JP2000149956A - Hydride secondary battery - Google Patents

Hydride secondary battery

Info

Publication number
JP2000149956A
JP2000149956A JP10319482A JP31948298A JP2000149956A JP 2000149956 A JP2000149956 A JP 2000149956A JP 10319482 A JP10319482 A JP 10319482A JP 31948298 A JP31948298 A JP 31948298A JP 2000149956 A JP2000149956 A JP 2000149956A
Authority
JP
Japan
Prior art keywords
species
zinc
negative electrode
secondary battery
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10319482A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukunaga
浩 福永
Hiroaki Ono
博昭 小野
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10319482A priority Critical patent/JP2000149956A/en
Publication of JP2000149956A publication Critical patent/JP2000149956A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydride secondary battery having a high utilization factor and excellent in a storage characteristic. SOLUTION: At least, one kind of metal species selected from the group comprising molybdic acid, chromium species and tungsten species, and zinc species are contained in a negative electrode 2, in a hydride secondary battery having a positive elctrode 1 with nickel hydroxide serving as a positive active material, the negative electrode 2 with a hydrogen storage alloy serving as a negative active material, an electrolyte comprising an aqueous alkaline solution and a separator 3. A compound such as an oxide, a chloride and a complex is used as the metal species and the zinc species, instead of metal and zinc themselves. A content of the zinc species in the negative electrode 2 is preferably 0.1-5 pts.wt. in terms of zinc oxide per 100 pts.wt. the hydrogen storage alloy, and a content of the metal species is preferably 10-90 wt.% with respect to the content of the zinc species.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素化物二次電池
に関し、さらに詳しくは、正極活物質の利用率が高く、
かつ貯蔵特性が優れた水素化物二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride secondary battery, and more particularly to a hydride secondary battery having a high utilization rate of a positive electrode active material,
The present invention also relates to a hydride secondary battery having excellent storage characteristics.

【0002】[0002]

【従来の技術】水素化物二次電池は、水酸化ニッケルを
正極活物質として用い、アルカリ水溶液中で電気化学的
に水素を吸蔵・放出する能力を有するLaNi5系やT
i−Ni系などの水素吸蔵合金を負極活物質として用い
ていて、水酸化カリウム(KOH)、水酸化リチウム
(LiOH)、水酸化ナトリウム(NaOH)などを主
成分とするアルカリ水溶液中で、正極および負極が、下
記の式に示す電池反応を生じる。なお、負極の反応式
中、Mは水素吸蔵合金である。
2. Description of the Related Art A hydride secondary battery uses a nickel hydroxide as a positive electrode active material, and has a LaNi5 type or T type having the ability to electrochemically store and release hydrogen in an alkaline aqueous solution.
A hydrogen storage alloy such as i-Ni is used as a negative electrode active material, and a positive electrode is prepared in an alkaline aqueous solution containing potassium hydroxide (KOH), lithium hydroxide (LiOH), sodium hydroxide (NaOH) or the like as a main component. And the negative electrode cause a battery reaction represented by the following formula. In the reaction formula of the negative electrode, M is a hydrogen storage alloy.

【0003】 [0003]

【0004】 [0004]

【0005】正極および負極の反応式において、充電で
は、反応は右に進み、負極の水素吸蔵合金Mは電解液中
の水を電気分解して、水素を吸蔵してM(H)で示す状
態になり、水酸基(OH- )を生じ、この水酸基(OH
- )と正極のNi(OH)とが反応して、NiOOHと
なり、水を生じる。また、放電の場合は、反応は左方向
に進み、上記と逆の反応になる。つまり、負極では充電
で水素吸蔵合金による水素の吸蔵が起こり、放電で水素
の放出が生じる。
In the reaction formula of the positive electrode and the negative electrode, in charging, the reaction proceeds to the right, and the hydrogen storage alloy M of the negative electrode electrolyzes water in the electrolytic solution, stores hydrogen, and is represented by M (H). And a hydroxyl group (OH ) is generated.
- ) Reacts with Ni (OH) of the positive electrode to form NiOOH, generating water. In the case of electric discharge, the reaction proceeds to the left, which is the reverse of the above. That is, in the negative electrode, hydrogen is absorbed by the hydrogen storage alloy during charging, and hydrogen is released during discharging.

【0006】上記水素化物二次電池における正極は、一
般にニッケル電極と呼ばれ、該ニッケル電極としては、
従来からの焼結式ニッケル電極に代えて、最近は特開平
1−227363号公報などに開示のように、空孔率が
95%以上、孔径が数μm〜100μm程度の導電性多
孔基材を用い、これに水酸化ニッケルを主材とする活物
質含有ぺーストを担持させた、いわゆるペースト式ニッ
ケル電極が、高容量でかつ低価格であることから、多用
されるようになってきた。
[0006] The positive electrode in the above-mentioned hydride secondary battery is generally called a nickel electrode.
Instead of a conventional sintered nickel electrode, a conductive porous substrate having a porosity of 95% or more and a pore size of about several μm to 100 μm has recently been disclosed as disclosed in Japanese Patent Application Laid-Open No. 1-227363. A so-called paste-type nickel electrode, which is used and carries an active material-containing paste mainly composed of nickel hydroxide, has been widely used because of its high capacity and low price.

【0007】また、負極は一般に水素吸蔵合金電極と呼
ばれ、この水素吸蔵合金電極に関しても、最近は、厚み
0.5〜0.1mmの鋼板を穿孔しニッケルメッキを施
した導電性多孔基材に用い、これに水素吸蔵合金を主材
とする活物質含有ぺーストを担持させた、いわゆるペー
スト式水素吸蔵合金電極が多用されるようになってき
た。
[0007] The negative electrode is generally called a hydrogen storage alloy electrode. Recently, a nickel-plated conductive porous substrate formed by perforating a steel plate having a thickness of 0.5 to 0.1 mm is also used for the hydrogen storage alloy electrode. And a so-called paste-type hydrogen storage alloy electrode in which an active material-containing paste mainly composed of a hydrogen storage alloy is supported.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ペースト式ニッケル電極は、焼結式ニッケル電極に比べ
て、基材の孔径が大きいため、集電体となる基材の骨格
部分と活物質との間の距離が長くなり、そのため、活物
質の利用率や負荷特性が悪いという問題があった。そこ
で、正極中にコバルト粉末またはコバルト化合物粉末な
どの導電助剤を加え、水酸化ニッケルの表面にコバルト
の導電性ネットワークを形成させることによって、利用
率や負荷特性を改善することが提案されている(「湯浅
時報」、No.65、第28頁(1988年)、「電気
化学」Vol54、No.2(1986)など)。
However, since the paste-type nickel electrode has a larger pore diameter of the base material than the sintered nickel electrode, the skeleton portion of the base material serving as a current collector and the active material are not used. However, there is a problem that the utilization rate of the active material and the load characteristics are poor. Therefore, it has been proposed to add a conductive aid such as cobalt powder or a cobalt compound powder into the positive electrode to form a conductive network of cobalt on the surface of nickel hydroxide, thereby improving utilization and load characteristics. ("Yuasa Tokiho", No. 65, page 28 (1988), "Electrochemistry" Vol 54, No. 2 (1986), etc.).

