the battery A using the sintered nickel positive electrode, it can be seen that the internal resistance value is as small as 1.28 mΩ, the capacity ratio is 95%, and the decrease in capacity is extremely small. In the battery A using the sintered nickel positive electrode, the detailed mechanism is unknown, but the internal resistance value is as small as 1.28 mΩ, and the Ni 2 in the nickel positive electrode after repeating the partial charge / discharge cycle is used. Since the O 3 H abundance ratio is as small as 8%, the internal resistance does not increase even after the partial charge / discharge cycle, and the capacity ratio is hardly lowered.
From the above, a sintered nickel positive electrode is used and the internal resistance value is reduced, and the abundance ratio of Ni 2 O 3 H in the nickel positive electrode after repeating the partial charge / discharge cycle is reduced. If it does in this way, it turns out that it becomes possible to obtain the nickel-hydrogen storage battery in which the fall of the capacity ratio after a partial charge / discharge cycle does not arise.

5.充放電条件の検討
ついで、上述のように作製されたニッケル−水素蓄電池Aを用いて、充放電条件について検討した。ここで、電池容量の20〜80%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は1Itで、電流密度は21.0It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A2とした。同様に、電池容量の20〜100%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は1Itで、電流密度は21.0It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A3とし、電池容量の20〜110%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は1Itで、電流密度は21.0It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A4とした。
5). Study of charge / discharge conditions
Subsequently, the charge / discharge conditions were examined using the nickel-hydrogen storage battery A produced as described above. Here, charge / discharge cycles (current value is 1 It and current density is 21.0 It / m 2 ) in SOC (State of Charge) range of 20 to 80% of the battery capacity is as follows. The nickel-hydrogen storage battery after repeating until it reached 10 kAh was designated as battery A2. Similarly, charge / discharge cycles (current value is 1 It and current density is 21.0 It / m 2 ) in the SOC (State of Charge) range of 20 to 100% of the battery capacity are as follows. The nickel-hydrogen storage battery after repeating until it reaches 10 kAh is referred to as a battery A3, and a charge / discharge cycle (current value is 1 It, current density is 21 in a SOC (State of Charge) range of 20 to 110% of the battery capacity). 0.04 It / m 2 ) was repeated until the total discharge electricity amount reached 10 kAh, and the nickel-hydrogen storage battery was designated as battery A4.

また、電池容量の20〜80%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は10Itで、電流密度は210.5It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A5とした。同様に、電池容量の20〜90%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は10Itで、電流密度は210.5It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A6とし、電池容量の20〜100%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は10Itで、電流密度は210.5It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A7とし、電池容量の20〜110%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は10Itで、電流密度は210.5It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A8とした。
なお、部分充放電サイクル後のこれらの電池A2〜A8の内部抵抗値を測定し、部分充放電サイクル前の電池Aの内部抵抗値に対する比率を内部抵抗初期比(%)として求めると、下記の表2に示すような結果となった。
In addition, a charge / discharge cycle (current value is 10 It and current density is 210.5 It / m 2 ) in an SOC (State of Charge) range of 20 to 80% of the battery capacity is 10 kAh. The nickel-hydrogen storage battery was repeated until the battery was A5. Similarly, charge / discharge cycles (current value is 10 It and current density is 210.5 It / m 2 ) in an SOC (State of Charge) range of 20 to 90% of the battery capacity are as follows. The nickel-hydrogen storage battery after being repeated until 10 kAh is designated as battery A6, and a charge / discharge cycle (current value is 10 It, current density is 210 in the SOC (State of Charge) range of 20 to 100% of the battery capacity). .5 It / m 2 ) until the total amount of electricity discharged becomes 10 kAh, the nickel-hydrogen storage battery is designated as battery A7, and the SOC (State of Charge: charge depth) range is 20 to 110% of the battery capacity. hydrogen storage battery of the battery A8 - discharge cycle (current value at 10 it, current density becomes 210.5It / m 2) nickel after repeated until the total discharge electric quantity is 10kAh It was.
When the internal resistance values of these batteries A2 to A8 after the partial charge / discharge cycle were measured and the ratio to the internal resistance value of the battery A before the partial charge / discharge cycle was determined as the internal resistance initial ratio (%), The results shown in Table 2 were obtained.

