JPS63146352A - Paste type cadmium negative electrode - Google Patents

Paste type cadmium negative electrode

Info

Publication number
JPS63146352A
JPS63146352A JP61291825A JP29182586A JPS63146352A JP S63146352 A JPS63146352 A JP S63146352A JP 61291825 A JP61291825 A JP 61291825A JP 29182586 A JP29182586 A JP 29182586A JP S63146352 A JPS63146352 A JP S63146352A
Authority
JP
Japan
Prior art keywords
negative electrode
layer
active material
cadmium negative
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291825A
Other languages
Japanese (ja)
Inventor
Masako Kusaka
草鹿 雅子
Yoshimasa Inaba
稲葉 吉尚
Hideo Kaiya
英男 海谷
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291825A priority Critical patent/JPS63146352A/en
Publication of JPS63146352A publication Critical patent/JPS63146352A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a negative electrode comparatively small in its cost and larger in its life by forming a layer of a mixture, which consists of an active material and a conductive material and a bonding agent, on a surface of the negative electrode. CONSTITUTION:A layer of a mixture, which consists of an active material and a conductive material and a bonding agent, is formed on a surface of a negative electrode. Then the mixing amount of the active material to the conductive material is made to be 7:3 to 1:9 in weight ratios. Thickness of the layer is made to be 8mu to 50mu. Thus, discharge products can be prevented from being dissolved and diffused, so that a charge and discharge cycle life of the battery can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池に用いられるペースト式カド
ミウム負極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a paste-type cadmium negative electrode used in alkaline storage batteries.

従来の技術 近年、ペースト式カドミウム負極は、製造工程が簡単で
あり、製造コストが安く、高いエネルギー密度が得られ
るなどの理由から、アルカリ蓄電池に多く用いられるよ
うになってきておシ、酸素ガス吸収性を高めるために、
電極表面に炭素粉末層を形成することも提案されている
(特開昭60−63875号公報)。
Conventional technology In recent years, paste-type cadmium negative electrodes have been increasingly used in alkaline storage batteries because of their simple manufacturing process, low manufacturing costs, and high energy density. To increase absorbency,
It has also been proposed to form a carbon powder layer on the electrode surface (Japanese Unexamined Patent Publication No. 60-63875).

このようなペースト式カドミウム負極は、焼結式カドミ
ウム負極と異なシ、活物質を保持する導電性骨格がない
ため、充放電サイクルの繰り返しにより、カドミウムの
溶解析出が繰り返され、負極の変形が起こシ、短寿命に
なりやすいという欠点を有していた。
This type of paste-type cadmium negative electrode differs from a sintered-type cadmium negative electrode in that it does not have a conductive skeleton that holds the active material, so repeated charge/discharge cycles cause repeated dissolution and precipitation of cadmium, causing deformation of the negative electrode. However, it has the disadvantage that it tends to have a short lifespan.

このような問題を解決するために、特開昭61−586
66号公報に見られるように、表面に高分子被膜を形成
することが提案されているが、このような負極では、負
極の変形は防止できるが、極板の導電性が下り、充電効
率が悪くなるという欠点を有していた。
In order to solve such problems, Japanese Patent Application Laid-Open No. 61-586
As seen in Publication No. 66, it has been proposed to form a polymer film on the surface of the negative electrode, but although deformation of the negative electrode can be prevented, the conductivity of the electrode plate decreases and the charging efficiency decreases. It had the disadvantage of becoming worse.

また、特開昭61−124053号公報に見られるよう
K、表面にカーボン粉末とポリビニルアルコールとを含
む導電剤を塗着することも提案されているが、実施の方
法により負極の変形は防止できるが、放電特性が劣化す
るという欠点を有していた。
Furthermore, as seen in JP-A-61-124053, it has been proposed to apply a conductive agent containing carbon powder and polyvinyl alcohol to the surface of K, but deformation of the negative electrode can be prevented depending on the implementation method. However, it had the disadvantage that the discharge characteristics deteriorated.

発明が解決しようとする問題点 本発明は、以上のような従来の欠点を解消し、比較的廉
価で、より長寿命を有するペースト式カドミウム負極を
得ることを目的とする。
Problems to be Solved by the Invention It is an object of the present invention to solve the above-mentioned conventional drawbacks and to obtain a paste-type cadmium negative electrode that is relatively inexpensive and has a longer life.