【0009】ところが、ぺースト式ニッケル電極は、焼
結式ニッケル電極に比べて、対極の水素吸蔵合金電極か
ら溶出してくる金属の影響を受けやすく、特に上記のよ
うにコバルト粉末やコバルト化合物粉末を含有させてい
る場合には、水素吸蔵合金電極から溶出してくる金属イ
オンが上記コバルトの導電性ネットワークを破壊するた
め、正極活物質の利用率が低下するという問題があっ
た。
However, the paste type nickel electrode is more susceptible to the metal eluted from the counter electrode hydrogen storage alloy electrode than the sintered type nickel electrode. In the case of containing, there is a problem that the metal ion eluted from the hydrogen storage alloy electrode destroys the above-mentioned conductive network of cobalt, so that the utilization rate of the positive electrode active material is reduced.

【0010】また、最近の水素化物二次電池の負極活物
質として使用されている水素吸蔵合金は、高容量化を図
るため、MmNi5 合金系のNiの一部をCo、Mn、
Alなどで置換した多元化合金が使用されているが、こ
れらの添加金属が充放電サイクルに伴いアルカリ電解液
中で腐食し、電解液中に溶出したり、正極表面に析出し
て貯蔵特性を低下させるという問題があった。そこで、
それらの添加金属の電解液中への溶出や正極表面への析
出を防止するため、電極作製前に合金をあらかじめアル
カリ溶液で高温長時間処理する方法などが提案されてい
るが、それによって製造工程が煩雑になり、またコスト
が増加するとともに、処理液の廃棄などで問題を生じる
ことにもなった。
In order to increase the capacity of a hydrogen storage alloy used as a negative electrode active material of recent hydride secondary batteries, a part of Ni of the MmNi 5 alloy is replaced with Co, Mn,
Multi-element alloys substituted with Al etc. are used, but these added metals corrode in the alkaline electrolyte during the charge / discharge cycle and elute in the electrolyte or precipitate on the positive electrode surface to improve storage characteristics. There was a problem of lowering. Therefore,
In order to prevent the dissolution of these added metals into the electrolyte and the deposition on the surface of the positive electrode, there has been proposed a method in which the alloy is preliminarily treated with an alkaline solution at a high temperature for a long time before producing the electrode. And the cost increases, and also a problem arises in disposal of the processing solution.

【0011】本発明は、上記のような従来の水素化物二
次電池における問題点を解決し、正極活物質の利用率が
高く、かつ貯蔵特性が優れた水素化物二次電池を提供す
ることを目的とする。
The present invention solves the above-mentioned problems in the conventional hydride secondary battery and provides a hydride secondary battery having a high utilization rate of the positive electrode active material and excellent storage characteristics. Aim.

【0012】[0012]

【課題を解決するための手段】本発明は、水酸化ニッケ
ルを正極活物質とする正極と水素吸蔵合金を負極活物質
とする負極とアルカリ水溶液よりなる電解液とセパレー
タを有する水素化物二次電池において、負極中にモリブ
デン種、クロム種およびタングステン種よりなる群から
選ばれる少なくとも1種類以上の金属種と亜鉛種とを含
有させることによって、正極活物質の利用率が高く、か
つ貯蔵特性が優れた水素化物二次電池が得られるように
したものである。
SUMMARY OF THE INVENTION The present invention provides a hydride secondary battery having a positive electrode using nickel hydroxide as a positive electrode active material, a negative electrode using a hydrogen storage alloy as a negative electrode active material, an electrolytic solution comprising an aqueous alkaline solution, and a separator. In the negative electrode, by containing at least one metal species selected from the group consisting of molybdenum species, chromium species and tungsten species and zinc species, the utilization rate of the positive electrode active material is high, and the storage characteristics are excellent Thus, a hydride secondary battery can be obtained.

【0013】[0013]

【発明の実施の形態】本発明においては、負極中にモリ
ブデン種、クロム種およびタングステン種よりなる群か
ら選ばれる少なくとも1種類以上の金属種と亜鉛種とを
含有させるが、まず、亜鉛種について先に説明すると、
本発明において、負極中に含有させる亜鉛種としては、
例えば、金属亜鉛のほか、亜鉛の酸化物、塩化物、錯体
などの形態の化合物が挙げられる。この亜鉛種の負極中
での含有量(負極中への添加量)としては、特に限定さ
れるものでないが、水素吸蔵合金100重量部に対して
酸化亜鉛換算で0.1〜5重量部が好ましい。この亜鉛
種の負極中での含有量を上記のように0.1重量部以上
にすることにより、貯蔵中の水素吸蔵合金の腐食の低減
効果が顕著になり、また、5重量部以下にすることによ
り、水素吸蔵合金の水素の吸蔵・放出を良好に保つこと
ができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, at least one metal selected from the group consisting of molybdenum, chromium, and tungsten and zinc are contained in a negative electrode. Explaining first,
In the present invention, as the zinc species contained in the negative electrode,
For example, in addition to zinc metal, compounds in the form of zinc oxide, chloride, complex, and the like can be mentioned. The content of this zinc species in the negative electrode (the amount added to the negative electrode) is not particularly limited, but is 0.1 to 5 parts by weight in terms of zinc oxide with respect to 100 parts by weight of the hydrogen storage alloy. preferable. By making the content of the zinc species in the negative electrode 0.1 part by weight or more as described above, the effect of reducing the corrosion of the hydrogen storage alloy during storage becomes remarkable, and 5 parts by weight or less. Thereby, the hydrogen storage / release of the hydrogen storage alloy can be favorably maintained.