ついで、上述のような部分充放電サイクル後の電池A2〜A8を解体して、焼結式ニッケル正極aを取り出した。この後、粉末X線回折装置(XRD:X-Ray Diffractometer)を用いて、取り出した焼結式ニッケル正極aの各表面でのX線回折による解析を行ったところ、各ニッケル正極の表面(ニッケル正極表面から0.01mmの範囲内を意味する)でのNi23Hによる回折ピークは認められなかった。そして、これらのニッケル正極aから活物質を脱落させた後、Cu−Kαを用いた粉末X線回折を行った結果、Ni23Hに起因する回折ピークが認められ、このとき各電池A2〜A8に備えられたニッケル正極aのNi(OH)2の(001)面でのピーク強度に対するNi23Hの(120)面でのピーク強度の比率(%)をNi23Hの存在比率(%)として求めると、下記の表2に示すような結果となった。 Next, the batteries A2 to A8 after the partial charge / discharge cycle as described above were disassembled, and the sintered nickel positive electrode a was taken out. Thereafter, an analysis by X-ray diffraction was performed on each surface of the sintered nickel positive electrode a taken out using a powder X-ray diffractometer (XRD: X-Ray Diffractometer). No diffraction peak due to Ni 2 O 3 H was observed in the range of 0.01 mm from the positive electrode surface. And after removing the active material from these nickel positive electrodes a, as a result of performing powder X-ray diffraction using Cu-Kα, a diffraction peak due to Ni 2 O 3 H was observed, and at this time, each battery A2 The ratio (%) of the peak intensity at the (120) plane of Ni 2 O 3 H to the peak intensity at the (001) plane of Ni (OH) 2 of the nickel positive electrode a provided for .about.A8 is expressed as Ni 2 O 3 H. As a result, the results shown in Table 2 below were obtained.

また、上述のような部分充放電サイクル後の各電池A2〜A8の容量(Ah)を測定した後、部分充放電サイクル行っていない電池Aの容量(Ah)を100として、これとの比を容量比率(%)として求めると、下記の表2に示すような結果が得られた。なお、下記の表2においては電池Aの結果を併せて示している。さらに、下記の表2の結果に基づき、Ni23Hの存在比率(%)を横軸(X軸)にプロットし、容量比率(%)を縦軸(Y軸)にプロットしてグラフにすると、図2に示すような結果となった。

Figure 2011233423
Moreover, after measuring the capacity | capacitance (Ah) of each battery A2-A8 after the above partial charge / discharge cycles, the capacity | capacitance (Ah) of the battery A which is not performing partial charge / discharge cycle is set to 100, and ratio with this is set. When calculated as a capacity ratio (%), the results shown in Table 2 below were obtained. In Table 2 below, the results of Battery A are also shown. Further, based on the results shown in Table 2 below, the abundance ratio (%) of Ni 2 O 3 H is plotted on the horizontal axis (X axis), and the capacity ratio (%) is plotted on the vertical axis (Y axis). Then, the result as shown in FIG. 2 was obtained.
Figure 2011233423

上記表2および図2の結果から明らかなように、ニッケル正極内のNi23Hの存在比率が40%を超え、かつ内部抵抗初期比が130%を超えた電池A7および電池A8においては、容量比率が50%以下と小さく、部分充放電サイクルを繰り返すことにより大きな容量低下が生じていることが分かる。これは、部分充放電サイクル試験の条件を、高電流値(高電流密度)で行うとともにSOCの範囲を100%以上の高い条件で行ったことにより、充電過多の状態となったことからニッケル正極内でのNi23Hの存在比率が高くなって内部抵抗も上昇して、その結果、容量低下が大きくなったと考えられる。 As is apparent from the results of Table 2 and FIG. 2, in the batteries A7 and A8 in which the abundance ratio of Ni 2 O 3 H in the nickel positive electrode exceeds 40% and the internal resistance initial ratio exceeds 130%, It can be seen that the capacity ratio is as small as 50% or less, and that the capacity is greatly reduced by repeating the partial charge / discharge cycle. This is because the partial charge / discharge cycle test was performed at a high current value (high current density) and the SOC range was 100% or higher, resulting in an overcharged state. It is considered that the Ni 2 O 3 H abundance ratio in the inside increased and the internal resistance also increased, and as a result, the capacity reduction increased.

このことから、ニッケル正極内でのNi23Hの存在比率が40%以下、即ち、Cu−Kαを用いた粉末X線回折においてNi23Hの(120)面でのピーク強度がNi(OH)2の(001)面でのピーク強度に対して40%以下で、かつ内部抵抗初期比が130%以下であるのが望ましいということができる。この場合、電池A5〜A8のように、電流密度が210.5It/m2と電池A2,A,A3〜A4の10倍も大きくなると、ニッケル正極内でのNi23Hの存在比率が4倍程度も増大することから、電流密度は210.5It/m2のように大きくするのは好ましくないことが分かる。 From this, the abundance ratio of Ni 2 O 3 H in the nickel positive electrode is 40% or less, that is, the peak intensity on the (120) plane of Ni 2 O 3 H in powder X-ray diffraction using Cu—Kα is It can be said that it is desirable that the peak intensity on the (001) plane of Ni (OH) 2 is 40% or less and the internal resistance initial ratio is 130% or less. In this case, as in the batteries A5 to A8, when the current density is 210.5 It / m 2 and 10 times as large as the batteries A2, A, A3 to A4, the abundance ratio of Ni 2 O 3 H in the nickel positive electrode is increased. Since it increases about 4 times, it turns out that it is not preferable to make current density as large as 210.5 It / m < 2 >.

