JP2001196092A - Sealed nickel-hydrogen battery and manufacturing method therefor - Google Patents

Sealed nickel-hydrogen battery and manufacturing method therefor

Info

Publication number
JP2001196092A
JP2001196092A JP2000001754A JP2000001754A JP2001196092A JP 2001196092 A JP2001196092 A JP 2001196092A JP 2000001754 A JP2000001754 A JP 2000001754A JP 2000001754 A JP2000001754 A JP 2000001754A JP 2001196092 A JP2001196092 A JP 2001196092A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
metal hydride
centered cubic
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000001754A
Other languages
Japanese (ja)
Inventor
Yukihiro Okada
行広 岡田
Yasuhiko Mifuji
靖彦 美藤
Yoichiro Tsuji
庸一郎 辻
Yoshio Kayama
美穂 嘉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000001754A priority Critical patent/JP2001196092A/en
Publication of JP2001196092A publication Critical patent/JP2001196092A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cycle characteristics of a nickel-hydrogen battery employing a centered cubic hydrogen storage alloy for the negative pole. SOLUTION: The closed nickel-hydrogen battery provides a negative pole with hydrogen storage alloy particles. The particles are those of the centered cubic hydrogen storage alloy. On at least a part of the surface, there is a Ni- diffused layer containing a centered cubic phase similar to TiNi. In addition, there is at least one element of lithium and sodium inside the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的な水素
の吸蔵・放出を可逆的に行える水素吸蔵合金を用いた密
閉型ニッケル水素蓄電池およびその水素吸蔵合金電極の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-metal hydride storage battery using a hydrogen storage alloy capable of reversibly electrochemically storing and releasing hydrogen, and a method for manufacturing the hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】水素を可逆的に吸収・放出しうる水素吸
蔵合金を負極に用いたニッケル水素蓄電池は、理論容量
密度がカドミウム電極より大きく、亜鉛電極のような変
形やデンドライトの形成などもないことから、長寿命・
無公害であり、しかも高エネルギー密度を有するため、
今後の発展が期待されている。現在ニッケル水素蓄電池
に実用化されている水素吸蔵合金は、AB5タイプ
(A:La、Zr、Tiなどの水素との親和性の大きい
元素、B:Ni、Mn、Crなどの遷移元素)のLa
(又はMm)−Ni系の多元系合金である。しかしなが
ら、この合金は、ほぼ理論値に近い容量を使用してお
り、今後大幅な容量増が見込めないため、さらに放電容
量が大きい新規水素吸蔵合金材料を使用したニッケル水
素蓄電池が望まれている。
2. Description of the Related Art A nickel-metal hydride storage battery using a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen for a negative electrode has a theoretical capacity density larger than that of a cadmium electrode, and does not have deformation and dendrite formation unlike a zinc electrode. Therefore, long life
Because it is pollution-free and has a high energy density,
Future development is expected. Hydrogen storage alloys currently commercialized in nickel-metal hydride storage battery, AB 5 type (A: La, Zr, affinity of large elements with hydrogen, such as Ti, B: Ni, Mn, transition element such as Cr) of La
(Or Mm) -Ni-based multi-component alloy. However, since this alloy has a capacity close to the theoretical value and a large capacity increase cannot be expected in the future, a nickel-metal hydride storage battery using a novel hydrogen storage alloy material having a larger discharge capacity is desired.

【0003】AB5タイプの合金よりも大きな水素吸蔵
量を持つ合金として、Ti−V系の水素吸蔵合金があ
る。この合金系を用いたニッケル水素蓄電池用負極とし
ては、例えばTixyNiz合金(特開平6−2286
99号公報、特開平7−268513号公報、特開平7
−268514号公報など)が提案されている。また、
放電容量とサイクル特性を改善する目的でV1-a-b-c-d
TiaCrbc d合金(MはMn、Niなど、Lは希土
類元素またはY)などが提案されている(特開平11−
144728号公報)。
[0003] ABFiveLarger hydrogen storage than type alloy
Ti-V-based hydrogen storage alloys
You. A negative electrode for nickel-metal hydride storage batteries using this alloy system
For example, TixVyNizAlloy (JP-A-6-2286)
No. 99, JP-A-7-268513, JP-A-7-268513
-268514) has been proposed. Also,
V to improve discharge capacity and cycle characteristics1-abcd
TiaCrbMcL dAlloy (M is Mn, Ni, etc., L is rare earth
(Y) or the like (Japanese Patent Laid-Open No. 11-1999).
144728).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Ti−
V−Ni系の水素吸蔵合金をニッケル水素蓄電池の負極
に用いた場合、La(又はMm)−Ni系の多元系合金
に比べて放電容量が高いものの、サイクル特性の改善お
よびさらなる高容量化が望まれる。また、V1-a- b-c-d
TiaCrbcd合金においてもさらなるサイクル特性
の改善が望まれる。本発明は、放電容量が大きく、かつ
サイクル劣化の少ない密閉型ニッケル水素蓄電池を提供
することを目的とする。
However, Ti-
When a V-Ni-based hydrogen storage alloy is used for a negative electrode of a nickel-metal hydride storage battery, although the discharge capacity is higher than that of a La (or Mm) -Ni-based multi-component alloy, the cycle characteristics are improved and the capacity is further increased. desired. V 1-a- bcd
Further improvement in cycle characteristics is also desired for the Ti a Cr b M c L d alloy. An object of the present invention is to provide a sealed nickel-metal hydride storage battery having a large discharge capacity and little cycle deterioration.

【0005】[0005]

【課題を解決するための手段】本発明者らは、水素吸蔵
合金の組成および表面処理の面から負極の特性を改善す
ることを目指し、検討を重ねた結果、本発明を完成する
に至った。すなわち、本発明の密閉型ニッケル水素蓄電
池は、水素吸蔵合金粒子からなる負極を具備し、前記合
金粒子が、体心立方構造を有する水素吸蔵合金粒子であ
って、その表面の少なくとも一部に、TiNiに類似の
体心立方構造を有する相を含むNi拡散層を持ち、かつ
電池内にLiおよびNaの少なくとも一方の元素を含む
ことを特徴とする。
Means for Solving the Problems The inventors of the present invention aimed at improving the characteristics of the negative electrode in view of the composition of the hydrogen storage alloy and the surface treatment, and as a result of repeated studies, completed the present invention. . That is, the sealed nickel-metal hydride storage battery of the present invention includes a negative electrode made of hydrogen storage alloy particles, wherein the alloy particles are hydrogen storage alloy particles having a body-centered cubic structure, and at least a part of the surface thereof. It has a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi, and contains at least one element of Li and Na in a battery.