【0014】また、本発明において、負極中に含有させ
るモリブデン種、クロム種、タングステン種としては、
それらの金属のほか、酸化物、塩化物、錯体などの形態
の化合物が挙げられる。これら金属種の負極中での含有
量(負極中への添加量)としては、特に限定されるもの
ではないが、それぞれの金属換算で亜鉛種より少量にす
ることが好ましい。すなわち、負極中の亜鉛は2価のイ
オン状態で存在するが、上記金属種の価数は負極中で種
々に変化するため、亜鉛と化合物を形成する際に、亜鉛
種より少量で効果を発現することが好ましく、具体的に
は亜鉛種の負極中の含有量(ただし、酸化亜鉛換算)に
対して、重量基準で10〜90%、特に30〜80%が
好ましい。
In the present invention, the molybdenum species, chromium species, and tungsten species contained in the negative electrode include:
In addition to these metals, compounds in the form of oxides, chlorides, complexes and the like can be mentioned. The content of these metal species in the negative electrode (the amount added to the negative electrode) is not particularly limited, but is preferably smaller than the zinc species in terms of each metal. That is, zinc in the negative electrode exists in a divalent ionic state, but the valence of the metal species varies in the negative electrode. Therefore, when forming a compound with zinc, the effect is exhibited with a smaller amount than the zinc species. More specifically, the content is preferably 10 to 90%, more preferably 30 to 80% by weight based on the content of zinc species in the negative electrode (in terms of zinc oxide).

【0015】本発明において、上記モリブデン種、クロ
ム種およびタングステン種よりなる群から選ばれる少な
くとも1種類以上の金属種と亜鉛種とを負極中に含有さ
せることにより、正極活物質の利用率を向上させること
ができるとともに貯蔵特性を向上させることができる理
由については、現在のところ必ずしも明確ではないが、
以下のように考えられる。まず、負極中に亜鉛のみを含
有させると、亜鉛が電解液中に溶解してしまうため、水
素吸蔵合金からの添加金属の溶出を抑制する効果が充分
に得られず、また亜鉛自身も電解液中に溶解して正極表
面に析出するため、正極中のコバルトの導電性ネットワ
ークを破壊し、利用率を低下させ、かつ貯蔵特性も低下
させるが、上記モリブデン種、クロム種、タングステン
種などの金属種を負極中に含有させていると、水素吸蔵
合金の表面に亜鉛とこれらの金属とが複雑な化合物を形
成し、それによって水素吸蔵合金中の添加金属の電解液
中への溶出を抑制できるとともに、亜鉛自身の溶解も低
減できるようになることによるものと考えられる。
In the present invention, the utilization rate of the positive electrode active material is improved by including at least one metal species selected from the group consisting of molybdenum, chromium and tungsten in the negative electrode and zinc. It is not always clear at this time why this can be done and the storage properties can be improved,
It is considered as follows. First, when only zinc is contained in the negative electrode, zinc dissolves in the electrolytic solution, so that the effect of suppressing the elution of the added metal from the hydrogen storage alloy cannot be sufficiently obtained. It dissolves in and precipitates on the surface of the positive electrode, destroying the conductive network of cobalt in the positive electrode, lowering the utilization factor and lowering the storage characteristics, but the above molybdenum, chromium, tungsten and other metals When the seed is contained in the negative electrode, zinc and these metals form a complex compound on the surface of the hydrogen storage alloy, thereby suppressing the elution of the added metal in the hydrogen storage alloy into the electrolytic solution. In addition, it is considered that the dissolution of zinc itself can be reduced.

【0016】本発明において、正極は、例えば、水酸化
ニッケル粉末と導電助剤を水の存在下でカルボキシメチ
ルセルロース、ポリテトラフルオロエチレン、スチレン
ブタジエンラバーなどのバインダーと混練してぺースト
を調製し、このペーストをニッケル発泡体などの導電性
多孔基材に担持させ、乾燥し、圧縮成形することにより
シート状に作製される。その際、上記導電助剤として
は、平均粒径1〜10μmのコバルト金属粉末またはコ
バルト化合物粉末が好ましく、該コバルト化合物粉末と
しては、酸化コバルト粉末、水酸化コバルト粉末などが
挙げられる。また、他の導電助剤として平均粒径3μm
以下のニッケル粉末を併用することもできる。
In the present invention, for example, a paste is prepared by kneading nickel hydroxide powder and a conductive additive with a binder such as carboxymethylcellulose, polytetrafluoroethylene, or styrene-butadiene rubber in the presence of water. This paste is supported on a conductive porous substrate such as a nickel foam, dried, and compression-molded to form a sheet. In this case, the conductive assistant is preferably a cobalt metal powder or a cobalt compound powder having an average particle size of 1 to 10 μm, and examples of the cobalt compound powder include a cobalt oxide powder and a cobalt hydroxide powder. Further, as another conductive aid, the average particle diameter is 3 μm.
The following nickel powder can be used in combination.

【0017】本発明において、正極は、上記圧縮成形
後、アルカリ水溶液中に40〜100℃で5〜120分
間浸漬した後、アルカリ水溶液が付着した状態で40〜
100℃で5〜120分間乾燥し、水洗、乾燥すること
が好ましい。
In the present invention, the positive electrode is immersed in an aqueous alkaline solution at 40 to 100 ° C. for 5 to 120 minutes after the above-mentioned compression molding, and then the positive electrode is subjected to 40 to 100 ° C. with the alkaline aqueous solution attached.
It is preferable to dry at 100 ° C. for 5 to 120 minutes, wash with water and dry.

【0018】上記のようなアルカリ浸漬により正極中の
コバルトまたはコバルト化合物の溶解・析出が生じ、正
極中で水酸化ニッケルの表面にコバルトのネットワーク
が形成される。この状態で熱処理を行うと、コバルトの
ネットワークは強固で高次の酸化物になる。その結果、
導電性が優れ、高い利用率を保持することができる。
By the above alkali immersion, dissolution and precipitation of cobalt or a cobalt compound in the positive electrode occurs, and a cobalt network is formed on the surface of nickel hydroxide in the positive electrode. When heat treatment is performed in this state, the cobalt network becomes a strong and high-order oxide. as a result,
It has excellent conductivity and can maintain a high utilization rate.