ここで、内部抵抗初期比に関しては、容量比率が80%を超える電池A4の内部抵抗初期比である113と、容量比率が80%未満となる電池A5の内部抵抗初期比である115との間の値で決定するのが望ましいこととなり、その値は、113%と115%の中間の114%にするのが望ましいということができる。なお、ニッケル正極内でのNi23Hの存在比率が10%より多くなると、容量比率が90%よりも小さくなって、容量の低下傾向が認められるようになる。このことから、ニッケル正極内でのNi23Hの存在比率は10%以下になるように抑制することが効果的であることが分かる。 Here, the internal resistance initial ratio is between 113 which is the internal resistance initial ratio of the battery A4 having a capacity ratio exceeding 80% and 115 which is the internal resistance initial ratio of the battery A5 having a capacity ratio of less than 80%. It is desirable that the value be determined by 114%, which is an intermediate value between 113% and 115%. In addition, when the ratio of Ni 2 O 3 H present in the nickel positive electrode is more than 10%, the capacity ratio becomes smaller than 90%, and a tendency to decrease the capacity is recognized. This shows that it is effective to suppress the abundance ratio of Ni 2 O 3 H in the nickel positive electrode to 10% or less.

6.充放電時の電流密度の検討
ついで、上述のように作製されたニッケル−水素蓄電池Aを用いて、充放電時の電流密度について検討した。ここで、電池容量の20〜90%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は2Itで、電流密度は42.1It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A9とした。同様に、電池容量の20〜90%のSOC(State of Charge:充電深度)範囲で充放電サイクル(電流値は5Itで、電流密度は105.3It/m2となる)を総放電電気量が10kAhになるまで繰り返した後のニッケル−水素蓄電池を電池A10とした。
6). Investigation of current density during charge / discharge
Next, the current density during charging / discharging was examined using the nickel-hydrogen storage battery A manufactured as described above. Here, the charge / discharge cycle (current value is 2 It and current density is 42.1 It / m 2 ) in the SOC (State of Charge) range of 20 to 90% of the battery capacity is as follows. The nickel-hydrogen storage battery after repeating until 10 kAh was designated as battery A9. Similarly, a charge / discharge cycle (current value is 5 It, current density is 105.3 It / m 2 ) in an SOC (State of Charge) range of 20 to 90% of the battery capacity is as follows. The nickel-hydrogen storage battery after repeating until it reached 10 kAh was designated as battery A10.

ついで、上述のような部分充放電サイクル後の電池A9,A10を解体して、焼結式ニッケル正極aを取り出した。この後、粉末X線回折装置(XRD:X-Ray Diffractometer)を用いて、取り出した焼結式ニッケル正極aの各表面でのX線回折による解析を行ったところ、各ニッケル正極の表面(ニッケル正極表面から0.01mmの範囲内を意味する)でのNi23Hによる回折ピークは認められなかった。そして、これらのニッケル正極aから活物質を脱落させた後、Cu−Kαを用いた粉末X線回折を行った結果、Ni23Hに起因する回折ピークが認められ、このとき各電池A9,A10に備えられたニッケル正極aのNi(OH)2の(001)面でのピーク強度に対するNi23Hの(120)面でのピーク強度の比率(%)をNi23Hの存在比率(%)として求めると、下記の表3に示すような結果となった。 Subsequently, the batteries A9 and A10 after the partial charge / discharge cycle as described above were disassembled, and the sintered nickel positive electrode a was taken out. Thereafter, an analysis by X-ray diffraction was performed on each surface of the sintered nickel positive electrode a taken out using a powder X-ray diffractometer (XRD: X-Ray Diffractometer). No diffraction peak due to Ni 2 O 3 H was observed in the range of 0.01 mm from the positive electrode surface. Then, after removing the active material from these nickel positive electrodes a, powder X-ray diffraction using Cu—Kα was performed. As a result, a diffraction peak due to Ni 2 O 3 H was observed. At this time, each battery A9 , The ratio (%) of the peak intensity on the (120) plane of Ni 2 O 3 H to the peak intensity on the (001) plane of Ni (OH) 2 of the nickel positive electrode a provided in A10 is Ni 2 O 3 H. As a result, the results shown in Table 3 below were obtained.