問題点を解決するための手段 本発明のペースト式カドミウム負極は、電極の表面に活
物質と導電材と結着剤の混合物から成る層を形成したこ
とを特徴とするものである。
Means for Solving the Problems The paste-type cadmium negative electrode of the present invention is characterized in that a layer consisting of a mixture of an active material, a conductive material, and a binder is formed on the surface of the electrode.

作  用 このようなペースト式カドミウム負極は、電極表面に活
物質と導電材と結着剤の混合物である層を形成させであ
るため、放電生成物の溶解、拡散を防止することが可能
となり9電池の充放電サイクル寿命が向上する。
Function: This type of paste-type cadmium negative electrode forms a layer on the electrode surface that is a mixture of active material, conductive material, and binder, making it possible to prevent dissolution and diffusion of discharge products9. The charge/discharge cycle life of the battery is improved.

実施例 以下、実施例により本発明を詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

平均粒径約1μの酸化カドミウム粉末に、ポリビニルア
ルコールのエチレングリコール溶液l。
A solution of polyvinyl alcohol in ethylene glycol is added to cadmium oxide powder with an average particle size of about 1μ.

え、混練してペースト状にする。このペーストを導電性
支持体である厚さ0.1mの=7ケルメツキした開孔鋼
板に塗着し、約140℃で30分間乾燥し、厚さ約0.
5mの電極を得た。
Well, knead it into a paste. This paste was applied to a conductive support, a 0.1 m thick perforated steel plate with =7 holes, and dried at about 140°C for 30 minutes to a thickness of about 0.1 m.
A 5 m electrode was obtained.

次に、純水に人造黒鉛粉末を重量比で30チ。Next, add 30 grams of artificial graphite powder to pure water by weight.

前記酸化カドミウム粉末およびポリビニルアルコールを
重量比で各6チ分散させた溶液に、この電極を約10秒
間浸漬した後、80’Cで乾燥させ、電極表面に層を形
成させた。次にこの電極をアルカリ溶液中で理論容量の
約40%充電し、水洗。
The electrode was immersed for about 10 seconds in a solution in which six parts of the cadmium oxide powder and polyvinyl alcohol were dispersed by weight, and then dried at 80'C to form a layer on the electrode surface. Next, this electrode was charged to about 40% of its theoretical capacity in an alkaline solution and washed with water.

乾燥後ペースト式カドミウム負極を得た。この負極をa
とする。
After drying, a paste type cadmium negative electrode was obtained. This negative electrode is a
shall be.

一方、上記の方法により表面に層を形成させない他は同
様の構成による比較例のカドミウム負極を用意した。こ
れをbとする。
On the other hand, a cadmium negative electrode of a comparative example having the same structure except that no layer was formed on the surface by the above method was prepared. Let this be b.

さらに、前記の人造黒鉛粉末を重量比で30チ。Furthermore, the weight ratio of the artificial graphite powder was 30 inches.

ポリビニルアルコールを重量比で5チとした溶液を用い
、同様に表面に層を形成させた比較例のカドミウム負極
Cを得た。
Using a solution containing polyvinyl alcohol at a weight ratio of 5 parts, a cadmium negative electrode C of a comparative example was obtained in which a layer was similarly formed on the surface.

さらに、ポリビニルアルコールを重量比で6チとした溶
液を用い、同様に表面に層を形成させた比較例のカドミ
ウム負極dを得た。
Furthermore, a cadmium negative electrode d of a comparative example was obtained in which a layer was similarly formed on the surface using a solution containing polyvinyl alcohol at a weight ratio of 6 parts.

上記、4種類のカドミウム負極を、焼結式ニッケル正極
と組み合せて、密閉形蓄電池を試作し、サイクル寿命試
験と、放電率特性試験および充電効率試験を行なった。
A sealed storage battery was prototyped by combining the above four types of cadmium negative electrodes with a sintered nickel positive electrode, and a cycle life test, a discharge rate characteristic test, and a charging efficiency test were conducted.

