JP2010182684A - Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery - Google Patents

Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery Download PDF

Info

Publication number
JP2010182684A
JP2010182684A JP2010062336A JP2010062336A JP2010182684A JP 2010182684 A JP2010182684 A JP 2010182684A JP 2010062336 A JP2010062336 A JP 2010062336A JP 2010062336 A JP2010062336 A JP 2010062336A JP 2010182684 A JP2010182684 A JP 2010182684A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
nickel
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010062336A
Other languages
Japanese (ja)
Inventor
Hideaki Oyama
秀明 大山
Kyoko Nakatsuji
恭子 仲辻
Toru Kikuyama
亨 菊山
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010062336A priority Critical patent/JP2010182684A/en
Publication of JP2010182684A publication Critical patent/JP2010182684A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve battery characteristics without damaging high-temperature life characteristics in a nickel hydrogen battery using hydrogen storage alloy as an anode active material. <P>SOLUTION: The anode active material for a nickel hydrogen battery is expressed in a general formula:Mm<SB>1-α</SB>T1<SB>α</SB>Ni<SB>x</SB>Al<SB>y</SB>Mn<SB>z</SB>Co<SB>β</SB>T2<SB>γ</SB>(in the formula, Mm is a mixture of light rare-earth elements, T1 is an element of at least one kind selected from a group consisting of Mg, Ca, Sr and Ba, T2 is an element of at least one kind selected from a group consisting of Sn, Cu, and Fe. 0.01≤α≤0.5, 2.5≤x≤4.5, 0.05≤y+z≤2.0, 0≤β≤0.6, 0≤γ≤0.6, and 5.6≤x+y+z+β+γ≤6.0). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はニッケル水素電池に用いられる負極活物質に関し、より詳しくは負極活物質である水素吸蔵合金粉末の組成の改良に関する。   The present invention relates to a negative electrode active material used for a nickel metal hydride battery, and more particularly to an improvement in the composition of a hydrogen storage alloy powder which is a negative electrode active material.

負極活物質として水素吸蔵合金粉末を用いるニッケル水素電池は、出力特性に優れる上に耐久性(寿命特性および保存特性)が高いので、電気自動車などの動力電源として注目を集めている。近年はリチウムイオン二次電池もこの用途に参入しつつあるので、ニッケル水素電池の利点を際立たせる観点から、出力特性や耐久性をより向上させる必要がある。   Nickel metal hydride batteries using a hydrogen storage alloy powder as a negative electrode active material are attracting attention as power sources for electric vehicles and the like because they have excellent output characteristics and high durability (lifetime characteristics and storage characteristics). In recent years, lithium ion secondary batteries are also entering this application. Therefore, it is necessary to further improve output characteristics and durability from the viewpoint of highlighting the advantages of nickel metal hydride batteries.

水素吸蔵合金粉末としては主にCaCu型の結晶構造を有するものが用いられているが、耐久性を高める観点から、例えばAB型のうち、MmNi(Mmは希土類元素の混合物)のNiの一部をCo、Mn、Al、Cuなどで置換する場合が多い。このように耐久性を高めつつ、更なる高容量化を目指す観点から、Aサイトの一部をMg、Ca、Srなどの2A族元素で置換し、所定圧力範囲における水素吸蔵量(以下、PCT容量と称す)を増加させる試みがなされている(特許文献1参照)。またMmNiのNiの一部をMgと置換することにより、放電特性の劣化を抑制する試みがなされている(特許文献2参照)。 As the hydrogen storage alloy powder, a powder having a CaCu 5 type crystal structure is mainly used. From the viewpoint of enhancing the durability, for example, among the AB 5 type, Ni of MmNi 5 (Mm is a mixture of rare earth elements). In many cases, a part of is replaced with Co, Mn, Al, Cu or the like. From the viewpoint of further increasing the capacity while enhancing the durability in this way, a part of the A site is replaced with a 2A group element such as Mg, Ca, Sr, etc., and a hydrogen storage amount (hereinafter referred to as PCT) in a predetermined pressure range. Attempts have been made to increase the capacity (referred to as Patent Document 1). In addition, attempts have been made to suppress deterioration of discharge characteristics by replacing part of Ni in MmNi 5 with Mg (see Patent Document 2).

特開2002−042802号公報JP 2002-042802 A 特開2004−119271号公報JP 2004-119271 A

特許文献1および2の技術を用いることにより、高容量化および放電特性の劣化抑制は可能となったが、高温寿命特性が芳しくないことがわかった。本発明は上記課題を解決するためのものであって、負極活物質として水素吸蔵合金を用いたニッケル水素電池において、高温寿命特性を損ねることなく電池特性を向上させることを目的とする。   By using the techniques of Patent Documents 1 and 2, it became possible to increase the capacity and suppress the deterioration of the discharge characteristics, but it was found that the high-temperature life characteristics were not good. The present invention has been made to solve the above problems, and an object of the present invention is to improve battery characteristics in a nickel-metal hydride battery using a hydrogen storage alloy as a negative electrode active material without impairing high-temperature life characteristics.

上述した課題を鑑みて、本発明のニッケル水素電池用負極活物質は、一般式Mm1−αT1αNiAlMnCoβT2γ(式中、Mmは軽希土類元素の混合物、T1はMg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種の元素、T2はSn、Cu、およびFeからなる群から選ばれた少なくとも1種の元素、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦β≦0.6、0≦γ≦0.6、5.6≦x+y+z+β+γ≦6.0)で示されることを特徴とする。 In view of the problems described above, the negative electrode active material for a nickel-hydrogen battery of the present invention have the general formula Mm 1-α T1 α Ni x Al y Mn z Co β T2 γ ( wherein, Mm is the mixture of light rare earth elements, T1 Is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, T2 is at least one element selected from the group consisting of Sn, Cu and Fe, 0.05 ≦ α ≦ 0. 5, 2.5 ≦ x ≦ 4.5, 0.05 ≦ y + z ≦ 2.0, 0 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + β + γ ≦ 6.0) It is characterized by that.

本発明者らが検討した結果、以下の知見を得るに至った。第1に、特許文献1のようにAサイトの一部を2A族元素で置換する量が少ないと、高温下での充放電の繰返しにより水素吸蔵合金粉末が劣化する。第2に、特許文献2のようにBサイトに添加したMgによりMnの溶出を防ごうとすると、本来Aサイトで安定なMgの置換が不完全になって表面および粒界に偏在するため、Ni層を介した水素吸蔵反応が低下し、充放電を繰り返す毎に電池反応が不十分となる。   As a result of studies by the present inventors, the following findings have been obtained. First, as in Patent Document 1, when the amount of part of the A site replaced with the group 2A element is small, the hydrogen storage alloy powder deteriorates due to repeated charge and discharge at high temperatures. Secondly, when trying to prevent the elution of Mn by Mg added to the B site as in Patent Document 2, the substitution of Mg that is inherently stable at the A site is incomplete and unevenly distributed on the surface and grain boundaries. The hydrogen occlusion reaction through the Ni layer decreases, and the battery reaction becomes insufficient each time charging and discharging are repeated.

以上の知見を活用し、比較的多量の2A族元素をAサイトに置換し、さらにA/B比(化学量論比)を5.6以上6.0以下にすることにより、水素吸蔵合金粉末の高温下における平衡圧を下げつつその平坦性を向上し、PCT容量を増加できることを見出した。本発明の効果については鋭意解析中であるが、2A族元素をAサイトに置換しつつ化学量論比(AサイトとBサイトの元素比)を制御することにより、2A族元素とBサイトのNiとの非結晶質化が促進され、新規に水素吸蔵合金粉末の粒界が形成され、この粒界を介して水素イオン(プロトン)が水素吸蔵合金の表面に偏在するNi層に到達しやすくなったためと考えられる。   By utilizing the above knowledge, a relatively large amount of 2A group element is replaced with the A site, and the A / B ratio (stoichiometry ratio) is made 5.6 or more and 6.0 or less, so that the hydrogen storage alloy powder It has been found that the flatness can be improved while lowering the equilibrium pressure at a high temperature, and the PCT capacity can be increased. The effect of the present invention is under intensive analysis, but by controlling the stoichiometric ratio (element ratio between A site and B site) while substituting the 2A group element with the A site, Amorphization with Ni is promoted, and a new grain boundary of the hydrogen storage alloy powder is formed. Through this grain boundary, hydrogen ions (protons) easily reach the Ni layer unevenly distributed on the surface of the hydrogen storage alloy. It is thought that it became.