また、上述のような部分充放電サイクル後の各電池A9,A10の容量(Ah)を測定した後、部分充放電サイクル行っていない電池Aの容量(Ah)を100として、これとの比を容量比率(%)として求めると、下記の表3に示すような結果が得られた。なお、下記の表3においては電池Aの結果を併せて示している。

Figure 2011233423
Further, after measuring the capacity (Ah) of each of the batteries A9 and A10 after the partial charge / discharge cycle as described above, the capacity (Ah) of the battery A not subjected to the partial charge / discharge cycle is defined as 100, and the ratio to this is set. When calculated as a capacity ratio (%), the results shown in Table 3 below were obtained. In Table 3 below, the results of Battery A are also shown.
Figure 2011233423

上記表3の結果から明らかなように、電池A10のように、電流密度を105.3It/m2として部分充放電サイクルを繰り返すと、所定の部分充放電サイクル後の電池Aに対する容量比率が80%未満となって、容量が低下することが分かる。一方、電池A9のように、電流密度を42.1It/m2として部分充放電サイクルを繰り返すと、所定の部分充放電サイクル後の電池Aに対する容量比率が80%以上が維持でき、容量がそれほど低下しないことが分かる。このことから、部分充放電サイクルにおける電流値条件において、電流密度は100It/m2を超えないように規制するのが望ましいということができる。 As is clear from the results of Table 3 above, when the partial charge / discharge cycle is repeated with a current density of 105.3 It / m 2 as in battery A10, the capacity ratio with respect to battery A after a predetermined partial charge / discharge cycle is 80. It can be seen that the capacity decreases when the ratio is less than%. On the other hand, when the partial charge / discharge cycle is repeated with a current density of 42.1 It / m 2 as in the case of the battery A9, the capacity ratio with respect to the battery A after a predetermined partial charge / discharge cycle can be maintained at 80% or more, and the capacity is not so much. It turns out that it does not fall. From this, it can be said that it is desirable to regulate the current density so as not to exceed 100 It / m 2 in the current value condition in the partial charge / discharge cycle.

7.ニッケル正極の高さ(幅:Y)に対する長さ(X)の比(X/Y)の検討
ついで、上述のように作製されたニッケル焼結基板αを用いて、ニッケル正極の(X/Y)の容量比率に及ぼす影響についての検討を行った。そこで、ニッケル焼結基板α(厚みが0.35mmのもの)を用いて、上述のように活物質を含有する含浸液への含浸、乾燥、アルカリ処理液への浸漬、水洗、および乾燥という一連の正極活物質の充填操作を6回繰り返すことにより、所定量の正極活物質をニッケル焼結基板αに充填させた。
7). Examination of ratio (X / Y) of length (X) to height (width: Y) of nickel positive electrode
Next, the influence on the capacity ratio of (X / Y) of the nickel positive electrode was examined using the nickel sintered substrate α produced as described above. Therefore, a series of impregnation into an impregnation liquid containing an active material, drying, immersion in an alkali treatment liquid, washing with water, and drying using a nickel sintered substrate α (thickness of 0.35 mm) as described above. The positive electrode active material filling operation was repeated 6 times to fill the nickel sintered substrate α with a predetermined amount of the positive electrode active material.

ここで、長さ(X)が950mmで高さ(幅:Y)が37mm(X/Yは25.7)の寸法になるように裁断されたものをニッケル正極a2とした。また、長さ(X)が950mmで高さ(幅:Y)が35mm(X/Yは27.1)の寸法になるように裁断されたものをニッケル正極a3とし、長さ(X)が950mmで高さ(幅:Y)が30mm(X/Yは31.7)の寸法になるように裁断されたものをニッケル正極a4とした。そして、これらのニッケル正極a2,a3,a4と、上述した水素吸蔵合金負極xとセパレータ13とを用いて渦巻状電極群を作製し、上述と同様にして公称容量が6Ah(直径が32mmで、高さが47〜40mm)のニッケル−水素蓄電池10(A11,A12,A13)を作製した。   Here, the nickel positive electrode a2 was cut so that the length (X) was 950 mm and the height (width: Y) was 37 mm (X / Y was 25.7). Further, a nickel positive electrode a3 is cut to have a length (X) of 950 mm and a height (width: Y) of 35 mm (X / Y is 27.1), and the length (X) is A nickel positive electrode a4 was cut to a size of 950 mm and a height (width: Y) of 30 mm (X / Y is 31.7). Then, a spiral electrode group was prepared using these nickel positive electrodes a2, a3, a4, the hydrogen storage alloy negative electrode x and the separator 13, and the nominal capacity was 6 Ah (diameter was 32 mm, Nickel-hydrogen storage battery 10 (A11, A12, A13) having a height of 47 to 40 mm) was produced.