【0006】ここで、前記のLiおよびNaの少なくと
も一方の元素は、前記Ni拡散層に含まれていることが
好ましい。LiおよびNaの少なくとも一方の元素は、
電解液内に水酸化リチウムまたは水酸化ナトリウムとし
て含まれていてもよい。この場合、電解液は、水酸化リ
チウムおよび水酸化ナトリウムの少なくとも一方と水酸
化カリウムを含み、水酸化カリウム濃度が70wt%以
上であり、かつ電解液の比重が1.20〜1.40であ
ることが好ましい。
Here, it is preferable that at least one element of Li and Na is contained in the Ni diffusion layer. At least one element of Li and Na is
It may be contained in the electrolyte as lithium hydroxide or sodium hydroxide. In this case, the electrolyte contains at least one of lithium hydroxide and sodium hydroxide and potassium hydroxide, the concentration of potassium hydroxide is 70 wt% or more, and the specific gravity of the electrolyte is 1.20 to 1.40. Is preferred.

【0007】前記体心立方構造を有する水素吸蔵合金
は、式V1-a-b-c-dTiaCrbcd(MはMn、F
e、Co、Cu、Nb、Zn、Zr、Mo、Ag、H
f、Ta、W、Al、Si、C、N、P、およびBから
なる群より選ばれる少なくとも1種の元素、Lは希土類
元素およびYからなる群より選ばれた少なくとも1種の
元素、0.2≦a≦0.5、0.1≦b≦0.4、0≦
c≦0.2、0<d≦0.03)で表される合金である
ことが好ましい。
[0007] hydrogen-absorbing alloy having the body-centered cubic structure, formula V 1-abcd Ti a Cr b M c L d (M is Mn, F
e, Co, Cu, Nb, Zn, Zr, Mo, Ag, H
f, at least one element selected from the group consisting of Ta, W, Al, Si, C, N, P, and B; L is at least one element selected from the group consisting of rare earth elements and Y; .2 ≦ a ≦ 0.5, 0.1 ≦ b ≦ 0.4, 0 ≦
An alloy represented by c ≦ 0.2 and 0 <d ≦ 0.03) is preferable.

【0008】本発明は、また前記体心立方構造を有する
水素吸蔵合金粒子にニッケルめっきするかニッケル粉末
を混合して前記合金粒子表面にNiを付着させた後、熱
処理することにより前記Ni拡散層を形成する工程を有
する密閉型ニッケル水素蓄電池用水素吸蔵合金電極の製
造方法を提供する。前記熱処理は、不活性ガス中もしく
は真空中において500〜700℃の温度で行うのが好
ましい。本発明は、体心立方構造を有し、表面の少なく
とも一部に、TiNiに類似の体心立方構造を有する相
を含むNi拡散層を持つ水素吸蔵合金粒子を、少なくと
も水酸化リチウムおよび水酸化ナトリウムの少なくとも
一方を含むアルカリ水溶液で熱処理することにより、リ
チウムおよびナトリウムの少なくとも一方の元素をNi
拡散層に含む水素吸蔵合金粒子を得る工程を有する密閉
型ニッケル水素蓄電池用水素吸蔵合金電極の製造方法を
提供する。前記アルカリ水溶液での熱処理温度は、80
℃以上であることが好ましい。
[0008] The present invention also provides a hydrogen storage alloy particle having a body-centered cubic structure, which is nickel-plated or mixed with a nickel powder to deposit Ni on the surface of the alloy particle and then heat-treated. The present invention provides a method for producing a hydrogen storage alloy electrode for a sealed nickel-metal hydride storage battery, the method including: The heat treatment is preferably performed at a temperature of 500 to 700 ° C. in an inert gas or vacuum. The present invention provides a hydrogen storage alloy particle having a body-centered cubic structure and having, on at least a part of its surface, a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi, at least lithium hydroxide and hydroxide. By heat-treating with an aqueous alkali solution containing at least one of sodium, at least one element of lithium and sodium is converted to Ni
Provided is a method for manufacturing a hydrogen storage alloy electrode for a sealed nickel-metal hydride storage battery, the method including a step of obtaining hydrogen storage alloy particles contained in a diffusion layer. The heat treatment temperature in the alkaline aqueous solution is 80
It is preferable that the temperature is not lower than ° C.

【0009】[0009]

【発明の実施の形態】本発明は、結晶構造が体心立方構
造である高容量の水素吸蔵合金を負極に用いた密閉型ニ
ッケル水素蓄電池に関するものであり、表面の少なくと
も一部にTiNiに類似の体心立方構造を有する相を含
むNi拡散層に、LiおよびNaの少なくとも一方の元
素が作用することで、密閉型ニッケル水素蓄電池のサイ
クル特性の向上を図れることを見出したことに基づくも
のである。このサイクル特性が向上する効果は、電気化
学的に活性なTiNi類似の体心立方構造を有する結晶
相に、Liおよび/またはNaの元素が入り込むことに
より、結晶の表面構造を歪ませ、あるいは、この結晶相
中の特定の元素を溶出させ、これによって表面の電気化
学反応活性がさらに向上して、密閉電池内のガス吸収能
があがることによるものと考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a sealed nickel-metal hydride storage battery using a high-capacity hydrogen-absorbing alloy having a body structure of a body-centered cubic structure as a negative electrode. It is based on the discovery that the cycle characteristics of a sealed nickel-metal hydride storage battery can be improved by the action of at least one element of Li and Na on a Ni diffusion layer containing a phase having a body-centered cubic structure of is there. The effect of improving the cycle characteristics is that Li and / or Na elements enter a crystal phase having a body-centered cubic structure similar to electrochemically active TiNi, thereby distorting the crystal surface structure, or It is considered that a specific element in the crystal phase is eluted, whereby the electrochemical reaction activity on the surface is further improved, and the gas absorbing ability in the sealed battery is increased.

【0010】TiNiに類似の体心立方構造を有する相
を含むNi拡散層に、LiおよびNaの少なくとも一方
の元素を作用させるためには、電池内部にLiおよびN
aの少なくとも一方を存在させればよいが、合金表面の
TiNiに類似の体心立方構造を有する相に効率よく作
用させるためには、電解液中にLiおよびNaの少なく
とも一方を存在させるか、あらかじめ合金表面をLiお
よびNaの少なくとも一方を含むアルカリ水溶液で処理
することが望ましい。
In order to allow at least one element of Li and Na to act on a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi, Li and N
a or at least one of Li and Na in the electrolytic solution in order to efficiently act on a phase having a body-centered cubic structure similar to TiNi on the alloy surface. It is desirable to previously treat the alloy surface with an aqueous alkaline solution containing at least one of Li and Na.