本発明のニッケル水素電池用負極活物質は、核となる水素吸蔵合金粉末の組成が改良され、新規な粒界が高い耐食性を有しつつ水素吸蔵反応を阻害しないので、これを負極活物質として構成したニッケル水素電池の高温における放電効率を向上し、充放電の繰り返しによる容量低下を防ぐことができる。   The negative electrode active material for nickel metal hydride batteries of the present invention has an improved composition of the core hydrogen storage alloy powder, and the novel grain boundary has high corrosion resistance and does not inhibit the hydrogen storage reaction. The discharge efficiency in the high temperature of the comprised nickel metal hydride battery can be improved, and the capacity | capacitance fall by repetition of charging / discharging can be prevented.

本発明のニッケル水素電池用負極活物質を示す模式断面図Schematic sectional view showing the negative electrode active material for nickel-metal hydride battery of the present invention

以下、本発明を実施するための最良の形態について、図を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

第1の発明は、一般式Mm1−αT1αNiAlMnCoβT2γ(式中、Mmは軽希土類元素の混合物、T1はMg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種の元素、T2はSn、Cu、およびFeからなる群から選ばれた少なくとも1種の元素、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦β≦0.6、0≦γ≦0.6、5.6≦x+y+z+β+γ≦6.0)で示されるニッケル水素電池用負極活物質に関する。 The first invention of the general formula Mm 1-α T1 α Ni x Al y Mn z Co β T2 γ ( wherein, Mm is the mixture of light rare earth elements, T1 is selected from the group consisting of Mg, Ca, Sr and Ba At least one element selected, T2 is at least one element selected from the group consisting of Sn, Cu, and Fe, 0.05 ≦ α ≦ 0.5, 2.5 ≦ x ≦ 4.5, 0 0.05 ≦ y + z ≦ 2.0, 0 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + β + γ ≦ 6.0).

第2の発明は、一般式La1−αT1αNiAlMnCoβT2γ(式中、T1はMg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種の元素、T2はSn、Cu、およびFeからなる群から選ばれた少なくとも1種の元素、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦β≦0.6、0≦γ≦0.6、5.6≦x+y+z+β+γ≦6.0)で示されるニッケル水素電池用負極活物質に関する。 The second invention has the general formula La 1-α T1 α Ni x Al y Mn z Co β T2 γ ( wherein, T1 is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, T2 is at least one element selected from the group consisting of Sn, Cu, and Fe, 0.05 ≦ α ≦ 0.5, 2.5 ≦ x ≦ 4.5, 0.05 ≦ y + z ≦ 2.0 , 0 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + β + γ ≦ 6.0).

第3の発明は、一般式La1−αMgαNiAlMnFe0.6−ySn(式中、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦γ≦0.6、5.6≦x+y+z+0.6≦6.0)で示されるニッケル水素電池用負極活物質に関する。 A third invention of the general formula La 1-α Mg α Ni x Al y Mn z Fe 0.6-y Sn y ( wherein, 0.05 ≦ α ≦ 0.5,2.5 ≦ x ≦ 4. 5, 0.05 ≦ y + z ≦ 2.0, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + 0.6 ≦ 6.0).

第1〜3の発明の記載内容を踏まえた上で、本発明に好適な水素吸蔵合金粉末1の組成は、例えばLa0.7Mg0.3Ni2.75Co0.5Al0.05、La0.6Mg0.4Ni3.0Mn1.1Al0.5Fe0.6、La0.7Mg0.3Ni3.3Mn1.0Al0.9Fe0.1Sn0.3、Mm0.7Mg0.3Ni2.75Co0.5Al0.05、Mm0.6Mg0.4Ni3.0Mn1.1Al0.5Fe0.6、MmMg0.3Ni3.3Mn1.0Al0.9Fe0.1Sn0.3などである。 Considering the description of the first to third inventions, the composition of the hydrogen storage alloy powder 1 suitable for the present invention is, for example, La 0.7 Mg 0.3 Ni 2.75 Co 0.5 Al 0.05 , La 0.6 Mg 0.4 Ni 3.0 Mn 1.1 Al 0.5 Fe 0.6, La 0.7 Mg 0.3 Ni 3.3 Mn 1.0 Al 0.9 Fe 0.1 Sn 0.3 , Mm 0.7 Mg 0.3 Ni 2.75 Co 0.5 Al 0.05 , Mm 0.6 Mg 0.4 Ni 3.0 Mn 1.1 Al 0.5 Fe 0.6 MmMg 0.3 Ni 3.3 Mn 1.0 Al 0.9 Fe 0.1 Sn 0.3 .

第5の発明は、請求項1〜3記載のニッケル水素電池用負極活物質の処理方法であって、ニッケル水素電池用負極活物質を前記アルカリ水溶液中で攪拌する工程を有するニッケ
ル水素電池用負極活物質の処理方法に関する。より具体的に第5の発明の処理方法を成立させるための処理装置として、本発明のニッケル水素電池用負極活物質の処理装置は、水素吸蔵合金粉末とアルカリ水溶液とを混合および/または攪拌する第1の手段と、水素吸蔵合金粉末とアルカリ水溶液との混合物を加熱する第2の手段と、第2の手段におけるアルカリ水溶液の温度を制御する第3の手段と、アルカリ水溶液の廃液を排出させる第4の手段と、水素吸蔵合金粉末を加圧濾過する第5の手段と、備蓄したアルカリ水溶液を第1および/または第5の手段に導入する第6の手段とを備えている。
5th invention is the processing method of the negative electrode active material for nickel hydride batteries of Claims 1-3, Comprising: The negative electrode for nickel hydride batteries which has the process of stirring the negative electrode active material for nickel hydride batteries in the said alkaline aqueous solution The present invention relates to a method for treating an active material. More specifically, the processing apparatus for the negative electrode active material for nickel-metal hydride batteries of the present invention, as a processing apparatus for establishing the processing method of the fifth invention, mixes and / or agitates the hydrogen storage alloy powder and the alkaline aqueous solution. A first means, a second means for heating the mixture of the hydrogen storage alloy powder and the alkaline aqueous solution, a third means for controlling the temperature of the alkaline aqueous solution in the second means, and discharging the alkaline aqueous solution waste. Fourth means, fifth means for pressure-filtering the hydrogen storage alloy powder, and sixth means for introducing the stored alkaline aqueous solution into the first and / or fifth means are provided.

第6の発明は、前記アルカリ水溶液が水酸化ナトリウムおよび/または水酸化カリウムであることが好ましい。   In the sixth invention, the aqueous alkali solution is preferably sodium hydroxide and / or potassium hydroxide.

第7の発明は、前記水酸化カリウム水溶液の塩基モル濃度が3〜20mol/Lであり、かつ前記水酸化ナトリウム水溶液の塩基モル濃度が10〜20mol/Lであることが好ましい。   In the seventh invention, it is preferable that the basic molar concentration of the aqueous potassium hydroxide solution is 3 to 20 mol / L, and the basic molar concentration of the aqueous sodium hydroxide solution is 10 to 20 mol / L.

第8の発明は、前記工程における処理温度が80〜150℃であることが好ましい。   In the eighth invention, the treatment temperature in the above step is preferably 80 to 150 ° C.

図1は、本発明のニッケル水素電池用負極活物質を示す模式断面図である。本発明の水素吸蔵合金粉末1において、2A族元素とBサイトのNiとの非結晶質化層が、粒子3の間に介在することにより粒界4を形成する、この粒界4は、水素吸蔵合金粉末1の表面に偏在するNi層2と繋がっている。   FIG. 1 is a schematic cross-sectional view showing a negative electrode active material for a nickel metal hydride battery of the present invention. In the hydrogen-absorbing alloy powder 1 of the present invention, a non-crystallized layer of Group 2A element and B-site Ni is interposed between the particles 3 to form a grain boundary 4. It is connected to the Ni layer 2 that is unevenly distributed on the surface of the storage alloy powder 1.

比較的多量の2A族元素をAサイトに置換し、さらにB/A比(化学量論比)を5.6以上6.0以下にすることにより、水素吸蔵合金粉末の高温下における平衡圧を下げつつその平坦性を向上し、PCT容量を増加できる。本発明の効果については鋭意解析中であるが、2A族元素をAサイトに置換しつつ化学量論比を制御することにより、2A族元素とBサイトのNiとの非結晶質化が促進され、新規に水素吸蔵合金粉末1の粒界4が形成され、この粒界4を介して水素イオン(プロトン)が水素吸蔵合金粉末1の表面に偏在するNi層2に到達しやすくなったためと考えられる。   By replacing a relatively large amount of group 2A element with the A site and further setting the B / A ratio (stoichiometric ratio) to 5.6 or more and 6.0 or less, the equilibrium pressure of the hydrogen storage alloy powder at high temperature can be reduced. The flatness can be improved while lowering, and the PCT capacity can be increased. Although the effects of the present invention are being intensively analyzed, by controlling the stoichiometric ratio while substituting the 2A group element with the A site, non-crystallisation of the 2A group element and Ni at the B site is promoted. This is because the grain boundary 4 of the hydrogen storage alloy powder 1 is newly formed, and the hydrogen ions (protons) easily reach the Ni layer 2 unevenly distributed on the surface of the hydrogen storage alloy powder 1 through the grain boundary 4. It is done.