この場合、ニッケル正極a2を用いて高さが47mmなるように作製したニッケル−水素蓄電池を電池A11とした。また、ニッケル正極a3を用いて高さが45mmなるように作製したニッケル−水素蓄電池を電池A12とした。さらに、ニッケル正極a4を用いて高さが40mmなるように作製したニッケル−水素蓄電池を電池A13とした。   In this case, a nickel-hydrogen storage battery manufactured to have a height of 47 mm using the nickel positive electrode a2 was designated as a battery A11. Also, a nickel-hydrogen storage battery manufactured to have a height of 45 mm using the nickel positive electrode a3 was designated as a battery A12. Furthermore, a nickel-hydrogen storage battery manufactured to have a height of 40 mm using the nickel positive electrode a4 was designated as a battery A13.

ついで、これらの各電池A11〜A13を用い、25℃の温度雰囲において、1Itの充電電流(電流密度は、電池A11においては28.4It/m2となり、電池A12においては30.1It/m2となり、電池A13においては35.1It/m2となる)にて、初期容量に対するSOC(State Of Charge:充電深度)が90%となる電圧まで充電した後、1Itの放電電流(電流密度は電池A11においては28.4It/m2となり、電池A12においては30.1It/m2となり、電池A13においては35.1It/m2となる)にてSOCが20%となる電圧まで放電させるというサイクルを繰り返す部分充放電サイクル試験を行った。そして、このような部分充放電サイクルを総放電電気量が10kAhとなるまで繰り返した。なお、部分充放電サイクル後のこれらの電池A11〜A13の内部抵抗値を測定し、部分充放電サイクル前の電池Aの内部抵抗値に対する比率を内部抵抗初期比(%)として求めると、下記の表4に示すような結果となった。 Then, using each of these batteries A11 to A13, a charging current of 1 It (current density is 28.4 It / m 2 in the battery A11 and 30.1 It / m 2 in the battery A12 in a temperature atmosphere of 25 ° C. 2 and is 35.1 It / m 2 in the battery A13), and after charging to a voltage at which the SOC (State Of Charge) with respect to the initial capacity is 90%, the discharge current of 1 It (current density is The battery A11 is 28.4 It / m 2 , the battery A12 is 30.1 It / m 2 , and the battery A13 is 35.1 It / m 2 ). A partial charge / discharge cycle test was repeated. Then, such a partial charge / discharge cycle was repeated until the total electric discharge amount reached 10 kAh. When the internal resistance values of these batteries A11 to A13 after the partial charge / discharge cycle were measured and the ratio to the internal resistance value of the battery A before the partial charge / discharge cycle was determined as the internal resistance initial ratio (%), The results shown in Table 4 were obtained.

ついで、上述のような部分充放電サイクル後の電池A11〜A13を解体して、焼結式ニッケル正極a2,a3,a4を取り出した。この後、粉末X線回折装置(XRD:X-Ray Diffractometer)を用いて、取り出した焼結式ニッケル正極a2,a3,a4の各表面でのX線回折による解析を行ったところ、各ニッケル正極の表面(ニッケル正極表面から0.01mmの範囲内を意味する)でのNi23Hによる回折ピークは認められなかった。そして、これらのニッケル正極a2,a3,a4から活物質を脱落させた後、Cu−Kαを用いた粉末X線回折を行った結果、Ni23Hに起因する回折ピークが認められ、このとき各電池A11〜A13に備えられたニッケル正極a2,a3,a4のNi(OH)2の(001)面でのピーク強度に対するNi23Hの(120)面でのピーク強度の比率(%)をNi23Hの存在比率(%)として求めると、下記の表4に示すような結果となった。 Subsequently, the batteries A11 to A13 after the partial charge / discharge cycle as described above were disassembled, and sintered nickel positive electrodes a2, a3, and a4 were taken out. Then, when the analysis by the X-ray diffraction in each surface of the taken-out sintered nickel positive electrode a2, a3, a4 was performed using the powder X-ray diffractometer (XRD: X-Ray Diffractometer), each nickel positive electrode was analyzed. No diffraction peak due to Ni 2 O 3 H was observed on the surface (meaning within a range of 0.01 mm from the surface of the nickel positive electrode). Then, after dropping the active material from these nickel positive electrode a2, a3, a4, result of a powder X-ray diffraction using Cu-K [alpha, diffraction peaks derived from Ni 2 O 3 H was observed, the The ratio of the peak intensity at the (120) plane of Ni 2 O 3 H to the peak intensity at the (001) plane of Ni (OH) 2 of the nickel positive electrodes a2, a3, a4 provided in the batteries A11 to A13 ( %) As the abundance ratio (%) of Ni 2 O 3 H, the results shown in Table 4 below were obtained.