【0011】表面に、TiNiに類似の体心立方構造を
有する相を含むNi拡散層を作製する方法としては、合
金表面にメッキや粉末の混合によりNiを付着させた後
熱処理する方法と、メカニカルアロイングなどのように
合金表面に物理的にNiを拡散させる方法がある。熱処
理を行う場合には、本発明の合金組成においては500
〜700℃での熱処理において所望の表面構造を持つ合
金粉末が得られる。500℃より温度が低い場合はNi
の拡散が進まない。また、700℃より高温の場合に
は、Niがより合金の内部まで拡散して水素吸蔵量が減
少するばかりでなく、表面相の構造がTi2Niの構造
になるためLiやNaを作用させても電極特性は低下す
る。
As a method for producing a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi on the surface, there are a method in which Ni is deposited on the alloy surface by plating or mixing of powder, followed by heat treatment, and a method in which mechanical treatment is performed. There is a method of physically diffusing Ni on the alloy surface such as alloying. When heat treatment is performed, 500%
An alloy powder having a desired surface structure can be obtained by heat treatment at a temperature of up to 700 ° C. If the temperature is lower than 500 ° C, Ni
Does not spread. If the temperature is higher than 700 ° C., not only Ni diffuses further into the alloy to reduce the amount of hydrogen occlusion, but also the surface phase becomes Ti 2 Ni, so that Li or Na is acted on. Even so, the electrode characteristics deteriorate.

【0012】母相の水素吸蔵合金については、基本的に
はTiを含む合金であればよいが、水素吸蔵量と電池用
電極としての特性を満足させるためには、構成元素とそ
の添加量について以下の範囲が望ましい。Niは、合金
中に添加するとTi−Ni系の第2相を形成し、それに
相当する量の水素吸蔵量の低下を引き起こすだけでな
く、主相にも少量溶解し水素平衡圧の上昇を招いて水素
吸蔵量が低下する。したがって、組成中からNiを取り
除くことにより、水素吸蔵量が大きくなる。Tiは、原
子半径がVやCrに比べて大きく、これにより合金の格
子サイズが大きくなり、水素平衡圧が低下するとともに
水素吸蔵量が増大する。添加量が原子比で0.2以上で
あれば吸蔵量の増大に顕著な効果が見られる。しかし、
0.5以上添加すると、水素平衡圧の低下により合金中
の水素が安定化し放出されにくくなるため、水素吸蔵量
が減少する。従って、0.2以上0.5以下が望まし
い。
[0012] The hydrogen storage alloy of the parent phase may be basically an alloy containing Ti. However, in order to satisfy the hydrogen storage amount and the characteristics as a battery electrode, the constituent elements and the added amount thereof must be adjusted. The following ranges are desirable. Ni, when added to the alloy, forms a Ti-Ni-based second phase, which not only causes a corresponding decrease in the amount of hydrogen storage, but also dissolves a small amount in the main phase and causes an increase in the hydrogen equilibrium pressure. As a result, the hydrogen storage amount decreases. Therefore, by removing Ni from the composition, the hydrogen storage amount increases. Ti has a larger atomic radius than V and Cr, thereby increasing the lattice size of the alloy, lowering the hydrogen equilibrium pressure and increasing the hydrogen storage capacity. If the addition amount is 0.2 or more in atomic ratio, a remarkable effect can be seen in increasing the occlusion amount. But,
When added in an amount of 0.5 or more, the hydrogen in the alloy is stabilized due to a decrease in the hydrogen equilibrium pressure, and the hydrogen is hardly released, so that the hydrogen storage amount decreases. Therefore, it is desirable to be 0.2 or more and 0.5 or less.

【0013】Crは、活性化を容易にし、アルカリ電解
液中での耐食性を付与する。この効果が得るためには原
子比で0.1以上の添加が必要である。しかし、Crは
水素平衡圧を上昇させ、また、TiCr2相を形成する
ため、添加量が多いと水素吸蔵量が減少する。これを抑
制するためには、添加量を0.4以下にする必要があ
る。La、Ce等の希土類元素あるいはYを少量添加す
ることにより、さらに水素吸蔵量が増大する。これらの
元素は、脱酸剤となり、合金の不純な酸素を除去するた
めであると考えられる。これらの元素を第2相として析
出させ、母相にはほとんど含まれないようにすることに
より、母相の組成にはほとんど影響がなく、水素平衡圧
なども変化させずに水素吸蔵量のみを増大できる。これ
ら希土類元素および/またはYの添加量は、母合金に対
して3原子%(原子比で0.03)以上加えてもそれ以
上の効果の改善は認められない。
[0013] Cr facilitates activation and imparts corrosion resistance in an alkaline electrolyte. In order to obtain this effect, it is necessary to add 0.1 or more in atomic ratio. However, Cr increases the hydrogen equilibrium pressure and forms a TiCr 2 phase, so that a large amount of Cr decreases the hydrogen storage amount. In order to suppress this, the addition amount needs to be 0.4 or less. By adding a small amount of rare earth elements such as La and Ce or Y, the amount of hydrogen occlusion further increases. It is considered that these elements serve as a deoxidizing agent and remove impure oxygen in the alloy. By precipitating these elements as a second phase and making them hardly contained in the parent phase, the composition of the parent phase is hardly affected, and only the hydrogen storage amount without changing the hydrogen equilibrium pressure or the like. Can increase. Even if the addition amount of these rare earth elements and / or Y is 3 atomic% (atomic ratio 0.03) or more with respect to the mother alloy, no further improvement in the effect is recognized.