【0019】本発明において、負極の活物質として用い
る水素吸蔵合金としては、Mm(La、Ce、Nd、P
r)−Ni系、Ti−Ni系、Ti−NiZr(Ti
2-x Zrx 4-y Niy 1-z Crz 系(x=0〜1.
5、y=0.6〜3.5、z=0.2以下)、Ti−M
n系、Zr−Mn系などの各種水素吸蔵合金が挙げられ
るが、これらの中でも、上記Mm(La、Ce、Nd、
Pr)−Ni系の合金でNiの一部を、Mn、Co、A
l、Mg、CuおよびCrよりなる群から選ばれる少な
くとも1種で置換した合金で、Mm中にLaを33〜7
0原子%含有するものが好ましい。このような水素吸蔵
合金は、低い水素平衡圧で高容量化が期待でき、水素吸
蔵合金として好ましいものであるが、表面に添加金属が
多く存在し、添加金属の溶出が多く、正極活物質の利用
率の低下が生じやすい。ところが、本発明によれば、上
記のような添加金属の溶出を防止することができるの
で、このような水素吸蔵合金に対して特に本発明が有用
である。
In the present invention, the hydrogen storage alloy used as the active material of the negative electrode includes Mm (La, Ce, Nd, Pd).
r) -Ni, Ti-Ni, Ti-NiZr (Ti
2-x Zr x V 4-y Ni y ) 1-z Cr z system (x = 0 to 1.
5, y = 0.6 to 3.5, z = 0.2 or less), Ti-M
Various hydrogen storage alloys such as n-based and Zr-Mn-based alloys may be mentioned, and among them, the above-mentioned Mm (La, Ce, Nd,
Part of Ni in a Pr) -Ni-based alloy, Mn, Co, A
1, an alloy substituted with at least one selected from the group consisting of Mg, Cu and Cr, wherein La in Mm is 33-7.
Those containing 0 atomic% are preferred. Such a hydrogen storage alloy can be expected to have a high capacity at a low hydrogen equilibrium pressure, and is preferable as a hydrogen storage alloy.However, a large amount of added metal exists on the surface, a large amount of the added metal is eluted, and the positive electrode active material Utilization rate tends to decrease. However, according to the present invention, the elution of the additional metal as described above can be prevented, and thus the present invention is particularly useful for such a hydrogen storage alloy.

【0020】本発明において、負極は、上記のような水
素吸蔵合金と、モリブデン種、クロム種およびタングス
テン種よりなる群から選ばれる少なくとも1種類以上の
金属種と亜鉛種とを使用し、水の存在下で、これらと例
えばカルボキシメチルロース、ポリエチレンオキサイド
などの増粘剤と例えばポリテトラフルオロエチレン、ス
チレンブタジエンラバーなどのバインダーとを混練して
ペーストを調製し、そのペーストを穿孔したニッケルメ
ッキ鋼板やニッケル発泡体などの導電性多孔基材に担持
させ、乾燥した後、圧縮成形することにより、シート状
に作製される。
In the present invention, the negative electrode comprises a hydrogen storage alloy as described above, at least one or more metal species selected from the group consisting of molybdenum, chromium and tungsten and zinc, and water. In the presence, these and, for example, carboxymethylloose, a thickener such as polyethylene oxide and a binder such as polytetrafluoroethylene, styrene butadiene rubber to prepare a paste, to prepare a paste, nickel-plated steel sheet perforated the paste or After being supported on a conductive porous base material such as a nickel foam, dried, and then subjected to compression molding, it is produced in a sheet shape.

【0021】本発明の水素化物二次電池は、上記のよう
にして作製された正極および負極とそれらを分離するナ
イロン不織布などからなるセパレータを電池缶内に装填
するとともに、電解液として水酸化ナトリウムや水酸化
カリウムなどの水溶液に水酸化リチウムなどの電解質を
溶解させたアルカリ水溶液を注入する工程を経て製造さ
れる。
In the hydride secondary battery of the present invention, the positive electrode and the negative electrode produced as described above and a separator made of nylon nonwoven fabric and the like for separating them are loaded into a battery can, and sodium hydroxide is used as an electrolyte. It is manufactured through a step of injecting an alkaline aqueous solution in which an electrolyte such as lithium hydroxide is dissolved in an aqueous solution such as potassium hydroxide or potassium hydroxide.

【0022】本発明の水素化物二次電池の製造におい
て、電解液注入後、30〜60℃の温度で10〜100
時間エージングすることやその後充電を行うことが好ま
しい。このような処理を行うことにより、負極中に含有
する上記金属種と亜鉛種とが水素吸蔵合金の表面に複雑
な化合物を形成するのを容易にし、貯蔵中の水素吸蔵合
金の腐食や不活性化をより効果的に防止することができ
る。
In the manufacture of the hydride secondary battery according to the present invention, after injecting the electrolytic solution, a temperature of 10 to 100
It is preferable to perform time aging and then charge. By performing such a treatment, the above-mentioned metal species and zinc species contained in the anode can easily form a complex compound on the surface of the hydrogen storage alloy, and the corrosion and inertness of the hydrogen storage alloy during storage can be facilitated. Can be more effectively prevented.

【0023】[0023]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例などにおい
て、濃度などを示す%は特にその単位を付記しないかぎ
り重量%である。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following examples and the like, percentages indicating concentrations and the like are percentages by weight unless otherwise indicated.

【0024】実施例1 市販のMm(La:33原子%、Ce:48原子%、N
d:5原子%、Pr:4原子%を含む)、Ni、Mo、
Co、MnおよびAlを高周波溶解炉によりアルゴンガ
ス雰囲気中において溶解したのち、約800℃/sec
の冷却速度で急冷し、得られた合金をさらに真空中で9
00℃で6時間熱処理して組成がMmNi3.55Mo0.04
Co0.75Mn0.4 Al0.3 で表される水素吸蔵合金を得
た。この水素吸蔵合金を耐圧容器中で真空引きを行い、
アルゴンガスで3回パージを行ったのち、水素圧力14
kg/cm2 で24時間保持し、水素を排気し、さらに
400℃で加熱し、水素を完全に放出することにより、
20〜100μmの粉末を得た。
Example 1 Commercially available Mm (La: 33 at%, Ce: 48 at%, N
d: 5 atomic%, Pr: 4 atomic%), Ni, Mo,
After melting Co, Mn and Al in an argon gas atmosphere using a high-frequency melting furnace, about 800 ° C./sec.
The alloy is quenched at a cooling rate of
Heat treated at 00 ° C for 6 hours to obtain a composition of MmNi 3.55 Mo 0.04
A hydrogen storage alloy represented by Co 0.75 Mn 0.4 Al 0.3 was obtained. This hydrogen storage alloy is evacuated in a pressure vessel,
After purging three times with argon gas, hydrogen pressure 14
By holding at 24 kg / cm 2 for 24 hours, evacuating hydrogen, and further heating at 400 ° C. to completely release hydrogen,
A powder of 20-100 μm was obtained.