また、上述のような部分充放電サイクル後の各電池A11〜A13の容量(Ah)を測定した後、部分充放電サイクル行っていない電池Aの容量(Ah)を100として、これとの比を容量比率(%)として求めると、下記の表4に示すような結果が得られた。なお、下記の表4においては電池Aの結果を併せて示している。

Figure 2011233423
Moreover, after measuring the capacity | capacitance (Ah) of each battery A11-A13 after the above partial charge / discharge cycles, the capacity | capacitance (Ah) of the battery A which is not performing partial charge / discharge cycle is set to 100, and ratio with this is set. When calculated as a capacity ratio (%), the results shown in Table 4 below were obtained. In Table 4 below, the results of Battery A are also shown.
Figure 2011233423

上記表4の結果から明らかなように、ニッケル正極の高さ(幅:Y)に対する長さ(X)の比(X/Y)が27以上であるニッケル正極a3,a4を備えた電池A12,A13においては、同条件にて部分充放電サイクル試験を行った場合に電流密度が大きくなって、ニッケル正極a3,a4内にNi23Hが生成しやすくなることから容量低下が生じることが分かる。このことより、ニッケル正極の高さ(幅:Y)に対する長さ(X)の比(X/Y)が27より小であることが好ましいことが分かる。 As is apparent from the results in Table 4 above, the battery A12 including the nickel positive electrodes a3 and a4 having a ratio (X / Y) of the length (X) to the height (width: Y) of the nickel positive electrode of 27 or more. In A13, when a partial charge / discharge cycle test is performed under the same conditions, the current density is increased, and Ni 2 O 3 H is easily generated in the nickel positive electrodes a3 and a4. I understand. From this, it can be seen that the ratio (X / Y) of the length (X) to the height (width: Y) of the nickel positive electrode is preferably smaller than 27.

一方、電池を小型化するためには、ニッケル正極の高さ(幅:Y)に対する長さ(X)の比(X/Y)を小さくする必要が、ニッケル正極の高さを小さくすると反応表面積が減少するため、ニッケル正極の高さを短くした分だけ、その長さを長くして反応表面積を確保する必要がある。しかしながら、ニッケル正極の長さをXとし、高さ(幅)をYとした場合、高さ(幅)に対する長さの比(X/Y)が15より小さいと、長さに対して高さ(幅)が相対的に大きくなって電池の小型化を達成することが困難になる。このため、電池の小型化を達成するためには、高さ(幅)に対する長さの比(X/Y)を15以上(X/Y≧15)にする必要がある。結局、ニッケル正極の高さ(幅)に対する長さの比(X/Y)は15以上で27以下(15≦X/Y≦27)が好ましいこととなる。   On the other hand, in order to reduce the size of the battery, it is necessary to reduce the ratio (X / Y) of the length (X) to the height (width: Y) of the nickel positive electrode. Therefore, it is necessary to secure the reaction surface area by increasing the length of the nickel positive electrode by the amount corresponding to the shortening of the height of the nickel positive electrode. However, when the length of the nickel positive electrode is X and the height (width) is Y, if the ratio of the length to the height (width) (X / Y) is less than 15, the height relative to the length (Width) becomes relatively large, and it becomes difficult to achieve downsizing of the battery. For this reason, in order to achieve downsizing of the battery, the ratio of length to height (width) (X / Y) needs to be 15 or more (X / Y ≧ 15). After all, the ratio (X / Y) of the length to the height (width) of the nickel positive electrode is preferably 15 or more and 27 or less (15 ≦ X / Y ≦ 27).