サイクル寿命特性は、60°Cで%C相当の電流で4.
6時間充電し、1C相当の抵抗負荷で完全放電をする充
放電を繰り返し、サイクルによる容量低下で評価した。
The cycle life characteristics are 4.0 at a current equivalent to %C at 60°C.
The battery was charged for 6 hours and then completely discharged under a resistive load equivalent to 1 C. The battery was repeatedly charged and discharged, and the capacity reduction due to the cycles was evaluated.

放電率特性は、電池を20°Cで0.1C相当の電流で
16時間充電し、1〜6C相当の電流で放電したときの
放電容量と、0.2C相当の電流で放電したときの放電
容量との比率で評価した。また、充電効率特性は、20
°Cで0,2C〜3C相当の電流で充電したときの充電
容量の計算値と、0.20相当の電流で放電したときの
放電容量との比率で評価した。
The discharge rate characteristics are the discharge capacity when the battery is charged at 20°C with a current equivalent to 0.1C for 16 hours and discharged with a current equivalent to 1 to 6C, and the discharge capacity when discharged with a current equivalent to 0.2C. Evaluation was made based on the ratio to capacity. In addition, the charging efficiency characteristic is 20
Evaluation was made based on the ratio of the calculated charge capacity when charged at a current equivalent to 0.2 to 3 C at °C and the discharge capacity when discharged at a current equivalent to 0.20 °C.

第1図は、1サイクル目の容量を100とした場合の容
量維持率と、充放電サイクル数との関係を示す。aは本
発明の負極を用いた電池、b、cおよびdは比較のため
の負極を用いた電池を示す。
FIG. 1 shows the relationship between the capacity retention rate and the number of charge/discharge cycles, assuming that the capacity at the first cycle is 100. A shows a battery using the negative electrode of the present invention, and b, c, and d show batteries using negative electrodes for comparison.

この結果から明らかなように、電極表面に高分子を含む
層が形成された負極a、aおよびdを用いた電池a、a
およびdは、電極表面に特に層を形成されていない負極
すを用いた電池に比べて大幅にサイクル寿命が向上して
いる。
As is clear from this result, batteries a, a and a using negative electrodes a, a, and d in which a layer containing a polymer was formed on the electrode surface.
and d have a significantly improved cycle life compared to a battery using a negative electrode layer with no particular layer formed on the electrode surface.

各々の電池について、600サイクル経過後内部インピ
ーダンスを測定したところ、比較例の負極すを用いた電
池については著しく低下していたが、他はサイクル開始
前とほとんど差はなかった。
When the internal impedance of each battery was measured after 600 cycles, it was found that the battery using the negative electrode of the comparative example had significantly decreased, but other values were almost the same as before the start of the cycle.

このことから、負極すでは充放電を繰り返すうちに、デ
ンドライトの成長等が起こシ、電池内部で短絡が起こっ
たと推定されるが、電池a、Cおよびdではそのような
短絡は起こらなかったと考えられる。この理由には、負
極表面の層に含まれるポリビニルアルコールが、強固な
層を作り、極板の変形を防止していることがあげられる
。また、負極内部への水酸イオンの拡散がこれらの層に
よシ阻害されるため、比較的低アルカリ側で生成され易
く、大きな結晶化をおこしにくいr形の水酸化カドミウ
ムが生成されるため、デンドライト等の成長が妨げられ
ることも考えられる。
From this, it is presumed that during repeated charging and discharging of the negative electrode, dendrite growth occurred and a short circuit occurred inside the battery, but it is thought that no such short circuit occurred in batteries a, C, and d. It will be done. The reason for this is that the polyvinyl alcohol contained in the layer on the surface of the negative electrode forms a strong layer that prevents the electrode plate from deforming. In addition, since the diffusion of hydroxide ions into the inside of the negative electrode is inhibited by these layers, r-type cadmium hydroxide is generated, which is more likely to be generated on the relatively low alkaline side and is difficult to cause large crystallization. It is also conceivable that the growth of dendrites, etc., may be hindered.

第2図は、放電容量比率と放電レートとの関係を示す図
である。図から明らかなように、aとbではほとんど差
がないが、c、dは著しく低下している。これは、電極
表面に高分子による層が形成されているため、活物質に
対する水酸イオンの供給が妨げられ、放電特性が低下し
たと考えられる。しかし、本発明の負極では、電極表面
層にも活物質が含まれているため、そのような低下は起
こらない。
FIG. 2 is a diagram showing the relationship between discharge capacity ratio and discharge rate. As is clear from the figure, there is almost no difference between a and b, but there is a significant decrease in c and d. This is thought to be because a polymer layer was formed on the electrode surface, which prevented the supply of hydroxide ions to the active material, resulting in a decrease in discharge characteristics. However, in the negative electrode of the present invention, such a decrease does not occur because the electrode surface layer also contains the active material.