【0025】この水素吸蔵合金粉末100重量部に、1
0%カルボキシメチルセルロース水溶液10重量部、5
0%スチレンブタジエンラバー分散液1重量部、酸化亜
鉛3重量部およびモリブデン酸リチウム2重量部を加え
て混練し、ペーストを調製した。このペーストをニッケ
ルメッキをした穿孔鋼板からなる基材に充填して担持さ
せ、乾燥後、圧縮成形した。その後、所定サイズに裁断
して、シート状の負極とした。上記のモリブデン酸リチ
ウムの2重量部は、モリブデンとして亜鉛種の含有量
(酸化亜鉛換算)に対して重量基準で35%であった。
1 part by weight of the hydrogen storage alloy powder
10% by weight of 0% carboxymethylcellulose aqueous solution, 5
1 part by weight of a 0% styrene butadiene rubber dispersion, 3 parts by weight of zinc oxide and 2 parts by weight of lithium molybdate were added and kneaded to prepare a paste. The paste was filled and supported on a substrate made of a perforated steel sheet plated with nickel, dried, and compression-molded. Thereafter, the sheet was cut into a predetermined size to obtain a sheet-shaped negative electrode. 2 parts by weight of the above-mentioned lithium molybdate was 35% by weight based on the content of zinc species as molybdenum (in terms of zinc oxide).

【0026】これとは別に、水酸化ニッケル粉末100
重量部に、ニッケル粉末10重量部(平均粒径1μ
m)、酸化コバルト粉末10重量部(平均粒径3μ
m)、10%カルボキシメチルセルロース水溶液10重
量部および60%ポリテトラフルオロエチレン分散液5
重量部を加えて混練し、ペーストを調製した。このペー
ストをニッケル発泡体からなる基材に充填し、担持さ
せ、80℃で2時間乾燥後、1トン/cm2 で圧縮成形
して、シート状にした。これを70℃のアルカリ水溶液
に60分間浸漬した後、アルカリ水溶液が付着した状態
で70℃で60分間乾燥し、水洗し、乾燥し、所定サイ
ズに裁断して、シート状の正極とした。
Separately, nickel hydroxide powder 100
10 parts by weight of nickel powder (1 μm in average particle size)
m), 10 parts by weight of cobalt oxide powder (average particle size 3 μm)
m) 10 parts by weight of a 10% carboxymethylcellulose aqueous solution and 60% polytetrafluoroethylene dispersion 5
A part by weight was added and kneaded to prepare a paste. This paste was filled in a substrate made of a nickel foam, supported, dried at 80 ° C. for 2 hours, and then compression-molded at 1 ton / cm 2 to form a sheet. This was immersed in an alkaline aqueous solution at 70 ° C. for 60 minutes, then dried at 70 ° C. for 60 minutes with the alkaline aqueous solution attached, washed with water, dried, and cut into a predetermined size to obtain a sheet-shaped positive electrode.

【0027】電解液には、30%水酸化カリウム水溶液
に水酸化リチウム(LiOH)を17g/l溶解させた
アルカリ水溶液を用い、上記のシート状の負極とシート
状の正極とをナイロン不織布製のセパレータを介して巻
回し、単3サイズの電池缶に挿入した後、上記の電解液
を注入し、さらに常法に準じて電池缶の封口を行って密
封した後、40℃で7時間保存し、0.1C(120m
A)で15時間充電し、0.2C(220mA)で1.
0Vまで放電した。この充放電サイクルを放電容量が一
定になるまで繰り返し、単3サイズで図1に示す構造の
水素化物二次電池を作製した。
As the electrolytic solution, an alkaline aqueous solution obtained by dissolving 17 g / l of lithium hydroxide (LiOH) in a 30% aqueous potassium hydroxide solution was used. The above sheet-shaped negative electrode and sheet-shaped positive electrode were made of nylon nonwoven fabric. After being wound through a separator and inserted into an AA size battery can, the above-mentioned electrolytic solution was injected, and the battery can was sealed and sealed in a conventional manner, and then stored at 40 ° C. for 7 hours. , 0.1C (120m
Charge for 15 hours at A) and 1. at 0.2 C (220 mA).
Discharged to 0V. This charge / discharge cycle was repeated until the discharge capacity became constant, to produce a hydride secondary battery of AA size having the structure shown in FIG.

【0028】ここで図1に示す水素化物二次電池につい
て説明すると、正極1は上記の水酸化ニッケルを活物質
とするぺースト式ニッケル電極からなり、負極2は上記
の水素吸蔵合金を活物質とし、モリブデン種としてモリ
ブデン酸リチウムを含み、亜鉛種として酸化亜鉛を含む
ぺースト式水素吸蔵合金からなるが、この図1では正極
1や負極2はその詳細について示しておらず、基材など
を省略して単一構成のものとして示している。そして、
セパレータ3はナイロン不織布からなるものであり、上
記正極1と負極2はこのセパレータ3を介して重ね合わ
せられ、渦巻状に巻回して巻回構造の電極体4として電
池缶5内に挿入され、その上部には絶縁体14が配置さ
れている。また、電池缶5の底部には上記電極体4の挿
入に先立って絶縁体13が配設されている。
Now, the hydride secondary battery shown in FIG. 1 will be described. The positive electrode 1 is composed of a paste-type nickel electrode using the above-mentioned nickel hydroxide as an active material, and the negative electrode 2 is composed of the above-mentioned hydrogen storage alloy as an active material. It is composed of a paste-type hydrogen storage alloy containing lithium molybdate as a molybdenum species and zinc oxide as a zinc species. In FIG. 1, the positive electrode 1 and the negative electrode 2 are not shown in detail, and the base material and the like are not shown. It is omitted and shown as a single configuration. And
The separator 3 is made of a non-woven nylon fabric, and the positive electrode 1 and the negative electrode 2 are overlapped with each other via the separator 3, spirally wound and inserted into the battery can 5 as a wound electrode body 4. An insulator 14 is disposed on the upper part. An insulator 13 is provided on the bottom of the battery can 5 before the electrode body 4 is inserted.