【0014】上記の元素以外にMn、Fe、Co、C
u、Nb、Zn、Zr、Mo、Ag、Hf、Ta、W、
Al、Si、C、N、P、Bを必要に応じて加えること
ができる。これらの元素は、その原子半径に応じて格子
サイズを変化させ、水素平衡圧を制御し、電極として利
用できる水素吸蔵量の増大を図るとともに、Mn、N
b、Mo、Ta、Alは水素吸蔵量の増大に、Fe、C
o、Cu、Zn、Zr、Ag、Hf、W、Si、N、
P、Bは電極活性の増大による放電容量やサイクル寿命
の増大にそれぞれ寄与する。これらの添加量は合計で原
子比0.2以下が好ましい。0.2を越えると、体心立
方構造以外の相が析出し、水素吸蔵量が減少する。V
は、体心立方構造を安定に存在させ、水素吸蔵量を増大
させるために必要な元素であり、その量は他の元素の量
により自動的に決定される。
In addition to the above elements, Mn, Fe, Co, C
u, Nb, Zn, Zr, Mo, Ag, Hf, Ta, W,
Al, Si, C, N, P, and B can be added as needed. These elements change the lattice size in accordance with the atomic radius, control the hydrogen equilibrium pressure, increase the amount of hydrogen occlusion that can be used as an electrode, and reduce Mn, N
b, Mo, Ta, and Al increase Fe, C
o, Cu, Zn, Zr, Ag, Hf, W, Si, N,
P and B respectively contribute to an increase in discharge capacity and cycle life due to an increase in electrode activity. The total amount of these additives is preferably 0.2 or less. If it exceeds 0.2, a phase other than the body-centered cubic structure is precipitated, and the hydrogen storage amount decreases. V
Is an element necessary for causing the body-centered cubic structure to exist stably and increasing the amount of hydrogen occlusion, and the amount is automatically determined by the amount of other elements.

【0015】以上に説明した水素吸蔵合金粒子の表面
に、TiNiに類似の体心立方構造を有する相を含むN
i拡散層を作製する方法よりも水素吸蔵量は減少する
が、結晶構造が体心立方構造である水素吸蔵合金に、単
にNiを加えるだけでもTiNiに類似の体心立方構造
を作製することが可能である。
[0015] The surface of the hydrogen storage alloy particles described above includes N containing a phase having a body-centered cubic structure similar to TiNi.
Although the amount of hydrogen storage is smaller than that of the method of forming the i-diffusion layer, it is possible to produce a body-centered cubic structure similar to TiNi by simply adding Ni to a hydrogen-absorbing alloy whose crystal structure is a body-centered cubic structure. It is possible.

【0016】TiNiに類似の体心立方構造を有する相
を含むNi拡散層に、LiおよびNaの少なくとも一方
の元素を作用させるために、電池内部にLiおよびNa
の少なくとも一方を存在させる方法としては、電解液
に、水酸化リチウムおよび水酸化ナトリウムの少なくと
も一方を存在させる方法がある。この場合、電解液の導
電率の観点から、電解液中の水酸化カリウムは70wt
%以上であり、電解液の比重が1.20〜1.40であ
ることが望ましい。TiNiに類似の体心立方構造を有
する相を含むNi拡散層に、LiおよびNaの少なくと
も一方の元素を作用させるために、合金粉末をLiやN
aを含むアルカリ水溶液で処理する方法がある。このと
きのアルカリ水溶液での処理温度は、80℃より低いと
効果が小さい。効果を十分に発揮させるためには80℃
以上であることが望ましい。
In order to allow at least one element of Li and Na to act on a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi, Li and Na are placed inside the battery.
Is a method in which at least one of lithium hydroxide and sodium hydroxide is present in the electrolytic solution. In this case, from the viewpoint of the conductivity of the electrolyte, the potassium hydroxide in the electrolyte is 70 wt.
% Or more, and the specific gravity of the electrolyte is desirably 1.20 to 1.40. In order to cause at least one element of Li and Na to act on a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi, an alloy powder such as Li or N
There is a method of treating with an alkaline aqueous solution containing a. At this time, if the treatment temperature with the aqueous alkali solution is lower than 80 ° C., the effect is small. 80 ° C for full effect
It is desirable that this is the case.

【0017】[0017]

【実施例】以下に本発明をその実施例によりさらに詳し
く説明する。合金の作製は、市販の原料を用い、アーク
溶解、Arガスアトマイズ法、ロール急冷法、回転電極
法等で行うことができる。合金は水素化粉砕を行った後
さらに機械粉砕を行い、所望の粒度に分級した。合金粒
径は40μm以下のものを用いた。
The present invention will be described in more detail with reference to the following examples. The production of the alloy can be performed by arc melting, an Ar gas atomizing method, a roll quenching method, a rotating electrode method, or the like, using a commercially available raw material. The alloy was subjected to mechanical pulverization after being subjected to hydrogenation pulverization, and classified to a desired particle size. The alloy having a particle size of 40 μm or less was used.

【0018】《実施例1》本実施例では、水素吸蔵合金
粒子のアルカリ処理について検討した。Ti0.30.53
Cr0.15La0.02の組成の合金をガスアトマイズ法で作
製した。この合金の所定の粒度に分級された粉末にNi
無電解めっき液を用いて、表面に10wt%のNiを付
与した後、600℃で3時間熱処理した。この合金粉末
100重量部を表1の組成のアルカリ水溶液200重量
部で1時間処理し、その後水洗、乾燥した。こうして得
た合金粉末に水を加えてペーストとし、これを多孔度9
5%、厚さ0.8mmの発泡状ニッケル多孔体に充填し
た。これを120℃で乾燥し、ローラープレスで加圧し
た後、切断して、幅3.5cm、長さ14.5cm、厚
さ0.50mmの水素吸蔵合金電極を得た。
Example 1 In this example, alkali treatment of hydrogen storage alloy particles was studied. Ti 0.3 V 0.53
An alloy having a composition of Cr 0.15 La 0.02 was produced by a gas atomizing method. Ni powder is added to the powder classified into a predetermined particle size of this alloy.
After applying 10 wt% Ni to the surface using an electroless plating solution, heat treatment was performed at 600 ° C. for 3 hours. 100 parts by weight of this alloy powder was treated with 200 parts by weight of an aqueous alkali solution having the composition shown in Table 1 for 1 hour, then washed with water and dried. Water is added to the alloy powder thus obtained to form a paste, which has a porosity of 9%.
The foamed nickel porous material having a thickness of 5% and a thickness of 0.8 mm was filled. This was dried at 120 ° C., pressed with a roller press, and then cut to obtain a hydrogen storage alloy electrode having a width of 3.5 cm, a length of 14.5 cm, and a thickness of 0.50 mm.