ここでαが0.05未満だと高容量化が困難になり、0.5を超えるとT1元素の偏析が顕著化する。またxが2.5未満であっても4.5を超えても、容量低下が顕著になる。続いてy+zが0.05未満だと水素平衡圧が増加して容量が低下し、2.0を超えるとMnおよびAlの電解液への溶出が過多となってニッケル水素電池を構成した際に高温寿命特性が悪化する。またβが0.6を超えるとCoの電解液への溶出が過多となってニッケル水素電池を構成した際に高温寿命特性が悪化する。さらにγが0.6を超えるとT2元素の偏析が生じ、酸化および不動態化が起こって水素吸蔵放出が阻害され、容量が低下する。最後にx+y+z+β+γが5.6未満だとAサイトにある2A族元素とBサイトのNiとの非結晶質化が促進されないので放電容量を十分に増加できず、6.0を超えると非化学量論化が過剰となって容量低下が顕著となる。   Here, when α is less than 0.05, it is difficult to increase the capacity, and when it exceeds 0.5, segregation of the T1 element becomes remarkable. Moreover, even if x is less than 2.5 or more than 4.5, the capacity reduction becomes remarkable. Subsequently, when y + z is less than 0.05, the hydrogen equilibrium pressure increases and the capacity decreases, and when it exceeds 2.0, when elution of Mn and Al into the electrolyte is excessive, a nickel metal hydride battery is constructed. High temperature life characteristics deteriorate. On the other hand, if β exceeds 0.6, the elution of Co into the electrolyte is excessive and the high temperature life characteristics deteriorate when a nickel metal hydride battery is constructed. Further, when γ exceeds 0.6, segregation of the T2 element occurs, oxidation and passivation occur, hydrogen storage / release is inhibited, and the capacity decreases. Finally, if x + y + z + β + γ is less than 5.6, the non-crystallisation of the 2A group element at the A site and Ni at the B site is not promoted, so that the discharge capacity cannot be increased sufficiently. The debate becomes excessive and the capacity drop becomes remarkable.

本発明のニッケル水素電池用負極活物質を形成する方法は、特に限定されない。例えば、プラズマアーク溶融法、高周波溶融(金型鋳造)法、メカニカルアロイング法(機械合金法)、メカニカルミリング法、急冷凝固法(具体的には、金属材料活用事典(産業調査会、1999)などに記載されているロールスピニング法、メルトドラッグ法、直接鋳造圧延法、回転液中紡糸法、スプレイフォーミング法、ガスアトマイズ法、湿式噴霧法、スプラット法、急冷凝固薄帯粉砕法、ガス噴霧スプラット法、メルトエクストラクション法、スプレイフォーミング法、回転電極法など)を用いることができる。メカニカルアロイング法やメカニカルミリング法は、水素吸蔵合金粉末の大きさと結晶形とを容易に制御できるという面で効果的な合成方法である。また単独で急冷凝固法を用いるほかに、メカニ
カルアロイング法などと併用することができる。原料としては、目的の構成比率を有する水素吸蔵合金の構成元素単体を目的の構成比率に混合したものを用いることができる。
The method for forming the negative electrode active material for a nickel metal hydride battery of the present invention is not particularly limited. For example, plasma arc melting method, high-frequency melting (die casting) method, mechanical alloying method (mechanical alloy method), mechanical milling method, rapid solidification method (specifically, metal materials utilization dictionary (Industry Research Committee, 1999)) Roll spinning method, melt drag method, direct casting and rolling method, spinning in spinning solution, spray forming method, gas atomization method, wet spray method, splat method, rapid solidification strip pulverization method, gas spray splat method , Melt extraction method, spray forming method, rotating electrode method, and the like). The mechanical alloying method and the mechanical milling method are effective synthesis methods in that the size and crystal form of the hydrogen storage alloy powder can be easily controlled. In addition to using the rapid solidification method alone, it can be used in combination with a mechanical alloying method or the like. As a raw material, what mixed the component element simple substance of the hydrogen storage alloy which has the target structural ratio to the target structural ratio can be used.

なおMmに含まれる軽希土類元素とは、具体的にはLa、Ce、Nd、Pr、Smのことを指す。その主成分であるLaは、このMm中に10重量%以上50重量%以下含まれるのが一般的である。   The light rare earth element contained in Mm specifically refers to La, Ce, Nd, Pr, and Sm. In general, La, which is the main component, is contained in the Mm by 10 wt% or more and 50 wt% or less.

ここでKOH水溶液の塩基モル濃度は3〜20mol/L、NaOH水溶液の塩基モル濃度は10〜20mol/Lであることが好ましい。KOHの塩基モル濃度が3mol/L未満の場合、表面処理が思うように進まず、20mol/Lを超える場合、室温であっても、溶液自身で部分的にKOHの析出が生じ生産性が著しく低下し、工程の再現性がなくなる。またNaOH水溶液の塩基モル濃度が10mol/L未満の場合、再析出物の除去が進まないので表面処理能力が低下し、20mol/Lを超える場合、室温であっても、溶液自身で部分的にNaOHの析出が生じ生産性が著しく低下し、工程の再現性がなくなる。   Here, the base molar concentration of the KOH aqueous solution is preferably 3 to 20 mol / L, and the basic molar concentration of the NaOH aqueous solution is preferably 10 to 20 mol / L. When the base molar concentration of KOH is less than 3 mol / L, the surface treatment does not proceed as expected, and when it exceeds 20 mol / L, KOH is partially precipitated at the solution itself even at room temperature, and the productivity is remarkably increased. The process is not reproducible. In addition, when the base molar concentration of the NaOH aqueous solution is less than 10 mol / L, the removal of re-precipitate does not proceed, so that the surface treatment ability is reduced. When it exceeds 20 mol / L, even at room temperature, the solution itself is partially Precipitation of NaOH occurs and productivity is remarkably lowered, and process reproducibility is lost.

さらには前記工程における処理温度は80〜150℃であることが好ましい。80℃未満の場合、所望する反応が起こりにくくなり、150℃を超える領域は、KOH水溶液およびNaOH水溶液が濃度に関わらず沸点近くとなるため、突沸などによる不具合が起こりやすくなる。表面処理設備の材質および構造を考えると、現実的な最適範囲は80〜120℃である。   Furthermore, it is preferable that the process temperature in the said process is 80-150 degreeC. When the temperature is lower than 80 ° C., a desired reaction is less likely to occur, and in the region exceeding 150 ° C., the KOH aqueous solution and the NaOH aqueous solution are close to the boiling point regardless of the concentration, and thus problems such as bumping are likely to occur. Considering the material and structure of the surface treatment equipment, the practical optimum range is 80 to 120 ° C.

第4の発明および第9の発明は、第1〜3および5〜8の発明に記載したニッケル水素電池用負極活物質を含む負極を用いたニッケル水素電池に関する。以下に本発明のニッケル水素電池の詳細な構成について記す。   4th invention and 9th invention are related with the nickel hydride battery using the negative electrode containing the negative electrode active material for nickel hydride batteries described in the 1st-3rd and 5-8th invention. The detailed configuration of the nickel metal hydride battery of the present invention will be described below.

まず正極には、水酸化ニッケルを活物質とする公知の正極を用いることができる。   First, a known positive electrode using nickel hydroxide as an active material can be used for the positive electrode.

また本発明のニッケル水素電池用負極活物質を含む負極には、別途導電剤、増粘剤および結着剤を加えることができる。   In addition, a conductive agent, a thickener, and a binder can be added separately to the negative electrode including the negative electrode active material for a nickel metal hydride battery of the present invention.