【0029】環状ガスケット6はナイロン66で作製さ
れ、電池蓋7は端子板8と封口板9とそれらで形成され
る内部空間に配置された金属バネ10と弁体11とで構
成され、電池缶5の開口部はこの電池蓋7などで封口さ
れている。つまり、電池缶5内に巻回構造の電極体4や
絶縁体13、14などを挿入した後、電池缶5の開口端
近傍部分に底部が内周側に突出した環状の溝5aを形成
し、その溝5aの内周側突出部で環状ガスケット6の下
部を支えさせて環状ガスケット6と電池蓋7とを電池缶
5の開口部に配置し、電池缶5の溝5aから先の部分を
内方に締め付けて電池缶5の開口部を封口している。上
記端子板8にはガス排出孔8aが設けられ、封口板9に
はガス検知孔9aが設けられ、端子板8と封口板9との
間には金属バネ10と弁体11とが配置されている。そ
して、封口板9の外周部を折り曲げて端子板8の外周部
を挟み込んで端子板8と封口板9とを固定している。
The annular gasket 6 is made of nylon 66, and the battery lid 7 is composed of a terminal plate 8, a sealing plate 9, a metal spring 10 and a valve body 11 arranged in an internal space formed by the terminal plate 8, a sealing plate 9, and a battery can. The opening 5 is sealed with the battery cover 7 or the like. That is, after inserting the wound electrode body 4 and the insulators 13 and 14 into the battery can 5, an annular groove 5 a having a bottom protruding inward is formed in the vicinity of the open end of the battery can 5. The annular gasket 6 and the battery lid 7 are arranged in the opening of the battery can 5 by supporting the lower portion of the annular gasket 6 by the inner peripheral side protruding portion of the groove 5a. The opening of the battery can 5 is sealed by being tightened inward. The terminal plate 8 is provided with a gas discharge hole 8a, the sealing plate 9 is provided with a gas detection hole 9a, and a metal spring 10 and a valve body 11 are arranged between the terminal plate 8 and the sealing plate 9. ing. Then, the outer peripheral portion of the sealing plate 9 is bent to sandwich the outer peripheral portion of the terminal plate 8, thereby fixing the terminal plate 8 and the sealing plate 9.

【0030】この電池は、通常の状況下では金属バネ1
0の押圧力により弁体11がガス検出孔9aを閉鎖して
いるので、電池内部は密閉状態に保たれているが、電池
内部にガスが発生して電池内部の圧力が異常に上昇した
場合には、金属バネ10が収縮して弁体11とガス検知
孔9aとの間に隙間が生じ、電池内部のガスはガス検知
孔9aおよびガス排出孔8aを通過して電池外部に放出
され、それによって電池内圧が低下して電池内圧が正常
に戻った場合には、金属バネ10が元の状態に復元し、
その押圧力により弁体11が再びガス検知孔9aを閉鎖
して電池内部を密閉構造に保つようになる。上記のよう
に金属バネ10と弁体11が安全弁の主材となるが、安
全弁は上記金属バネ10と弁体11のみで構成されるも
のではなく、それらと端子板8や封口板9などの他の機
能を有する部材とで構成されている。
Under normal circumstances, this battery is a metal spring 1
Since the valve body 11 closes the gas detection hole 9a by the pressing force of 0, the inside of the battery is kept in a sealed state, but gas is generated inside the battery and the pressure inside the battery rises abnormally. , The metal spring 10 contracts to form a gap between the valve body 11 and the gas detection hole 9a, and gas inside the battery passes through the gas detection hole 9a and the gas discharge hole 8a and is discharged to the outside of the battery. As a result, when the battery internal pressure decreases and the battery internal pressure returns to normal, the metal spring 10 is restored to the original state,
The pressing force causes the valve body 11 to close the gas detection hole 9a again to keep the inside of the battery in a sealed structure. As described above, the metal spring 10 and the valve element 11 are the main members of the safety valve. However, the safety valve is not composed of only the metal spring 10 and the valve element 11, but includes the terminal plate 8, the sealing plate 9, and the like. It is composed of members having other functions.

【0031】正極リード体12はニッケルリボンからな
り、その一方の端部は正極2の最外周部における基材の
露出部分にスポット溶接され、その他方の端部は封口板
9の下端にスポット溶接され、端子板8は上記封口板9
との接触により正極端子として機能できるようになって
いる。そして、前記したように、負極2の最外周部の外
面側は基材が露出していて、その基材が電池缶5の内壁
に接触し、それによって、電池缶5は負極端子として作
用する。
The positive electrode lead body 12 is made of a nickel ribbon, one end of which is spot-welded to an exposed portion of the base material at the outermost periphery of the positive electrode 2, and the other end is spot-welded to the lower end of the sealing plate 9. And the terminal plate 8 is connected to the sealing plate 9.
And can function as a positive electrode terminal. As described above, the base material is exposed on the outer surface of the outermost peripheral portion of the negative electrode 2, and the base material contacts the inner wall of the battery can 5, whereby the battery can 5 functions as a negative electrode terminal. .

【0032】実施例2 負極にモリブデン酸リチウムの代わりにクロム酸カリウ
ムを2重量部含有させた以外は、実施例1と同様に水素
化物二次電池を作製した。このクロム酸カリウムの2重
量部はクロムとして亜鉛種の含有量(酸化亜鉛換算)に
対して重量基準で28%であった。
Example 2 A hydride secondary battery was produced in the same manner as in Example 1, except that the negative electrode contained 2 parts by weight of potassium chromate instead of lithium molybdate. 2 parts by weight of this potassium chromate was 28% by weight based on the content of zinc as chromium (in terms of zinc oxide).

【0033】実施例3 負極にモリブデン酸リチウムの代わりにタングステン酸
カリウムを2重量部含有させた以外は、実施例1と同様
に水素化物二次電池を作製した。このタングステン酸カ
リウムの2重量部はタングステンとして亜鉛種の含有量
(酸化亜鉛換算)に対して重量基準で38%であった。
Example 3 A hydride secondary battery was manufactured in the same manner as in Example 1, except that the negative electrode contained 2 parts by weight of potassium tungstate instead of lithium molybdate. 2 parts by weight of this potassium tungstate was 38% by weight based on the content of zinc as zinc (in terms of zinc oxide).