なお、一般的な部分充放電制御の条件としては、複数の電池を組み合わせた組電池とした場合に各電池間にバラツキが生じない電圧(この場合は、充電深度(SOC)が10%相当の電圧)に達すると放電を停止して充電を開始させ、酸素過電圧に到達する前の電圧(この場合は、充電深度(SOC)が95%相当の電圧)に達すると充電を停止して放電を開始させると定義することができる。
ただし、実用的には、充電深度(SOC)が10%相当の電圧に達すると放電を停止して充電を開始し、充電深度(SOC)が90%相当の電圧に達すると充電を停止して放電を開始するように部分充放電制御がなされるのが望ましく、好ましくは、充電深度(SOC)が20%相当の電圧に達すると放電を停止して充電を開始し、充電深度(SOC)が80%相当の電圧に達すると充電を停止して放電を開始するように部分充放電制御がなされるのがよい。
In addition, as a general partial charge / discharge control condition, when a battery pack is formed by combining a plurality of batteries, a voltage that does not cause variation among the batteries (in this case, the charge depth (SOC) is equivalent to 10%). When the voltage reaches the voltage before the oxygen overvoltage is reached (in this case, the charge depth (SOC) is equivalent to 95%), the charge is stopped and the discharge is started. It can be defined to start.
However, practically, when the depth of charge (SOC) reaches a voltage equivalent to 10%, the discharge is stopped and charging is started. When the depth of charge (SOC) reaches a voltage equivalent to 90%, the charge is stopped. It is desirable that partial charge / discharge control is performed so as to start discharge. Preferably, when the depth of charge (SOC) reaches a voltage corresponding to 20%, the discharge is stopped and charging is started, and the charge depth (SOC) is When a voltage equivalent to 80% is reached, partial charge / discharge control is preferably performed so that charging is stopped and discharging is started.

11・ニッケル電極、11c・芯体露出部、12・水素吸蔵合金電極、12c・芯体露出部、13・セパレータ、14・負極集電体、15・正極集電体、15a・集電リード部、17・外装缶、17a・環状溝部、17b・開口端縁、18・封口体、18a・正極キャップ、18b・弁板、18c・スプリング、19・絶縁ガスケット 11. Nickel electrode, 11c, core exposed portion, 12, hydrogen storage alloy electrode, 12c, core exposed portion, 13, separator, 14 negative electrode current collector, 15 positive electrode current collector, 15a current collecting lead portion , 17 · outer can, 17a · annular groove, 17b · opening edge, 18 · sealing body, 18a · positive electrode cap, 18b · valve plate, 18c · spring, 19 · insulating gasket

Claims (3)

水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、焼結基板に水酸化ニッケルを主成分とする正極活物質が充填されたニッケル正極と、セパレータとからなる電極群をアルカリ電解液とともに電池容器内に収納されて密閉されたアルカリ蓄電池であって、
前記ニッケル正極の長さをXとし、高さ(幅)をYとした場合、高さ(幅)に対する長さの比(X/Y)が15以上(15≦X/Y)であるとともに、
前記ニッケル正極に対する電流密度が100It/m2を超えない範囲の電流値条件で電池の充電量を電池容量に対し満充電を行わない目標SOCまでの充電、および/または完全放電を行わない目標SOCまでの放電を行う充放電条件にて、総放電電気量で10kAhまで充放電を繰り返した後の内部抵抗が初期の内部抵抗に対して114%以下で、ニッケル正極内のNi23Hがニッケル正極表面から0.01mmの範囲内には存在しておらず、かつCu−Kαを用いた粉末X線回折において、Ni23Hの(120)面でのピーク強度がNi(OH)2の(001)面でのピーク強度に対して40%以下であることを特徴とするアルカリ蓄電池。
A battery comprising an electrode group comprising a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, a nickel positive electrode filled with a positive electrode active material mainly composed of nickel hydroxide on a sintered substrate, and a separator together with an alkaline electrolyte An alkaline storage battery housed in a container and sealed;
When the length of the nickel positive electrode is X and the height (width) is Y, the ratio of length to height (width) (X / Y) is 15 or more (15 ≦ X / Y),
The target SOC in which the charge amount of the battery is not fully charged with respect to the battery capacity and / or the target SOC is not fully discharged under a current value condition in which the current density with respect to the nickel positive electrode does not exceed 100 It / m 2. The internal resistance after repeating charge / discharge up to 10 kAh in terms of the total discharge electricity under the charge / discharge conditions to discharge up to 114% is less than the initial internal resistance, and the Ni 2 O 3 H in the nickel positive electrode is In the powder X-ray diffraction using Cu—Kα, the peak intensity on the (120) plane of Ni 2 O 3 H is not Ni (OH) in the range of 0.01 mm from the surface of the nickel positive electrode. 2. An alkaline storage battery having a peak intensity on the (001) plane of 2 of 40% or less.
前記総放電電気量で10kAhまで充放電を繰り返した後のアルカリ蓄電池に用いられた前記ニッケル正極は、Cu−Kαを用いた粉末X線回折において、Ni23Hの(120)面でのピーク強度がNi(OH)2の(001)面でのピーク強度に対して10%以下であることを特徴とする前記請求項1に記載のアルカリ蓄電池。 In the powder X-ray diffraction using Cu—Kα, the nickel positive electrode used in the alkaline storage battery after being repeatedly charged and discharged up to 10 kAh in terms of the total amount of discharged electricity was measured on the (120) plane of Ni 2 O 3 H. 2. The alkaline storage battery according to claim 1, wherein the peak intensity is 10% or less with respect to the peak intensity on the (001) plane of Ni (OH) 2 . 前記満充電を行わない目標SOCは電池容量に対して80%以下であり、前記完全放電を行わない目標SOCは電池容量に対して20%以上であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。   The target SOC that does not perform the full charge is 80% or less with respect to the battery capacity, and the target SOC that does not perform the complete discharge is 20% or more with respect to the battery capacity. 2. The alkaline storage battery according to 2.
JP2010104006A 2010-04-28 2010-04-28 Alkaline storage battery Pending JP2011233423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104006A JP2011233423A (en) 2010-04-28 2010-04-28 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104006A JP2011233423A (en) 2010-04-28 2010-04-28 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2011233423A true JP2011233423A (en) 2011-11-17