導電剤としては電子伝導性を有する材料が限定なく選定できるが、例えば天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類や、アセチレンブラック(以下、ABと略記)、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などが好ましく、中でも人造黒鉛、ケッチェンブラック、炭素繊維がより好ましい。これらの導電剤は複数種を混合して用いてもよく、本発明のニッケル水素電池用負極活物質に表面被覆させてもよい。上記導電剤の添加量は特に限定されないが、ニッケル水素電池用負極活物質100重量部に対して0.1〜50重量部の範囲が好ましく、0.1〜30重量部の範囲がより好ましい。   As the conductive agent, any material having electronic conductivity can be selected without limitation. For example, natural graphite (such as flake graphite), artificial graphite, graphite such as expanded graphite, acetylene black (hereinafter abbreviated as AB), ketjen Carbon blacks such as black, channel black, furnace black, lamp black and thermal black, conductive fibers such as carbon fiber and metal fiber, metal powders such as copper, organic conductive materials such as polyphenylene derivatives, etc. Among them, artificial graphite, ketjen black, and carbon fiber are more preferable. These conductive agents may be used as a mixture of two or more kinds, and may be coated on the surface of the negative electrode active material for a nickel metal hydride battery of the present invention. Although the addition amount of the said electrically conductive agent is not specifically limited, The range of 0.1-50 weight part is preferable with respect to 100 weight part of negative electrode active materials for nickel hydride batteries, and the range of 0.1-30 weight part is more preferable.

増粘剤としては負極の前駆体である合剤ペーストに粘性を付与できる材料が限定なく選定できるが、例えばカルボキシメチルセルロース(以下、CMCと略記)およびその変性体、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシドなどが好ましい。   As the thickener, a material capable of imparting viscosity to the mixture paste, which is a precursor of the negative electrode, can be selected without limitation. For example, carboxymethylcellulose (hereinafter abbreviated as CMC) and modified products thereof, polyvinyl alcohol, methylcellulose, polyethylene oxide Is preferred.

結着剤としては負極合剤を芯材に結着できる材料が限定なく選定できる。例えば熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよく、スチレン−ブタジエン共重合ゴム(以下、SBRと略記)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Naイオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Naイオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Naイオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Naイオン架橋体などを、単独あるいは混合して用いることができる。
As the binder, a material capable of binding the negative electrode mixture to the core material can be selected without limitation. For example, any of a thermoplastic resin and a thermosetting resin may be used. Styrene-butadiene copolymer rubber (hereinafter abbreviated as SBR), polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoro Ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer , Ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chloroto Fluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid copolymer Polymer Na + ion crosslinked body, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + ion crosslinked body, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + ion crosslinked Body, ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate copolymer Na + ion cross-linked body, etc. can be used alone or in combination.

セパレータとしてはポリプロピレンなどのポリオレフィン製不織布を用いることができる。   As the separator, a nonwoven fabric made of polyolefin such as polypropylene can be used.

また電解液としては、比重1.30近傍の水酸化カリウム水溶液に水酸化ナトリウムや水酸化リチウムを溶解させたものを用いることができる。   As the electrolytic solution, a solution obtained by dissolving sodium hydroxide or lithium hydroxide in a potassium hydroxide aqueous solution having a specific gravity of around 1.30 can be used.

以上の構成要素を組み合わせることにより、本発明のニッケル水素電池を構成することができる。   The nickel metal hydride battery of the present invention can be configured by combining the above components.

以下に本発明を実施例に基づいて具体的に説明するが、この実施例は本発明を限定するものではない。   Hereinafter, the present invention will be specifically described based on examples, but the examples do not limit the present invention.

(i)水素吸蔵合金粉末の作製
(1)実施例1〜18、52〜54、および比較例1〜10、28、29の水素吸蔵合金粉末の作製
金属状態のMm、Ni、Mn、Co、Al、MgおよびFeを所定の割合で混合したものを、高周波溶解炉を用いて1480℃で溶解し、その溶融物をロール急冷法で急冷し、凝固させることにより、一般式がMm1−αMgαNiAlMnCoβFeγ(α、β、γ、x、yおよびzは(表1)に記載)である水素吸蔵合金のインゴットを作製した。このインゴットを800℃のアルゴン雰囲気下で5時間加熱した後で粉砕し、平均粒径を30μmとした。
(I) Preparation of hydrogen storage alloy powder (1) Preparation of hydrogen storage alloy powders of Examples 1 to 18, 52 to 54 and Comparative Examples 1 to 10, 28, and 29 Metallic Mm, Ni, Mn, Co, A mixture of Al, Mg, and Fe in a predetermined ratio is melted at 1480 ° C. using a high-frequency melting furnace, and the melt is rapidly cooled by a roll quenching method and solidified, whereby the general formula is Mm 1-α mg α Ni x Al y Mn z Co β Fe γ (α, β, γ, x, y and z are listed in Table 1) was prepared an ingot of hydrogen-absorbing alloy is. The ingot was heated in an argon atmosphere at 800 ° C. for 5 hours and then pulverized to an average particle size of 30 μm.

(2)実施例19〜36、55〜57、および比較例11〜20、30、31の水素吸蔵合金粉末の作製
金属状態のLa、Ni、Mn、Co、Al、MgおよびFeを所定の割合で混合したものを、高周波溶解炉を用いて1480℃で溶解し、その溶融物をロール急冷法で急冷し、凝固させることにより、一般式がLa1−αMgαNiAlMnCoβFeγ(α、β、γ、x、yおよびzは(表2)に記載)である水素吸蔵合金のインゴットを作製した。このインゴットを800℃のアルゴン雰囲気下で5時間加熱した後で粉砕し、平均粒径を30μmとした。
(2) Preparation of hydrogen storage alloy powders of Examples 19 to 36, 55 to 57, and Comparative Examples 11 to 20, 30, and 31 Metal, La, Ni, Mn, Co, Al, Mg, and Fe in a predetermined ratio the in a mixture, and dissolved in 1480 ° C. using a high frequency melting furnace, and the melt was quenched by a roll quenching method, by solidifying the general formula La 1-α Mg α Ni x Al y Mn z Co An ingot of a hydrogen storage alloy having β Fe γ (α, β, γ, x, y, and z are described in (Table 2)) was prepared. The ingot was heated in an argon atmosphere at 800 ° C. for 5 hours and then pulverized to an average particle size of 30 μm.

(3)実施例37〜51、58〜60、および比較例21〜27、32、33の水素吸蔵合金粉末の作製
金属状態のLa、Ni、Mn、Al、Mg、FeおよびSnを所定の割合で混合したものを、高周波溶解炉を用いて1480℃で溶解し、その溶融物をロール急冷法で急冷し、
凝固させることにより、一般式がLa1−αMgαNiAlMnFe0.6−γSnγ(α、γ、x、yおよびzは(表3)に記載)である水素吸蔵合金のインゴットを作製した。このインゴットを800℃のアルゴン雰囲気下で5時間加熱した後で粉砕し、平均粒径を30μmとした。
(3) Preparation of hydrogen storage alloy powders of Examples 37 to 51, 58 to 60, and Comparative Examples 21 to 27, 32, and 33 Metal, La, Ni, Mn, Al, Mg, Fe, and Sn in a predetermined ratio , And the mixture is melted at 1480 ° C. using a high-frequency melting furnace, and the melt is quenched by a roll quenching method.
By solidifying the general formula La 1-α Mg α Ni x Al y Mn z Fe 0.6-γ Sn γ (α, γ, x, y and z (in Table 3)) is a hydrogen-absorbing An alloy ingot was prepared. The ingot was heated in an argon atmosphere at 800 ° C. for 5 hours and then pulverized to an average particle size of 30 μm.

(ii)PCT容量
水素吸蔵合金粉末の水素吸蔵量を測定するために、PCT測定を実施した。(株)レスカ社製PCT装置を用い、45℃下で3MPaに達するまで水素を吸蔵させた後、0.007MPaに達するまで水素を放出させた。得られた放出側の圧力−組成等温線を用い、0.01MPaから0.5MPaまでの水素量からPCT容量を計算した。
(Ii) PCT capacity In order to measure the hydrogen storage amount of the hydrogen storage alloy powder, PCT measurement was performed. Using a PCT device manufactured by Resuka Co., Ltd., hydrogen was occluded at 45 ° C. until reaching 3 MPa, and then released until reaching 0.007 MPa. The PCT capacity was calculated from the amount of hydrogen from 0.01 MPa to 0.5 MPa using the obtained pressure-composition isotherm on the discharge side.

(iii)溶出試験
水素吸蔵合金粉末のニッケル水素電池における耐久性を評価するために、水素吸蔵合金のアルカリ溶出試験を実施した。48重量%のNaOH水溶液100mlに上述した水素吸蔵合金粉末1gを浸漬させ、80℃の恒温に8時間保持し、この水溶液中に水素吸蔵合金粉末の構成元素を溶出させた。水溶液をICP分析法(Induced Couple
Plasma Spectroscopy:誘起結合プラズマ分光分析)により分析し、検出された元素ごとの濃度を記録した。
(Iii) Dissolution test In order to evaluate the durability of the hydrogen storage alloy powder in a nickel metal hydride battery, an alkali dissolution test of the hydrogen storage alloy was performed. 1 g of the hydrogen storage alloy powder described above was immersed in 100 ml of 48% by weight NaOH aqueous solution and kept at a constant temperature of 80 ° C. for 8 hours, and the constituent elements of the hydrogen storage alloy powder were eluted in this aqueous solution. The aqueous solution was analyzed by ICP analysis (Induced Couple
Analysis by Plasma Spectroscopy (Inductively Coupled Plasma Spectroscopy), and the concentration of each detected element was recorded.