【0019】この水素吸蔵合金負極を、正極、およびセ
パレータと組み合わせて渦巻き状の電極群を構成し、4
/5Aサイズの電槽に収納し、比重1.30のKOH水
溶液を電解液として注入した後、電槽の開口部を封口板
およびガスケットにより密封して密閉型電池を作製し
た。正極は、幅3.5cm、長さ11cmの公知の発泡
式ニッケル電極であり、この正極にはリード板が接続さ
れ、そのリード板は正極端子に溶接された。セパレータ
は、親水性を付与したポリプロピレン不織布を用いた。
この電池は、正極容量規制で公称容量は1.6Ahであ
る。このようにして作製した電池を25℃において0.
1Cで15時間充電し、0、2Cで1Vまで放電する充
放電をした後、25℃において1Cで1時間充電し、1
Cで1Vまで放電する充放電を繰り返した。容量が初期
の60%を切るまでのサイクル数をもって寿命として表
1に示した。
A spiral electrode group is formed by combining the hydrogen storage alloy negative electrode with a positive electrode and a separator.
After storing in a / 5 A size battery case and injecting a KOH aqueous solution having a specific gravity of 1.30 as an electrolyte, the opening of the battery case was sealed with a sealing plate and a gasket to produce a sealed battery. The positive electrode was a known foamed nickel electrode having a width of 3.5 cm and a length of 11 cm. A lead plate was connected to the positive electrode, and the lead plate was welded to a positive electrode terminal. As the separator, a polypropylene nonwoven fabric provided with hydrophilicity was used.
This battery has a nominal capacity of 1.6 Ah due to positive electrode capacity regulation. The battery thus prepared was subjected to a 0.2
After charging and discharging at 1C for 15 hours and discharging at 0 and 2C to 1V, charging at 1C for 1 hour at 25 ° C.
The charge / discharge at C to 1 V was repeated. The number of cycles until the capacity falls below 60% of the initial value is shown in Table 1 as life.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、TiNiに類似
の体心立方構造を有する相を含むNi拡散層を有する水
素吸蔵合金を、NaやLiを含むアルカリ水溶液で熱処
理した合金粉末を用いた本発明による電池No.1−2
〜1−9は、比較例のNo.1−1に比べてサイクル寿
命に優れていることがわかる。アルカリ処理の温度に関
しては、表1の結果から、80℃以上でその効果が大き
いことがわかる。また、アルカリ水溶液で前処理するこ
とにより、電解液として導電率の高いものを用いること
ができるなどの利点がある。
As is clear from Table 1, the present invention uses an alloy powder obtained by heat-treating a hydrogen storage alloy having a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi with an alkaline aqueous solution containing Na or Li. According to the battery No. 1-2
Nos. To 1-9 are Nos. Of Comparative Examples. It turns out that it is excellent in cycle life compared with 1-1. As for the temperature of the alkali treatment, the results in Table 1 show that the effect is large at 80 ° C. or higher. In addition, pretreatment with an aqueous alkali solution has an advantage that an electrolyte having a high conductivity can be used.

【0022】《実施例2》本実施例では、電解液につい
て検討した。Ti0.30.53Cr0.15La0.02の組成の
合金をガスアトマイズ法で作製した。この合金の所定の
粒度に分級された粉末にNi無電解めっき液を用いて表
面に10wt%のNiを付与した後、600℃で3時間
熱処理した。電解液として表2に示したものを用いた以
外は、実施例1と同様にして、4/5Aサイズの密閉型
ニッケル水素蓄電池を作製した。このようにして作製し
た電池を実施例1と同様の条件で充放電試験を行った。
その結果を表2に示した。
Example 2 In this example, an electrolytic solution was studied. An alloy having a composition of Ti 0.3 V 0.53 Cr 0.15 La 0.02 was produced by a gas atomizing method. A 10% by weight Ni was applied to the surface of the powder of the alloy classified into a predetermined particle size using a Ni electroless plating solution, and then heat-treated at 600 ° C. for 3 hours. A sealed nickel-metal hydride storage battery of 4/5 A size was produced in the same manner as in Example 1 except that the electrolyte shown in Table 2 was used. The battery thus manufactured was subjected to a charge / discharge test under the same conditions as in Example 1.
The results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】LiおよびNaの少なくとも一方を電解液
に入れた場合についても、実施例1と同様にサイクル寿
命が向上している。これは、充放電の進行や時間の進行
とともに、合金表面のTiNiに類似の体心立方構造を
有する相を含むNi拡散層へLiやNaが作用したため
と考えられる。ただし、電解液中のLiOHやNaOH
はKOHに比べ導電率が低下するため、高率放電特性の
観点からKOHの量は70wt%以上であることが望ま
しく、同様に電解液の比重は1.20以上1.40以下
が好ましい。本実施例のようにLiおよびNaの少なく
とも一方を電解液に入れておくことは、工程上の操作が
簡便であるなどの利点がある。また、実施例1で用いた
合金粉末の段階で水酸化リチウムおよび水酸化ナトリウ
ムの少なくとも一方を含む水溶液で処理する方法と組み
合わせるのも有効である。
When at least one of Li and Na is put in the electrolytic solution, the cycle life is improved as in the first embodiment. This is presumably because Li and Na acted on the Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi on the alloy surface with the progress of charging and discharging and the progress of time. However, LiOH or NaOH in the electrolyte
Since the electric conductivity is lower than that of KOH, the amount of KOH is desirably 70 wt% or more from the viewpoint of high-rate discharge characteristics. Similarly, the specific gravity of the electrolytic solution is preferably 1.20 or more and 1.40 or less. Putting at least one of Li and Na in the electrolytic solution as in this embodiment has advantages such as easy operation in the process. It is also effective to combine with the method of treating with the aqueous solution containing at least one of lithium hydroxide and sodium hydroxide at the stage of the alloy powder used in Example 1.

【0025】《実施例3》本実施例では、合金組成につ
いて検討した。表3に示す各種組成の合金をそれぞれア
ーク溶解により作製した。No.3−35および3−3
5’に用いた合金以外は、Ni無電解めっき液を用いて
表面に10wt%のNiを付与した後、600℃で3時
間熱処理した。電解液として、KOH80wt%、Na
OH17wt%、およびLiOH3wt%を含む比重
1.31の電解液を用いた以外は、実施例1と同様にし
て、4/5Aサイズの密閉型ニッケル水素蓄電池No.
3−1〜3−35を作製した。比較例として、比重1.
31のKOH水溶液を用いた比較電池No.3−1’〜
3−35’も同様にして作製した。このようにして作製
した電池を実施例1と同様の条件で充放電試験を行っ
た。その結果を表3〜6に示した。
Example 3 In this example, the alloy composition was studied. Alloys having various compositions shown in Table 3 were produced by arc melting. No. 3-35 and 3-3
Except for the alloy used for 5 ′, 10 wt% of Ni was applied to the surface using a Ni electroless plating solution, and then heat treatment was performed at 600 ° C. for 3 hours. As electrolyte, KOH 80 wt%, Na
Except for using an electrolyte having a specific gravity of 1.31 containing 17 wt% of OH and 3 wt% of LiOH, the sealed nickel-metal hydride storage battery No. of 4/5 A size was manufactured in the same manner as in Example 1.
3-1 to 3-35 were produced. As a comparative example, specific gravity 1.
Comparative battery No. 31 using the KOH aqueous solution of No. 31 3-1'-
3-35 'was similarly produced. The battery thus manufactured was subjected to a charge / discharge test under the same conditions as in Example 1. The results are shown in Tables 3 to 6.