【0034】実施例4 負極にモリブデン酸リチウムとクロム酸カリウムをそれ
ぞれ2重量部ずつ含有させた以外は、実施例1と同様に
水素化物二次電池を作製した。このモリブデン酸リチウ
ムの2重量部はモリブデンとして亜鉛種の含有量(酸化
亜鉛換算)に対して重量基準で35%であり、クロム酸
カリウムの2重量部はクロムとして亜鉛種の含有量(酸
化亜鉛換算)に対して重量基準で28%であった。
Example 4 A hydride secondary battery was manufactured in the same manner as in Example 1 except that the negative electrode contained 2 parts by weight of lithium molybdate and 2 parts by weight of potassium chromate. 2 parts by weight of this lithium molybdate is 35% by weight based on the content of zinc species as molybdenum (in terms of zinc oxide), and 2 parts by weight of potassium chromate contains the content of zinc species as chromium (zinc oxide). (In terms of conversion) was 28% on a weight basis.

【0035】実施例5 負極にモリブデン酸リチウムとタングステン酸カリウム
をそれぞれ2重量部ずつ含有させた以外は、実施例1と
同様に水素化物二次電池を作製した。このモリブデン酸
リチウムの2重量部はモリブデンとして亜鉛種の含有量
(酸化亜鉛換算)に対して重量基準で35%であり、タ
ングステン酸カリウムの2重量部はタングステンとして
亜鉛種の含有量(酸化亜鉛換算)に対して重量基準で3
8%であった。
Example 5 A hydride secondary battery was manufactured in the same manner as in Example 1 except that the negative electrode contained lithium molybdate and potassium tungstate in an amount of 2 parts by weight each. 2 parts by weight of this lithium molybdate is 35% by weight based on the content of zinc species as molybdenum (in terms of zinc oxide), and 2 parts by weight of potassium tungstate is the content of zinc species as tungsten (zinc oxide). 3 on a weight basis for
8%.

【0036】実施例6 負極にクロム酸リチウムとタングステン酸カリウムをそ
れぞれ2重量部ずつ含有させた以外は、実施例1と同様
に水素化物二次電池を作製した。このクロム酸リチウム
の2重量部はクロムとして亜鉛種の含有量(酸化亜鉛換
算)に対し重量基準で28%であり、タングステン酸カ
リウムの2重量部はタングステンとして亜鉛種の含有量
(酸化亜鉛換算)に対して重量基準で38%であった。
Example 6 A hydride secondary battery was produced in the same manner as in Example 1 except that the negative electrode contained 2 parts by weight of lithium chromate and 2 parts by weight of potassium tungstate, respectively. 2 parts by weight of this lithium chromate is 28% by weight based on the content of zinc species as chromium (calculated as zinc oxide), and 2 parts by weight of potassium tungstate is the content of zinc species as tungsten (calculated as zinc oxide). ) Was 38% by weight.

【0037】実施例7 負極にモリブデン酸リチウムとクロム酸リチウムとタン
グステン酸カリウムをそれぞれ0.5重量部ずつ含有さ
せた以外は、実施例1と同様に水素化物二次電池を作製
した。このモリブデン酸リチウムの0.5重量部はモリ
ブデンとして亜鉛種の含有量(酸化亜鉛換算)に対して
重量基準で8.5%で、クロム酸リチウムの0.5重量
部はクロムとして亜鉛種の含有量(酸化亜鉛換算)に対
して重量基準で7%であり、タングステン酸カリウムの
0.5重量部はタングステンとして亜鉛種の含有量(酸
化亜鉛換算)に対して重量基準で9.4%であった。
Example 7 A hydride secondary battery was manufactured in the same manner as in Example 1 except that the negative electrode contained 0.5 part by weight of lithium molybdate, lithium chromate and potassium tungstate, respectively. 0.5 parts by weight of this lithium molybdate is 8.5% by weight based on the content of zinc species as molybdenum (in terms of zinc oxide), and 0.5 parts by weight of lithium chromate is zinc species as chromium. The content (in terms of zinc oxide) is 7% on a weight basis, and 0.5 parts by weight of potassium tungstate is 9.4% in terms of the weight of zinc species as tungsten (in terms of zinc oxide). Met.

【0038】実施例8 負極の酸化亜鉛の含有量を1.2重量部に変更した以外
は、実施例1と同様に水素化物二次電池を作製した。そ
の結果、モリブデン酸リチウムの2重量部はモリブデン
として亜鉛種の含有量(酸化亜鉛換算)に対して重量基
準で85%になった。
Example 8 A hydride secondary battery was produced in the same manner as in Example 1, except that the content of zinc oxide in the negative electrode was changed to 1.2 parts by weight. As a result, 2 parts by weight of lithium molybdate became 85% by weight based on the content of zinc species (in terms of zinc oxide) as molybdenum.

【0039】実施例9 負極の酸化亜鉛の含有量を5重量部に変更した以外は、
実施例1と同様に水素化物二次電池を作製した。その結
果、モリブデン酸リチウムの2重量部はモリブデンとし
て亜鉛種の含有量(酸化亜鉛換算)に対して重量基準で
20%になった。
Example 9 Except that the content of zinc oxide in the negative electrode was changed to 5 parts by weight,
A hydride secondary battery was produced in the same manner as in Example 1. As a result, 2 parts by weight of lithium molybdate became 20% by weight based on the content of zinc species (in terms of zinc oxide) as molybdenum.

【0040】比較例1 負極に酸化亜鉛を4重量部含有させ、モリブデン酸リチ
ウムを含有させなかった以外は、実施例1と同様に水素
化物二次電池を作製した。
Comparative Example 1 A hydride secondary battery was produced in the same manner as in Example 1, except that the negative electrode contained 4 parts by weight of zinc oxide and did not contain lithium molybdate.

【0041】比較例2 正極に酸化亜鉛を3重量部含有させ、アルカリ処理を行
わず、負極には酸化亜鉛、モリブデン酸リチウムのいず
れも含有させなかった以外は、実施例1と同様に水素化
物二次電池を作製した。
Comparative Example 2 A hydride was prepared in the same manner as in Example 1 except that the positive electrode contained 3 parts by weight of zinc oxide, the alkali treatment was not performed, and the negative electrode contained neither zinc oxide nor lithium molybdate. A secondary battery was manufactured.