(iv)負極の作製
上述したニッケル水素電池用負極活物質100重量部に対して0.15重量部のCMC(エーテル化度0.7、重合度1600)、0.3重量部のABおよび0.7重量部のSBRを加え、さらに水を添加して練合し、合剤ペーストを得た。この合剤ペーストを、ニッケルメッキを施した鉄製パンチングメタル(厚み60μm、孔径1mm、開孔率42%)からなる芯材の両面に塗着した。合剤ペースト層を乾燥した後、芯材とともにローラでプレスして切断し、厚み0.4mm、幅35mm、容量2200mAhの負極を得た。なお負極の長手方向に沿う一端部には、芯材の露出部を設けた。
(Iv) Production of negative electrode 0.15 parts by weight of CMC (degree of etherification 0.7, degree of polymerization 1600), 0.3 parts by weight of AB and 0 with respect to 100 parts by weight of the negative electrode active material for nickel metal hydride battery described above 0.7 parts by weight of SBR was added, and water was further added and kneaded to obtain a mixture paste. This mixture paste was applied to both surfaces of a core material made of nickel-plated iron punching metal (thickness 60 μm, hole diameter 1 mm, hole area ratio 42%). After drying the mixture paste layer, it was pressed and cut with a roller together with the core material to obtain a negative electrode having a thickness of 0.4 mm, a width of 35 mm, and a capacity of 2200 mAh. In addition, the exposed part of the core material was provided in the one end part along the longitudinal direction of a negative electrode.

(v)ニッケル水素電池の作製
長手方向に沿う一端部に幅35mmの芯材の露出部を有する容量1500mAhの焼結式ニッケル正極を用い、4/5Aサイズで公称容量1500mAhのニッケル水素電池を作製した。具体的には、正極と負極とを、スルホン化処理したポリプロピレン不織布からなるセパレータ(厚み100μm)を介して捲回し、円柱状の極板群を作製した。極板群では、正極合剤を担持しない正極芯材の露出部と、負極合剤を担持しない負極芯材の露出部とを、それぞれ反対側の端面に露出させた。正極芯材が露出する極板群の端面には正極集電板を溶接した。負極芯材が露出する極板群の端面に負極集電板を溶接する一方、正極リードを介して封口板と正極集電板とを導通させた。負極集電板を下方にして極板群を円筒形の有底缶からなる電池ケースに収容した後、負極集電板と接続された負極リードを電池ケースの底部と溶接した。さらに比重1.3の水酸化カリウム水溶液に40g/Lの濃度で水酸化リチウムを溶解させた電解液を注入した後、周縁にガスケットを具備する封口板にて電池ケースの開口部を封口し、ニッケル水素電池を作製した。
(V) Production of Nickel Metal Hydride Battery Using a sintered nickel positive electrode with a capacity of 1500 mAh having an exposed portion of a core material with a width of 35 mm at one end along the longitudinal direction, a nickel metal hydride battery with a nominal capacity of 1500 mAh in a 4/5 A size is produced. did. Specifically, the positive electrode and the negative electrode were wound through a separator (thickness: 100 μm) made of a sulfonated polypropylene nonwoven fabric to produce a cylindrical electrode plate group. In the electrode plate group, the exposed portion of the positive electrode core material that does not carry the positive electrode mixture and the exposed portion of the negative electrode core material that does not carry the negative electrode mixture were exposed on the opposite end surfaces. A positive electrode current collector plate was welded to the end face of the electrode plate group from which the positive electrode core material was exposed. While the negative electrode current collector plate was welded to the end face of the electrode plate group where the negative electrode core material was exposed, the sealing plate and the positive electrode current collector plate were made conductive through the positive electrode lead. The electrode plate group was accommodated in a battery case made of a cylindrical bottomed can with the negative electrode current collector plate facing downward, and the negative electrode lead connected to the negative electrode current collector plate was welded to the bottom of the battery case. Furthermore, after injecting an electrolytic solution in which lithium hydroxide was dissolved at a concentration of 40 g / L into a potassium hydroxide aqueous solution having a specific gravity of 1.3, the opening of the battery case was sealed with a sealing plate having a gasket on the periphery, A nickel metal hydride battery was produced.

(vi)高温寿命特性
各実施例および比較例のニッケル水素蓄電池を、40℃環境下にて10時間率(150mA)で15時間充電し、5時間率(300mA)で電池電圧が1.0Vになるまで放電した。この充放電サイクルを100回繰り返した。2サイクル目の放電容量に対する100サイクル目の放電容量の比率を、容量維持率として百分率で求めた。
(Vi) High-temperature life characteristics The nickel-metal hydride storage batteries of each Example and Comparative Example were charged for 15 hours at a 10 hour rate (150 mA) in a 40 ° C. environment, and the battery voltage was 1.0 V at a 5 hour rate (300 mA). Discharged until This charge / discharge cycle was repeated 100 times. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the second cycle was determined as a percentage as the capacity retention rate.

実施例1〜18、および比較例1〜10の水素吸蔵合金粉末の組成比と評価結果を(表1)に示す。   The composition ratios and evaluation results of the hydrogen storage alloy powders of Examples 1 to 18 and Comparative Examples 1 to 10 are shown in (Table 1).

Figure 2010182684
Figure 2010182684

αが0.05未満の比較例1はMgを添加した効果が過度に低いため容量が低く、容量維持率も低い。一方、αが0.5を超える比較例2はMgの偏析が顕著化して容量が低く、容量維持率も低い。以上の結果から、αの適正範囲は0.05以上0.5以下である。   In Comparative Example 1 in which α is less than 0.05, the effect of adding Mg is excessively low, so the capacity is low and the capacity retention rate is also low. On the other hand, in Comparative Example 2 in which α exceeds 0.5, the segregation of Mg becomes remarkable, the capacity is low, and the capacity retention rate is also low. From the above results, the appropriate range of α is 0.05 or more and 0.5 or less.

xが2.5未満の比較例3は水素吸蔵合金の活性度の低下の影響で容量が低く、容量維持率も低い。一方、xが4.5を超える比較例4は、詳細は、不明であるが、Ni量が過剰となりCaCu型の結晶構造の中で、ダンベル型原子対が形成されたために、歪が生じた影響で容量が低くなり、容量維持率も低くなった可能性がある。以上の結果から、xの適正範囲は2.5以上4.5以下である。 In Comparative Example 3 in which x is less than 2.5, the capacity is low due to the decrease in the activity of the hydrogen storage alloy, and the capacity retention rate is also low. On the other hand, in Comparative Example 4 where x exceeds 4.5, the details are unclear, but since the amount of Ni is excessive and dumbbell-type atom pairs are formed in the CaCu 5 type crystal structure, distortion occurs. As a result, the capacity may have decreased and the capacity maintenance rate may have decreased. From the above results, the appropriate range of x is 2.5 or more and 4.5 or less.

y+zが0.05未満の比較例5は水素平衡圧が増加した影響で容量が低く、容量維持率も低い。一方、y+zが2.0を超える比較例6はMnおよびAlの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性が悪化した。以上の結果から、y+zの適正範囲は0.05以上2.0以下である。   In Comparative Example 5 where y + z is less than 0.05, the capacity is low due to the increase in the hydrogen equilibrium pressure, and the capacity retention rate is also low. On the other hand, in Comparative Example 6 in which y + z exceeds 2.0, elution of Mn and Al into the electrolyte was excessive, and the high temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of y + z is 0.05 or more and 2.0 or less.

βが0.6を超える比較例7はCoの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性を悪化した。以上の結果から、βの適正範囲は0.6以下である。   In Comparative Example 7 in which β exceeded 0.6, the dissolution of Co into the electrolyte was excessive, and the high-temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of β is 0.6 or less.