【0026】次に、これらの合金粉末0.1gにCu粉
末0.4gを混合し、ペレット状に加圧成形して負極を
作製した。この負極の対極に、過剰の電気容量を有する
酸化ニッケル電極を配し、比重1.30のKOH水溶液
からなる電解液が豊富な条件下で、水素吸蔵合金負極で
容量規制をし、開放系で充放電を行った。充電は水素吸
蔵合金1gあたり100mAで1サイクル目は8時間、
2サイクル目以降は5.5時間行い、放電は合金1gあ
たり50mAで端子電圧が0.8Vまでとして充放電サ
イクルを繰り返し、その最大放電容量を表3〜6に示し
た。表中Lは特に説明のない限りLaを用いた。Mmは
ミッシュメタルを表す。
Next, 0.4 g of Cu powder was mixed with 0.1 g of the alloy powder, and the mixture was pressed into a pellet to form a negative electrode. A nickel oxide electrode having an excessive electric capacity is arranged at a counter electrode of the negative electrode, and the capacity is regulated by the hydrogen storage alloy negative electrode under the condition that the electrolytic solution composed of a KOH aqueous solution having a specific gravity of 1.30 is abundant. Charge and discharge were performed. Charging is 100 mA per 1 g of hydrogen storage alloy, and the first cycle is 8 hours,
The second and subsequent cycles were performed for 5.5 hours. The discharge was repeated at a charge current of 50 mA per gram of alloy and the terminal voltage was increased to 0.8 V. The maximum discharge capacity was shown in Tables 3 to 6. In the table, L was used unless otherwise specified. Mm represents misch metal.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】表3〜6より、結晶構造が体心立方構造で
ある種々の組成の水素吸蔵合金についても、TiNiに
類似の体心立方構造を有する相を含むNi拡散層に、L
iやNaが作用することにより、サイクル寿命が向上す
ることがわかる。ただし、TiNiに類似の体心立方構
造を有する相を持たないNo.3−34については、充
放電サイクルを行う以前に、電池の容量がでなかった。
これは母相にTiを含有しないため、電気化学的に活性
なTiNiに類似の体心立方構造を有する相を持たず、
負極として働かないためである。また、No.3−35
と3−35’の比較より、合金内部にNiを含む組成に
ついても、LiやNaを作用させることにより、サイク
ル特性は向上する。ただし、この場合、めっきと熱処理
を利用したNo.3−1〜3−33よりもサイクル寿命
は低下している。これは、TiNiに類似の体心立方構
造を有する相を含むNi拡散層の、LiやNaを含む電
解液と接する面積の違いに由来すると考えられる。すな
わち、めっきと熱処理を施すことにより、合金粒子表面
すべてに本発明の効果が現れると考えられる。
As shown in Tables 3 to 6, the hydrogen-absorbing alloys of various compositions having a crystal structure of a body-centered cubic structure also have an L diffusion layer containing a phase having a body-centered cubic structure similar to TiNi.
It can be seen that the cycle life is improved by the action of i and Na. However, No. having no phase having a body-centered cubic structure similar to TiNi. For 3-34, the capacity of the battery was not sufficient before performing the charge / discharge cycle.
Since this does not contain Ti in the parent phase, it does not have a phase having a body-centered cubic structure similar to electrochemically active TiNi,
This is because it does not work as a negative electrode. In addition, No. 3-35
From the comparison between No. and 3-35 ', the cycle characteristics of a composition containing Ni inside the alloy are also improved by allowing Li or Na to act. However, in this case, No. 1 using plating and heat treatment was used. The cycle life is shorter than 3-1 to 3-33. This is thought to be due to the difference in the area of the Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi in contact with the electrolyte containing Li or Na. That is, it is considered that the effect of the present invention appears on the entire alloy particle surface by performing plating and heat treatment.

【0032】表3〜6から明らかなように、式V
1-a-b-c-dTiaCrbcd(MはMn、Fe、Co、
Cu、Nb、Zn、Zr、Mo、Ag、Hf、Ta、
W、Al、Si、C、N、P、およびBからなる群より
選ばれる少なくとも1種の元素、Lは希土類元素および
Yからなる群より選ばれた少なくとも1種の元素、0.
2≦a≦0.5、0.1≦b≦0.4、0≦c≦0.
2、0<d≦0.03)で表される水素吸蔵合金粒子か
らなり、表面にTiNiに類似の体心立方構造を有する
相を含むNi拡散層を有する合金粒子に、LiおよびN
aの少なくとも一方を作用させた場合、特に効果が大き
い。
As is apparent from Tables 3 to 6, the formula V
1-abcd Ti a Cr b M c L d (M is Mn, Fe, Co,
Cu, Nb, Zn, Zr, Mo, Ag, Hf, Ta,
At least one element selected from the group consisting of W, Al, Si, C, N, P, and B; L is at least one element selected from the group consisting of rare earth elements and Y;
2 ≦ a ≦ 0.5, 0.1 ≦ b ≦ 0.4, 0 ≦ c ≦ 0.
2, 0 <d ≦ 0.03), alloy particles having a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi on the surface,
When at least one of a is applied, the effect is particularly large.