【0042】上記の実施例1〜9および比較例1〜2の
水素化物二次電池について、正極活物質の利用率および
貯蔵特性を調べた。なお、正極活物質の利用率は、0.
1Cで15時間充電し、0.2Cで1.0Vまで放電
し、この充放電サイクルを放電容量が一定になるまで繰
り返し、その放電容量が一定になった時の放電容量を充
填容量で除して百分率で表したもの〔(放電容量/充填
容量)×100〕であり、貯蔵特性は上記放電後の電池
を60℃×60日間貯蔵し、0.1C(120mA)で
15時間充電し、0.2C(220mA)で1.0Vま
で放電する充放電サイクルを3回繰り返し、3回目の放
電容量を貯蔵後の放電容量とし、また、貯蔵前に上記と
同様の充放電サイクルを3回繰り返し、その3回目の放
電容量を貯蔵前の放電容量として、次式により貯蔵後の
容量保持率を求めた。
With respect to the hydride secondary batteries of Examples 1 to 9 and Comparative Examples 1 and 2, the utilization factor and storage characteristics of the positive electrode active material were examined. Note that the utilization rate of the positive electrode active material is 0.1%.
The battery was charged at 1 C for 15 hours and discharged at 0.2 C to 1.0 V. This charge / discharge cycle was repeated until the discharge capacity became constant, and the discharge capacity when the discharge capacity became constant was divided by the charge capacity. [(Discharge capacity / filling capacity) × 100], and the storage characteristics of the battery after the discharge were stored at 60 ° C. × 60 days, charged at 0.1 C (120 mA) for 15 hours, and 3 charge / discharge cycles for discharging to 1.0 V at 2 C (220 mA) are set as the discharge capacity after storage, and the same charge / discharge cycle as above is repeated 3 times before storage, Using the third discharge capacity as the discharge capacity before storage, the capacity retention after storage was determined by the following equation.

【0043】貯蔵後の容量保持率(%)=(貯蔵前の放
電容量/貯蔵後の放電容量)×100
Capacity retention after storage (%) = (discharge capacity before storage / discharge capacity after storage) × 100

【0044】上記のようにして求めた正極活物質の利用
率および貯蔵後の容量保持率を表1に示す。
Table 1 shows the utilization factor of the positive electrode active material and the capacity retention ratio after storage as determined above.

【0045】[0045]

【表1】 [Table 1]

【0046】表1に示す結果から明らかなように、実施
例1〜9の電池は、比較例1〜2の電池に比べて、正極
活物質の利用率が高く、かつ貯蔵後の容量保持率が高
く、貯蔵特性が優れていた。
As is clear from the results shown in Table 1, the batteries of Examples 1 to 9 have higher utilization rates of the positive electrode active material and the capacity retention after storage than the batteries of Comparative Examples 1 and 2. And the storage characteristics were excellent.

【0047】[0047]

【発明の効果】以上説明したように、本発明では、正極
活物質の利用率が高く、かつ貯蔵特性が優れた水素化物
二次電池を提供することができた。
As described above, according to the present invention, a hydride secondary battery having a high utilization rate of the positive electrode active material and excellent storage characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素化物二次電池の一例を模式的に示
す断面図である。
FIG. 1 is a cross-sectional view schematically showing one example of a hydride secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H003 AA02 AA03 BB02 BB04 5H016 AA02 EE01 EE05 5H028 AA05 AA06 AA08 EE01 EE05 EE09  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Ryu Nagai 1-88 Ushitora, Ibaraki-shi, Osaka F-term within Hitachi Maxell, Ltd. (Reference) 5H003 AA02 AA03 BB02 BB04 5H016 AA02 EE01 EE05 5H028 AA05 AA06 AA08 EE01 EE05 EE09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを正極活物質とする正極
と水素吸蔵合金を負極活物質とする負極とアルカリ水溶
液よりなる電解液とセパレータを有する水素化物二次電
池において、上記負極中にモリブデン種、クロム種およ
びタングステン種よりなる群から選ばれる少なくとも1
種類以上の金属種と亜鉛種とを含有することを特徴とす
る水素化物二次電池。
1. A hydride secondary battery comprising a separator having a positive electrode having nickel hydroxide as a positive electrode active material, a negative electrode having a hydrogen storage alloy as a negative electrode active material, an electrolytic solution comprising an aqueous alkali solution, and a separator. , At least one selected from the group consisting of chromium species and tungsten species
A hydride secondary battery comprising at least two kinds of metal species and zinc species.
【請求項2】 正極中にコバルト金属またはコバルト化
合物を含有することを特徴とする請求項1記載の水素化
物二次電池。
2. The hydride secondary battery according to claim 1, wherein the positive electrode contains cobalt metal or a cobalt compound.
JP10319482A 1998-11-10 1998-11-10 Hydride secondary battery Withdrawn JP2000149956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319482A JP2000149956A (en) 1998-11-10 1998-11-10 Hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319482A JP2000149956A (en) 1998-11-10 1998-11-10 Hydride secondary battery

Publications (1)

Publication Number Publication Date
JP2000149956A true JP2000149956A (en) 2000-05-30

Family

ID=18110708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319482A Withdrawn JP2000149956A (en) 1998-11-10 1998-11-10 Hydride secondary battery

Country Status (1)

Country Link
JP (1) JP2000149956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047290A (en) * 2002-07-12 2004-02-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, manufacturing method of the same, and alkaline storage battery
JP2006236915A (en) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd Alkaline storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047290A (en) * 2002-07-12 2004-02-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, manufacturing method of the same, and alkaline storage battery
JP4497797B2 (en) * 2002-07-12 2010-07-07 三洋電機株式会社 Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP2006236915A (en) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd Alkaline storage battery
US7740983B2 (en) 2005-02-28 2010-06-22 Sanyo Electric Co., Ltd. Alkaline storage cell
JP4566025B2 (en) * 2005-02-28 2010-10-20 三洋電機株式会社 Alkaline storage battery

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JP3318141B2 (en) Method for producing hydrogen storage alloy electrode
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP3393944B2 (en) Hydride rechargeable battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH0888020A (en) Hydride secondary battery
JP2000149956A (en) Hydride secondary battery
JPH04212269A (en) Alkaline storage battery
JP4183292B2 (en) Secondary battery
JP2001118597A (en) Alkaline secondary cell
JP4128635B2 (en) Manufacturing method of nickel metal hydride storage battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH10241643A (en) Hydride secondary battery
JPH09274932A (en) Manufacture of alkaline secondary battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2000200612A (en) Rectangular alkaline secondary battery
JP2001035526A (en) Nickel hydrogen storage battery
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JP3789702B2 (en) Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery
CN117276482A (en) Positive plate for alkaline storage battery and alkaline storage battery
JP3462685B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110