γが0.6を超える比較例8はFeの偏析が生じて酸化および不動態化が起こり、水素吸蔵放出が阻害されるため容量が低い。以上の結果から、γの適正範囲は0.6以下である。   In Comparative Example 8 in which γ exceeds 0.6, the segregation of Fe occurs, oxidation and passivation occur, and hydrogen storage / release is inhibited, so the capacity is low. From the above results, the appropriate range of γ is 0.6 or less.

x+y+z+β+γが5.6未満の比較例9はAサイトにある2A族元素とBサイトのNiとの非結晶質化が促進されないので容量が低く、容量維持率も低い。一方、x+y+
z+β+γが6.0を超える比較例10は非化学量論化が過剰となって容量が低く、容量維持率も低い。以上の結果から、x+y+z+β+γの適正範囲は5.6以上6.0以下である。
In Comparative Example 9 in which x + y + z + β + γ is less than 5.6, since the non-crystallization of the Group 2A element at the A site and Ni at the B site is not promoted, the capacity is low and the capacity retention rate is also low. On the other hand, x + y +
In Comparative Example 10 in which z + β + γ exceeds 6.0, non-stoichiometry becomes excessive, the capacity is low, and the capacity retention rate is also low. From the above results, the appropriate range of x + y + z + β + γ is 5.6 or more and 6.0 or less.

実施例19〜36、および比較例11〜20の水素吸蔵合金粉末の組成比と評価結果を(表2)に示す。   The composition ratios and evaluation results of the hydrogen storage alloy powders of Examples 19 to 36 and Comparative Examples 11 to 20 are shown in (Table 2).

Figure 2010182684
Figure 2010182684

αが0.05未満の比較例11はMgを添加した効果が過度に低いため容量が低く、容量維持率も低い。一方、αが0.5を超える比較例12はMgの偏析が顕著化して容量が低く、容量維持率も低い。以上の結果から、αの適正範囲は0.05以上0.5以下である。   In Comparative Example 11 in which α is less than 0.05, the effect of adding Mg is excessively low, so the capacity is low and the capacity retention rate is also low. On the other hand, in Comparative Example 12 in which α exceeds 0.5, the segregation of Mg becomes remarkable, the capacity is low, and the capacity retention rate is also low. From the above results, the appropriate range of α is 0.05 or more and 0.5 or less.

xが2.5未満の比較例13は水素吸蔵合金の活性度の低下の影響で容量が低く、容量維持率も低い。一方、xが4.5を超える比較例14は、詳細は、不明であるが、Ni量が過剰となりCaCu型の結晶構造の中で、ダンベル型原子対が形成されたために、歪が生じた影響で容量が低くなり、容量維持率も低くなった可能性がある。以上の結果から、xの適正範囲は2.5以上4.5以下である。 In Comparative Example 13 in which x is less than 2.5, the capacity is low due to the decrease in the activity of the hydrogen storage alloy, and the capacity retention rate is also low. On the other hand, in Comparative Example 14 where x exceeds 4.5, the details are unclear, but distortion occurred because the amount of Ni was excessive and dumbbell-type atom pairs were formed in the CaCu 5 type crystal structure. As a result, the capacity may have decreased and the capacity maintenance rate may have decreased. From the above results, the appropriate range of x is 2.5 or more and 4.5 or less.

y+zが0.05未満の比較例15は水素平衡圧が増加した影響で容量が低く、容量維持率も低い。一方、y+zが2.0を超える比較例16はMnおよびAlの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性が悪化した。以上の結果から、y+zの適正範囲は0.05以上2.0以下である。   In Comparative Example 15 where y + z is less than 0.05, the capacity is low due to the increase in hydrogen equilibrium pressure, and the capacity retention rate is also low. On the other hand, in Comparative Example 16 in which y + z exceeds 2.0, elution of Mn and Al into the electrolyte was excessive, and the high-temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of y + z is 0.05 or more and 2.0 or less.

βが0.6を超える比較例17はCoの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性を悪化した。以上の結果から、βの適正範囲は0.6以下である。   In Comparative Example 17 in which β exceeded 0.6, the dissolution of Co into the electrolyte was excessive, and the high-temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of β is 0.6 or less.

γが0.6を超える比較例18はFeの偏析が生じて酸化および不動態化が起こり、水素吸蔵放出が阻害されるため容量が低い。以上の結果から、γの適正範囲は0.6以下である。   In Comparative Example 18 in which γ exceeds 0.6, Fe segregation occurs, oxidation and passivation occur, and hydrogen storage / release is inhibited, so the capacity is low. From the above results, the appropriate range of γ is 0.6 or less.

x+y+z+β+γが5.6未満の比較例19はAサイトにある2A族元素とBサイトのNiとの非結晶質化が促進されないので容量が低く、容量維持率も低い。一方、x+y+z+β+γが6.0を超える比較例20は非化学量論化が過剰となって容量が低く、容量維持率も低い。以上の結果から、x+y+z+β+γの適正範囲は5.6以上6.0以下である。   In Comparative Example 19 in which x + y + z + β + γ is less than 5.6, the non-crystallization of the Group 2A element at the A site and Ni at the B site is not promoted, so the capacity is low and the capacity retention rate is also low. On the other hand, in Comparative Example 20 in which x + y + z + β + γ exceeds 6.0, non-stoichiometry becomes excessive, the capacity is low, and the capacity retention rate is also low. From the above results, the appropriate range of x + y + z + β + γ is 5.6 or more and 6.0 or less.

実施例37〜51、および比較例21〜27の水素吸蔵合金粉末の組成比と評価結果を(表3)に示す。   The composition ratios and evaluation results of the hydrogen storage alloy powders of Examples 37 to 51 and Comparative Examples 21 to 27 are shown in (Table 3).

Figure 2010182684
Figure 2010182684

αが0.05未満の比較例21はMgを添加した効果が過度に低いため容量が低く、容量維持率も低い。一方、αが0.5を超える比較例22はMgの偏析が顕著化して容量が低く、容量維持率も低い。以上の結果から、αの適正範囲は0.05以上0.5以下である。   In Comparative Example 21 in which α is less than 0.05, the effect of adding Mg is excessively low, so the capacity is low and the capacity retention rate is also low. On the other hand, in Comparative Example 22 in which α exceeds 0.5, the segregation of Mg becomes remarkable, the capacity is low, and the capacity retention rate is also low. From the above results, the appropriate range of α is 0.05 or more and 0.5 or less.

xが2.5未満の比較例23は水素吸蔵合金の活性度の低下の影響で容量が低く、容量維持率も低い。一方、xが4.5を超える比較例24は、詳細は、不明であるが、Ni量が過剰となりCaCu型の結晶構造の中で、ダンベル型原子対が形成されたために、歪が生じた影響で容量が低くなり、容量維持率も低くなった可能性がある。以上の結果から、xの適正範囲は2.5以上4.5以下である。 In Comparative Example 23 in which x is less than 2.5, the capacity is low due to the decrease in the activity of the hydrogen storage alloy, and the capacity retention rate is also low. On the other hand, in Comparative Example 24 where x exceeds 4.5, the details are unclear, but distortion occurred because the amount of Ni was excessive and dumbbell-type atom pairs were formed in the CaCu 5 type crystal structure. As a result, the capacity may have decreased and the capacity maintenance rate may have decreased. From the above results, the appropriate range of x is 2.5 or more and 4.5 or less.

y+zが0.05未満の比較例25は水素平衡圧が増加した影響で容量が低く、容量維持率も低い。一方、y+zが2.0を超える比較例26はMnおよびAlの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性が悪化した。以上の結果から、y+zの適正範囲は0.05以上2.0以下である。   In Comparative Example 25 where y + z is less than 0.05, the capacity is low due to the increase in the hydrogen equilibrium pressure, and the capacity retention rate is also low. On the other hand, in Comparative Example 26 in which y + z exceeded 2.0, the elution of Mn and Al into the electrolyte was excessive, and the high temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of y + z is 0.05 or more and 2.0 or less.

γが0.6を超えるときはSnの偏析が生じて酸化および不動態化が起こり、水素吸蔵放出が阻害されるため容量が低くなる可能性がある。以上の結果から、γの適正範囲は0.6以下である。   When γ exceeds 0.6, Sn segregation occurs, oxidation and passivation occur, and hydrogen storage / release is inhibited, so the capacity may be lowered. From the above results, the appropriate range of γ is 0.6 or less.

x+y+z+0.6が5.6未満の比較例27はAサイトにある2A族元素とBサイトのNiとの非結晶質化が促進されないので容量が低く、容量維持率も低い。一方、x+y+z+0.6が6.0を超える比較例28は非化学量論化が過剰となって容量が低く、容量維持率も低い。以上の結果から、x+y+z+0.6の適正範囲は5.6以上6.0以下である。   In Comparative Example 27 in which x + y + z + 0.6 is less than 5.6, non-crystallization of the Group 2A element at the A site and Ni at the B site is not promoted, so the capacity is low and the capacity retention rate is also low. On the other hand, in Comparative Example 28 in which x + y + z + 0.6 exceeds 6.0, non-stoichiometry becomes excessive, the capacity is low, and the capacity retention rate is also low. From the above results, the appropriate range of x + y + z + 0.6 is 5.6 or more and 6.0 or less.