Family

ID=45322544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104006A Pending JP2011233423A (en) 2010-04-28 2010-04-28 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2011233423A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080719A1 (en) * 2012-11-20 2014-05-30 住友金属鉱山株式会社 Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
JP2018006075A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006025A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006024A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006027A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018007412A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018010758A (en) * 2016-07-12 2018-01-18 トヨタ自動車株式会社 Battery system
CN109428134A (en) * 2017-09-01 2019-03-05 丰田自动车株式会社 The reuse method and secondary battery system of secondary cell
US11821101B2 (en) 2020-09-09 2023-11-21 Toyota Jidosha Kabushiki Kaisha Film, film forming method, and surface-coated material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268102A (en) * 2004-03-19 2005-09-29 Sanyo Electric Co Ltd Alkaline secondary battery
JP2006228594A (en) * 2005-02-18 2006-08-31 Sanyo Electric Co Ltd Alkaline storage battery
JP2009087632A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268102A (en) * 2004-03-19 2005-09-29 Sanyo Electric Co Ltd Alkaline secondary battery
JP2006228594A (en) * 2005-02-18 2006-08-31 Sanyo Electric Co Ltd Alkaline storage battery
JP2009087632A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680239B2 (en) 2012-11-20 2020-06-09 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
JP2014103003A (en) * 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for alkaline secondary battery positive electrode active material and method for producing the same
WO2014080719A1 (en) * 2012-11-20 2014-05-30 住友金属鉱山株式会社 Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
JP2018006025A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006024A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006027A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018006075A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018007412A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Battery system
JP2018010758A (en) * 2016-07-12 2018-01-18 トヨタ自動車株式会社 Battery system
CN109428134A (en) * 2017-09-01 2019-03-05 丰田自动车株式会社 The reuse method and secondary battery system of secondary cell
JP2019046644A (en) * 2017-09-01 2019-03-22 トヨタ自動車株式会社 Reusing method of secondary battery and secondary battery system
US10629960B2 (en) 2017-09-01 2020-04-21 Toyota Jidosha Kabushiki Kaisha Method of recycling secondary battery and secondary battery system
CN109428134B (en) * 2017-09-01 2021-10-08 丰田自动车株式会社 Secondary battery recycling method and secondary battery system
US11821101B2 (en) 2020-09-09 2023-11-21 Toyota Jidosha Kabushiki Kaisha Film, film forming method, and surface-coated material

Similar Documents

Publication Publication Date Title
JP5196938B2 (en) Alkaline storage battery system
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2011233423A (en) Alkaline storage battery
JP5241188B2 (en) Alkaline storage battery system
JP5405167B2 (en) Alkaline storage battery system
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP5868669B2 (en) Alkaline storage battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5849768B2 (en) Alkaline storage battery and alkaline storage battery system
JP5717125B2 (en) Alkaline storage battery
JP2011008994A (en) Alkaline storage battery, and alkaline storage battery system
JP2012238565A (en) Alkaline storage battery
JP2016149299A (en) Nickel hydrogen secondary battery
JP5507140B2 (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery
JP2014049210A (en) Alkaline storage battery
WO2014050075A1 (en) Storage cell system
JP6263983B2 (en) Alkaline storage battery and method for manufacturing the same
JP5334498B2 (en) Alkaline storage battery
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP4420641B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4420653B2 (en) Nickel / hydrogen storage battery
US20130122352A1 (en) Sintered nickel positive electrode, method for manufacturing the same, and alkaline storage battery including the sintered nickel positive electrode
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP4458749B2 (en) Alkaline storage battery
JP2013211122A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624