【0033】《実施例4》本実施例では、合金粒子表面
へのNiの付着方法について検討した。Ti0.30.53
Cr0.15La0.02の組成の合金をガスアトマイズ法で作
製した。この合金の所定の粒度に分級された粉末に、表
7に示す各種の方法でNiを表面に付与した。これらの
合金粉末を用いて実施例1と同様にして、4/5Aサイ
ズの密閉型ニッケル水素蓄電池を作製した。このように
して作製した電池を実施例1と同様の条件で充放電試験
を行った。その結果を表7に示した。電解液には、N
o.4−1〜4−7まではKOH80wt%、NaOH
17wt%、およびLiOH3wt%を含む比重1.3
1の電解液を、No.4−1’〜4−7’までは比重
1.30のKOH電解液を用いた。
Example 4 In this example, a method of adhering Ni to the surface of alloy particles was examined. Ti 0.3 V 0.53
An alloy having a composition of Cr 0.15 La 0.02 was produced by a gas atomizing method. Ni was applied to the surface of the powder of the alloy classified into a predetermined particle size by various methods shown in Table 7. Using these alloy powders, a sealed nickel-metal hydride battery having a size of 4/5 A was produced in the same manner as in Example 1. The battery thus manufactured was subjected to a charge / discharge test under the same conditions as in Example 1. Table 7 shows the results. The electrolyte contains N
o. 4-1 to 4-7: KOH 80 wt%, NaOH
Specific gravity 1.3 including 17 wt% and 3 wt% of LiOH
No. 1 electrolyte solution From 4-1 'to 4-7', a KOH electrolyte having a specific gravity of 1.30 was used.

【0034】次に、本実施例の合金粉末0.1gにCu
粉末0.4gを混合し、ペレット状に加圧成形して負極
を作製した。この負極の対極に、過剰の電気容量を有す
る酸化ニッケル電極を配し、比重1.30のKOH水溶
液からなる電解液が豊富な条件下で水素吸蔵合金負極で
容量規制をした開放系で充放電を行った。充電は水素吸
蔵合金1gあたり100mAで1サイクル目は8時間、
2サイクル目以降は5.5時間行い、放電は合金1gあ
たり50mAで端子電圧が0.8Vまでとして充放電サ
イクルを繰り返し、その最大放電容量を表4に示した。
Next, Cu was added to 0.1 g of the alloy powder of this embodiment.
0.4 g of the powder was mixed and pressed into a pellet to prepare a negative electrode. A nickel oxide electrode having an excess electric capacity is arranged at the counter electrode of this negative electrode, and charge and discharge are performed in an open system in which the capacity is regulated by the hydrogen storage alloy negative electrode under the condition that the electrolytic solution composed of a KOH aqueous solution having a specific gravity of 1.30 is abundant. Was done. Charging is 100 mA per 1 g of hydrogen storage alloy, and the first cycle is 8 hours,
The second and subsequent cycles were performed for 5.5 hours. The discharge was repeated at a charge current of 50 mA per gram of alloy and the terminal voltage was increased to 0.8 V. The maximum discharge capacity was shown in Table 4.

【0035】[0035]

【表7】 [Table 7]

【0036】表7から明らかなように、表面にNiを付
与したのみでは高い放電容量は得られないが、これに熱
処理や機械的な力を加えて合金化することにより、高い
放電容量が得られ、かつ電解液にLiおよびNaの少な
くとも一方を存在させることで、サイクル特性が向上し
た。
As is clear from Table 7, a high discharge capacity cannot be obtained only by adding Ni to the surface, but a high discharge capacity can be obtained by alloying with heat treatment or mechanical force. And the presence of at least one of Li and Na in the electrolyte improved cycle characteristics.

【0037】表面にNiを付与する方法としては、めっ
きと粉末の混合ではめっきの方がより緻密に合金表面を
覆うため、よい特性が得られた。熱処理では400℃で
はほとんどNiの拡散が進まないため放電容量が低く、
また、800℃では拡散が進みすぎ、Niの拡散層の構
造がTi2Niと同じ結晶構造となるために放電容量が
低下した。600℃付近で最も優れた特性が得られた。
ボールミルによるメカニカルアロイングでも高い放電容
量が得られたが、合金の結晶性が低下するため、熱処理
に比べると放電容量が若干低下した。
As a method of adding Ni to the surface, when the plating and the powder were mixed, the plating covered the alloy surface more densely, so that good characteristics were obtained. In the heat treatment, the diffusion capacity of Ni hardly progresses at 400 ° C., so that the discharge capacity is low.
At 800 ° C., the diffusion was excessive, and the discharge capacity was reduced because the structure of the Ni diffusion layer had the same crystal structure as Ti 2 Ni. The best characteristics were obtained at around 600 ° C.
Although a high discharge capacity was obtained by mechanical alloying using a ball mill, the crystallinity of the alloy was reduced, and the discharge capacity was slightly reduced as compared with the heat treatment.

【0038】[0038]

【発明の効果】以上のように本発明によれば、体心立方
構造を有する水素吸蔵合金を用いた放電容量の大きな密
閉型ニッケル水素蓄電池に、優れたサイクル特性を与え
る。
As described above, according to the present invention, excellent cycle characteristics are provided to a sealed nickel-metal hydride storage battery having a large discharge capacity using a hydrogen storage alloy having a body-centered cubic structure.

フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 嘉山 美穂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H003 AA02 AA04 BA01 BB02 BC01 BD01 5H016 AA02 BB01 BB11 EE01 HH01 5H028 AA06 EE01 FF04 HH02 HH03 HH08 Continuing from the front page (72) Inventor Yoichiro Tsuji 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. ) 5H003 AA02 AA04 BA01 BB02 BC01 BD01 5H016 AA02 BB01 BB11 EE01 HH01 5H028 AA06 EE01 FF04 HH02 HH03 HH08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粒子からなる負極を具備
し、前記合金粒子が、体心立方構造を有する水素吸蔵合
金粒子であって、その表面の少なくとも一部に、TiN
iに類似の体心立方構造を有する相を含むNi拡散層を
持ち、かつ電池内にLiおよびNaの少なくとも一方の
元素を含むことを特徴とする密閉型ニッケル水素蓄電
池。
1. A negative electrode comprising hydrogen storage alloy particles, wherein said alloy particles are hydrogen storage alloy particles having a body-centered cubic structure, and at least a part of the surface thereof has TiN
A sealed nickel-metal hydride storage battery comprising: a Ni diffusion layer containing a phase having a body-centered cubic structure similar to i; and at least one element of Li and Na in the battery.
【請求項2】 前記LiおよびNaの少なくとも一方の
元素が、前記Ni拡散層に含まれている請求項1記載の
密閉型ニッケル水素蓄電池。
2. The sealed nickel-metal hydride storage battery according to claim 1, wherein at least one element of Li and Na is contained in the Ni diffusion layer.
【請求項3】 前記LiおよびNaの少なくとも一方の
元素が、電解液内に水酸化リチウムまたは水酸化ナトリ
ウムとして含まれている請求項1記載の密閉型ニッケル
水素蓄電池。
3. The sealed nickel-metal hydride battery according to claim 1, wherein at least one of Li and Na is contained in the electrolyte as lithium hydroxide or sodium hydroxide.
【請求項4】 前記体心立方構造を有する水素吸蔵合金
が、式V1-a-b-c-dTiaCrbcd(MはMn、F
e、Co、Cu、Nb、Zn、Zr、Mo、Ag、H
f、Ta、W、Al、Si、C、N、P、およびBから
なる群より選ばれる少なくとも1種の元素、Lは希土類
元素およびYからなる群より選ばれた少なくとも1種の
元素、0.2≦a≦0.5、0.1≦b≦0.4、0≦
c≦0.2、0<d≦0.03)で表される合金である
請求項1、2または3記載の密閉型ニッケル水素蓄電
池。
4. A hydrogen-absorbing alloy having the body-centered cubic structure, formula V 1-abcd Ti a Cr b M c L d (M is Mn, F
e, Co, Cu, Nb, Zn, Zr, Mo, Ag, H
f, at least one element selected from the group consisting of Ta, W, Al, Si, C, N, P, and B; L is at least one element selected from the group consisting of rare earth elements and Y; .2 ≦ a ≦ 0.5, 0.1 ≦ b ≦ 0.4, 0 ≦
The sealed nickel-metal hydride storage battery according to claim 1, 2 or 3, which is an alloy represented by c ≦ 0.2, 0 <d ≦ 0.03).
【請求項5】 前記電解液が、水酸化リチウムおよび水
酸化ナトリウムの少なくとも一方と水酸化カリウムを含
み、水酸化カリウム濃度が70wt%以上であり、かつ
電解液の比重が1.20〜1.40である請求項3記載
の密閉型ニッケル水素蓄電池。
5. The electrolytic solution contains at least one of lithium hydroxide and sodium hydroxide and potassium hydroxide, the concentration of potassium hydroxide is 70% by weight or more, and the specific gravity of the electrolytic solution is 1.20 to 1. The sealed nickel-metal hydride storage battery according to claim 3, wherein the number is 40.
【請求項6】 前記体心立方構造を有する水素吸蔵合金
粒子にNiめっきするかNi粉末を混合して前記合金粒
子表面にNiを付着させた後、熱処理することにより前
記Ni拡散層を形成する工程を有する請求項1、2また
は3記載の密閉型ニッケル水素蓄電池用水素吸蔵合金電
極の製造方法。
6. The Ni diffusion layer is formed by applying Ni plating or mixing Ni powder to the hydrogen storage alloy particles having the body-centered cubic structure and attaching Ni to the surface of the alloy particles, followed by heat treatment. The method for producing a hydrogen-absorbing alloy electrode for a sealed nickel-metal hydride battery according to claim 1, wherein the method comprises a step.
【請求項7】 前記熱処理を不活性ガス中もしくは真空
中において500〜700℃の温度で行う請求項6記載
の密閉型ニッケル水素蓄電池用水素吸蔵合金電極の製造
方法。
7. The method for producing a hydrogen storage alloy electrode for a sealed nickel-metal hydride storage battery according to claim 6, wherein the heat treatment is performed in an inert gas or in a vacuum at a temperature of 500 to 700 ° C.
【請求項8】 体心立方構造を有し、表面の少なくとも
一部に、TiNiに類似の体心立方構造を有する相を含
むNi拡散層を持つ水素吸蔵合金粒子を、少なくとも水
酸化リチウムおよび水酸化ナトリウムの少なくとも一方
を含むアルカリ水溶液で熱処理することにより、リチウ
ムおよびナトリウムの少なくとも一方の元素をNi拡散
層に含む水素吸蔵合金粒子を得る工程を有する請求項2
記載の密閉型ニッケル水素蓄電池用水素吸蔵合金電極の
製造方法。
8. Hydrogen storage alloy particles having a body-centered cubic structure and having, on at least a part of the surface thereof, a Ni diffusion layer containing a phase having a body-centered cubic structure similar to TiNi, at least lithium hydroxide and water 3. A step of obtaining hydrogen storage alloy particles containing at least one element of lithium and sodium in a Ni diffusion layer by heat treatment with an aqueous alkali solution containing at least one of sodium oxide.
A method for producing a hydrogen-absorbing alloy electrode for a sealed nickel-metal hydride battery according to the above.
【請求項9】 前記アルカリ水溶液での熱処理温度が8
0℃以上である請求項8記載の密閉型ニッケル水素蓄電
池用水素吸蔵合金電極の製造方法。
9. The heat treatment temperature of said alkaline aqueous solution is 8
The method for producing a hydrogen-absorbing alloy electrode for a sealed nickel-metal hydride battery according to claim 8, wherein the temperature is 0 ° C or higher.
JP2000001754A 2000-01-07 2000-01-07 Sealed nickel-hydrogen battery and manufacturing method therefor Withdrawn JP2001196092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001754A JP2001196092A (en) 2000-01-07 2000-01-07 Sealed nickel-hydrogen battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001754A JP2001196092A (en) 2000-01-07 2000-01-07 Sealed nickel-hydrogen battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001196092A true JP2001196092A (en) 2001-07-19

Family

ID=18530946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001754A Withdrawn JP2001196092A (en) 2000-01-07 2000-01-07 Sealed nickel-hydrogen battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001196092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310605A (en) * 2004-04-23 2005-11-04 Yuasa Corp Hydrogen storage alloy electrode and its manufacturing method, and nickel hydrogen storage battery
CN111463503A (en) * 2020-03-20 2020-07-28 山东合泰新能源有限公司 Electrolyte for secondary zinc-nickel battery and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310605A (en) * 2004-04-23 2005-11-04 Yuasa Corp Hydrogen storage alloy electrode and its manufacturing method, and nickel hydrogen storage battery
CN111463503A (en) * 2020-03-20 2020-07-28 山东合泰新能源有限公司 Electrolyte for secondary zinc-nickel battery and preparation method thereof
CN111463503B (en) * 2020-03-20 2021-06-22 山东合泰新能源有限公司 Electrolyte for secondary zinc-nickel battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2000357508A (en) Hydrogen storage alloy electrode and its manufacture
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2001196092A (en) Sealed nickel-hydrogen battery and manufacturing method therefor
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3454615B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3189361B2 (en) Alkaline storage battery
JPH03245460A (en) Hydrogen storage alloy electrode, its manufacture and sealed alkaline storage battery using the electrode
JP3198896B2 (en) Nickel-metal hydride battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH08333603A (en) Hydrogen storage alloy particle and its production
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071130