(i)アルカリ水溶液処理
上記実施例10〜12、28〜30、46〜48および比較例6〜7、16〜17、26〜27の水素吸蔵合金粉末の作製において、作成された粉末に対して、アルカリ水溶液による処理を実施した。
(I) Alkaline aqueous solution treatment In the preparation of the hydrogen storage alloy powders of Examples 10 to 12, 28 to 30, 46 to 48 and Comparative Examples 6 to 7, 16 to 17, and 26 to 27, The treatment with an aqueous alkali solution was performed.

KOH水溶液の塩基モル濃度は18mol/Lで処理温度100℃、処理時間30分間で処理を行った。処理された粉末は、水洗工程において、脱アルカリを実施し、含水率3.5%の脱水粉末とした。   The base molar concentration of the KOH aqueous solution was 18 mol / L, and the treatment was performed at a treatment temperature of 100 ° C. for a treatment time of 30 minutes. The treated powder was subjected to dealkalization in a water washing step to obtain a dehydrated powder having a water content of 3.5%.

その後、負極の作成およびニッケル水素電池の作成は、実施例1〜51と同様に行い、高温寿命特性を評価した。これを実施例52〜60とした。   Thereafter, the production of the negative electrode and the production of the nickel metal hydride battery were performed in the same manner as in Examples 1 to 51, and the high-temperature life characteristics were evaluated. This was designated as Examples 52 to 60.

実施例52〜60、および比較例28〜33の水素吸蔵合金粉末の組成比と評価結果を(表4)に示す。   The composition ratios and evaluation results of the hydrogen storage alloy powders of Examples 52 to 60 and Comparative Examples 28 to 33 are shown in (Table 4).

Figure 2010182684
Figure 2010182684

一般式Mm1−αT1αNiAlMnCoβT2γの場合、y+zが2.0を超える比較例29はMnおよびAlの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性が悪化した。以上の結果から、y+zの適正範囲は0.05以上2.0以下である。一方、βが0.6を超える比較例30はCoの電解液への溶出が過多
であり、ニッケル水素電池を構成した際に高温寿命特性は悪化した。以上の結果から、βの適正範囲は0.6以下である。アルカリ処理を実施することにより、その組成の適正範囲は、実施例1〜18と同様である。さらに、アルカリ処理を実施した水素吸蔵合金の方が、よりPCT容量は、高く、容量維持率も高い。この詳細は、不明であるが、極表面層の水素触媒活性層が形成されている可能性がある。いずれにしろ、アルカリ処理することは、より好ましい。
In the case of the general formula Mm 1-α T1 α Ni x Al y Mn z Co β T2 γ , Comparative Example 29 in which y + z exceeds 2.0 is excessive elution of Mn and Al into the electrolyte solution. When configured, the high temperature life characteristics deteriorated. From the above results, the appropriate range of y + z is 0.05 or more and 2.0 or less. On the other hand, in Comparative Example 30 in which β exceeds 0.6, the elution of Co into the electrolyte was excessive, and the high-temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of β is 0.6 or less. By carrying out the alkali treatment, the appropriate range of the composition is the same as in Examples 1-18. Furthermore, the hydrogen storage alloy that has been subjected to the alkali treatment has a higher PCT capacity and a higher capacity retention rate. Although the details are unknown, there is a possibility that a hydrogen catalyst active layer of the extreme surface layer is formed. In any case, the alkali treatment is more preferable.

一般式がLa1−αMgαNiAlMnCoβFeγの場合、y+zが2.0を超える比較例31はMnおよびAlの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性が悪化した。以上の結果から、y+zの適正範囲は0.05以上2.0以下である。一方、βが0.6を超える比較例32はCoの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性は悪化した。以上の結果から、βの適正範囲は0.6以下である。アルカリ処理を実施することにより、その組成の適正範囲は、実施例19〜36と同様である。さらに、アルカリ処理を実施した水素吸蔵合金の方が、よりPCT容量は、高く、容量維持率も高い。この詳細は、不明であるが、極表面層の水素触媒活性層が形成されている可能性がある。いずれにしろ、アルカリ処理することは、より好ましい。 If the formula is La 1-α Mg α Ni x Al y Mn z Co β Fe γ, Comparative Example 31 in which y + z is greater than 2.0 is excessive elution of the electrolytic solution of Mn and Al, NiMH batteries When it was constructed, the high-temperature life characteristics deteriorated. From the above results, the appropriate range of y + z is 0.05 or more and 2.0 or less. On the other hand, in Comparative Example 32 in which β exceeds 0.6, the dissolution of Co into the electrolyte was excessive, and the high-temperature life characteristics deteriorated when a nickel metal hydride battery was constructed. From the above results, the appropriate range of β is 0.6 or less. By carrying out the alkali treatment, the appropriate range of the composition is the same as in Examples 19 to 36. Furthermore, the hydrogen storage alloy that has been subjected to the alkali treatment has a higher PCT capacity and a higher capacity retention rate. Although the details are unknown, there is a possibility that a hydrogen catalyst active layer of the extreme surface layer is formed. In any case, the alkali treatment is more preferable.

一般式La1−αMgαNiAlMnFe0.6−ySnの場合、y+zが2.0を超える比較例33はMnおよびAlの電解液への溶出が過多であり、ニッケル水素電池を構成した際に高温寿命特性が悪化した。以上の結果から、y+zの適正範囲は0.05以上2.0以下である。 In the case of the general formula La 1-α Mg α Ni x Al y Mn z Fe 0.6-y Sn y , Comparative Example 33 in which y + z exceeds 2.0 has excessive elution of Mn and Al into the electrolyte solution, When a nickel metal hydride battery was constructed, the high temperature life characteristics deteriorated. From the above results, the appropriate range of y + z is 0.05 or more and 2.0 or less.

一方、x+y+z+0.6が5.6未満の比較例34はAサイトにある2A族元素とBサイトのNiとの非結晶質化が促進されないので容量が低く、容量維持率も低い。以上の結果から、x+y+z+0.6の適正範囲は5.6以上6.0以下である。アルカリ処理を実施することにより、その組成の適正範囲は、実施例37〜51と同様である。さらに、アルカリ処理を実施した水素吸蔵合金の方が、よりPCT容量は、高く、容量維持率も高い。この詳細は、不明であるが、極表面層の水素触媒活性層が形成されている可能性がある。いずれにしろ、アルカリ処理することは、より好ましい。   On the other hand, Comparative Example 34 in which x + y + z + 0.6 is less than 5.6 does not promote non-crystallization of the 2A group element at the A site and Ni at the B site, so the capacity is low and the capacity retention rate is also low. From the above results, the appropriate range of x + y + z + 0.6 is 5.6 or more and 6.0 or less. By carrying out the alkali treatment, the appropriate range of the composition is the same as in Examples 37-51. Furthermore, the hydrogen storage alloy that has been subjected to the alkali treatment has a higher PCT capacity and a higher capacity retention rate. Although the details are unknown, there is a possibility that a hydrogen catalyst active layer of the extreme surface layer is formed. In any case, the alkali treatment is more preferable.

本発明を活用することにより、ニッケル水素電池の高温寿命特性を大幅に改善しつつ高容量化が図れるので、あらゆる機器の電源として利用可能性がある上に、過酷な環境下で使用されるハイブリッド自動車用電源などの分野において多大な効果をもたらすことが期待できる。   By utilizing the present invention, it is possible to increase the capacity while greatly improving the high-temperature life characteristics of the nickel-metal hydride battery, so that it can be used as a power source for all devices and is used in harsh environments It can be expected to bring about a great effect in the field of power sources for automobiles.

1 水素吸蔵合金粉末
2 Ni層
3 粒子
4 粒界
1 Hydrogen storage alloy powder 2 Ni layer 3 Particles 4 Grain boundary

Claims (8)

一般式Mm1−αT1αNiAlMnCoβT2γ(式中、Mmは軽希土類元素の混合物、T1はMg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種の元素、T2はSn、Cu、およびFeからなる群から選ばれた少なくとも1種の元素、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦β≦0.6、0≦γ≦0.6、5.6≦x+y+z+β+γ≦6.0)で示される、ニッケル水素電池用負極活物質のニッケル水素電池用負極活物質の処理方法であって、
ニッケル水素電池用負極活物質をアルカリ水溶液中で攪拌する工程を有するニッケル水素電池用負極活物質の処理方法。
In the formula Mm 1-α T1 α Ni x Al y Mn z Co β T2 γ ( wherein, Mm is the mixture of light rare earth elements, T1 is Mg, Ca, at least one selected from the group consisting of Sr and Ba Element, T2 is at least one element selected from the group consisting of Sn, Cu, and Fe, 0.05 ≦ α ≦ 0.5, 2.5 ≦ x ≦ 4.5, 0.05 ≦ y + z ≦ 2 0.0, 0 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + β + γ ≦ 6.0), the treatment of the negative electrode active material for nickel metal hydride batteries A method,
The processing method of the negative electrode active material for nickel hydride batteries which has the process of stirring the negative electrode active material for nickel hydride batteries in alkaline aqueous solution.
一般式La1−αT1αNiAlMnCoβT2γ(式中、T1はMg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種の元素、T2はSn、Cu、およびFeからなる群から選ばれた少なくとも1種の元素、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦β≦0.6、0≦γ≦0.6、5.6≦x+y+z+β+γ≦6.0)で示される、ニッケル水素電池用負極活物質のニッケル水素電池用負極活物質の処理方法であって、
ニッケル水素電池用負極活物質をアルカリ水溶液中で攪拌する工程を有するニッケル水素電池用負極活物質の処理方法。
Formula La 1-α T1 α Ni x Al y Mn z Co β T2 γ ( wherein, at least one element T1 is selected from the group consisting of Mg, Ca, Sr and Ba, T2 is Sn, Cu, And at least one element selected from the group consisting of Fe, 0.05 ≦ α ≦ 0.5, 2.5 ≦ x ≦ 4.5, 0.05 ≦ y + z ≦ 2.0, 0 ≦ β ≦ 0 .6, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + β + γ ≦ 6.0), a method for treating a negative electrode active material for nickel metal hydride batteries of a negative electrode active material for nickel metal hydride batteries,
The processing method of the negative electrode active material for nickel hydride batteries which has the process of stirring the negative electrode active material for nickel hydride batteries in alkaline aqueous solution.
一般式La1−αMgαNiAlMnFe0.6−γSnγ(式中、0.05≦α≦0.5、2.5≦x≦4.5、0.05≦y+z≦2.0、0≦γ≦0.6、5.6≦x+y+z+0.6≦6.0)で示される、ニッケル水素電池用負極活物質のニッケル水素電池用負極活物質の処理方法であって、
ニッケル水素電池用負極活物質をアルカリ水溶液中で攪拌する工程を有するニッケル水素電池用負極活物質の処理方法。
Formula La 1-α Mg α Ni x Al y Mn z Fe 0.6-γ Sn γ ( wherein, 0.05 ≦ α ≦ 0.5,2.5 ≦ x ≦ 4.5,0.05 ≦ y + z ≦ 2.0, 0 ≦ γ ≦ 0.6, 5.6 ≦ x + y + z + 0.6 ≦ 6.0), which is a method for treating a negative electrode active material for a nickel metal hydride battery. And
The processing method of the negative electrode active material for nickel hydride batteries which has the process of stirring the negative electrode active material for nickel hydride batteries in alkaline aqueous solution.
前記アルカリ水溶液が水酸化ナトリウムおよび/または水酸化カリウムである請求項1から3のいずれか一項に記載のニッケル水素電池用負極活物質の処理方法。 The method for treating a negative electrode active material for a nickel metal hydride battery according to any one of claims 1 to 3, wherein the alkaline aqueous solution is sodium hydroxide and / or potassium hydroxide. 前記水酸化カリウム水溶液の塩基モル濃度が3〜20mol/Lであり、前記水酸化ナトリウム水溶液の塩基モル濃度が10〜20mol/Lである請求項1から3のいずれか一項に記載のニッケル水素電池用負極活物質の処理方法。 4. The nickel hydride according to claim 1, wherein the basic molar concentration of the aqueous potassium hydroxide solution is 3 to 20 mol / L, and the basic molar concentration of the aqueous sodium hydroxide solution is 10 to 20 mol / L. The processing method of the negative electrode active material for batteries. 前記ニッケル水素電池用負極活物質をアルカリ水溶液中で攪拌する工程における処理温度が80〜150℃である請求項1から3のいずれか一項に記載のニッケル水素電池用負極活物質の処理方法。 The processing method of the negative electrode active material for nickel-metal hydride batteries according to any one of claims 1 to 3, wherein a treatment temperature in the step of stirring the negative electrode active material for nickel-metal hydride batteries in an alkaline aqueous solution is 80 to 150 ° C. 請求項1から6のいずれか一項に記載のニッケル水素電池用負極活物質の処理方法により得られたニッケル水素電池用負極活物質。 The negative electrode active material for nickel metal hydride batteries obtained by the processing method of the negative electrode active material for nickel metal hydride batteries according to any one of claims 1 to 6. 請求項7に記載のニッケル水素電池用負極活物質を含む負極板を用いたニッケル水素電池。 The nickel metal hydride battery using the negative electrode plate containing the negative electrode active material for nickel metal hydride batteries of Claim 7.
JP2010062336A 2006-07-25 2010-03-18 Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery Pending JP2010182684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062336A JP2010182684A (en) 2006-07-25 2010-03-18 Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006201569 2006-07-25
JP2010062336A JP2010182684A (en) 2006-07-25 2010-03-18 Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007191716A Division JP5169050B2 (en) 2006-07-25 2007-07-24 Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery, and method for treating negative electrode active material for nickel metal hydride battery

Publications (1)

Publication Number Publication Date
JP2010182684A true JP2010182684A (en) 2010-08-19

Family

ID=42764069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062336A Pending JP2010182684A (en) 2006-07-25 2010-03-18 Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery

Country Status (1)

Country Link
JP (1) JP2010182684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053223A (en) * 2006-07-25 2008-03-06 Matsushita Electric Ind Co Ltd Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery
US9997776B2 (en) 2013-03-29 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries including the same, and nickel-metal hydride storage battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354116A (en) * 1998-06-05 1999-12-24 Japan Metals & Chem Co Ltd Surface treatment method of hydrogen storage alloy for battery material
JP2003045480A (en) * 2001-08-01 2003-02-14 Toshiba Corp ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
WO2003056047A1 (en) * 2001-12-27 2003-07-10 Santoku Corporation Hydrogen-occluding alloy, powder of hydrogen-occluding alloy, processes for producing these, and negative electrode for nickel-hydrogen secondary battery
JP2004119271A (en) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2008053223A (en) * 2006-07-25 2008-03-06 Matsushita Electric Ind Co Ltd Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354116A (en) * 1998-06-05 1999-12-24 Japan Metals & Chem Co Ltd Surface treatment method of hydrogen storage alloy for battery material
JP2003045480A (en) * 2001-08-01 2003-02-14 Toshiba Corp ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
WO2003056047A1 (en) * 2001-12-27 2003-07-10 Santoku Corporation Hydrogen-occluding alloy, powder of hydrogen-occluding alloy, processes for producing these, and negative electrode for nickel-hydrogen secondary battery
JP2004119271A (en) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2008053223A (en) * 2006-07-25 2008-03-06 Matsushita Electric Ind Co Ltd Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053223A (en) * 2006-07-25 2008-03-06 Matsushita Electric Ind Co Ltd Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery
US9997776B2 (en) 2013-03-29 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries including the same, and nickel-metal hydride storage battery including the same

Similar Documents

Publication Publication Date Title
JP5302890B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery using the same, and method for treating negative electrode active material for nickel metal hydride battery
US8202650B2 (en) Negative electrode material for nickel-metal hydride battery and treatment method thereof, and nickel-metal hydride battery
JP5169050B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery, and method for treating negative electrode active material for nickel metal hydride battery
JPWO2014118846A1 (en) Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JP5148553B2 (en) COMPOSITE MATERIAL FOR ELECTRODE, PROCESS FOR PRODUCING THE SAME AND ALKALINE STORAGE BATTERY USING THE SA
JP6422017B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP2010182684A (en) Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery
JP5861099B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
WO2015136836A1 (en) Hydrogen-absorbing alloy, alloy powder for electrode, negative electrode for alkaline storage battery, and alkaline storage battery
JP2004269929A (en) Hydrogen storage alloy, and electrode using the same
JP5979542B2 (en) Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
US20170200946A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP2008269888A (en) Nickel-hydrogen storage battery
US20180034046A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP2002343349A (en) Hydrogen storage alloy electrode
JP2011018493A (en) Nickel hydrogen secondary battery
JP5119689B2 (en) Negative electrode material for alkaline storage battery and alkaline storage battery
JP4997702B2 (en) Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same
JP5991525B2 (en) Alkaline storage battery
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120925

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205