第3図は、充電効率と充電レートとの関係を示す図であ
る。図からa > c > b > dの順で低下して
いる。これは、負極の導電性と、充放電反応に関与でき
る活物質の量に関係すると考えられる。
FIG. 3 is a diagram showing the relationship between charging efficiency and charging rate. From the figure, it decreases in the order of a > c > b > d. This is thought to be related to the conductivity of the negative electrode and the amount of active material that can participate in the charge/discharge reaction.

比較例の電池すに対し、表面に導電性の層を有する負極
a、Cを用いた電池a、Cは高い充電効率を示し、逆に
表面に導電性を低下させるような層を有する負極dを用
いた電池dは低い充電効率を示す。また、電池aは、負
極表面の層に活物質が含まれているため、効率よく充放
電され、電池Cよシ高い充電効率を示すと考えられる。
Compared to the batteries of comparative examples, batteries a and C using negative electrodes a and C that have conductive layers on their surfaces show high charging efficiency, whereas negative electrodes d that have layers on their surfaces that reduce conductivity Battery d using the battery d shows low charging efficiency. Furthermore, since battery a contains an active material in the layer on the surface of the negative electrode, it is considered that battery a can be charged and discharged efficiently and exhibits higher charging efficiency than battery C.

なお、実施例では、活物質と導電剤の配合量を重量比で
1対6としたが、この割合を変えることも可能である。
In the examples, the active material and the conductive agent were mixed in a weight ratio of 1:6, but it is also possible to change this ratio.

しかし、活物質の割合が層形成材料全体の重量比で7割
を越えると、層を形成させた時のシート抵抗が飛躍的に
増大し、充電効率の低下が予想されるので好ましくない
。また、導電剤の割合が重量比で9割を越えると、充放
電反応に関与できる表面の活物質が少なくなるため、放
電特性が20チ以上劣化するのでやはシ好ましくない。
However, if the proportion of the active material exceeds 70% by weight of the entire layer-forming material, the sheet resistance when the layer is formed will increase dramatically, and charging efficiency is expected to decrease, which is not preferable. Furthermore, if the proportion of the conductive agent exceeds 90% by weight, the amount of active material on the surface that can participate in the charge/discharge reaction decreases, so that the discharge characteristics deteriorate by 20 degrees or more, which is not preferable.

層の厚みについては、技術的に8μ以下にするのは困難
であり、また60μ以上の厚い層になると実際の充放電
が不可能となるので、層の厚みとしては8μ〜60μが
適当であるといえる。
Regarding the thickness of the layer, it is technically difficult to reduce it to 8μ or less, and if the layer is thicker than 60μ, actual charging and discharging becomes impossible, so the appropriate layer thickness is 8μ to 60μ. It can be said.

また、実施例では結着剤としてポリビニルアルコールを
用いたが、メチルセルロースなどのような他の水溶性結
着剤、あるいはフッ素樹脂などのような非水溶性の結着
剤を用いても同様の効果が得られる。
In addition, although polyvinyl alcohol was used as the binder in the examples, similar effects can be obtained by using other water-soluble binders such as methylcellulose or water-insoluble binders such as fluororesin. is obtained.

発明の効果 以上のように、本発明によれば充放電特性、充電効率特
性を低下させることなく、アルカリ蓄電池の充放電サイ
クル寿命を向上させる効果が得られる。
Effects of the Invention As described above, according to the present invention, the effect of improving the charge-discharge cycle life of an alkaline storage battery can be obtained without deteriorating the charge-discharge characteristics and charge efficiency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケルーカドミウム蓄電池の容量維持率と充
放電サイクル数との関係を示す図、第2図は放電容量比
率と放電レートとの関係を示す図、第3図は充電効率と
充電レートとの関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名α−
オ鋼明α負靭衝用竜氾 L−ゲdヂ 第2図 力(彎tレート(C,へ)
Figure 1 is a diagram showing the relationship between the capacity retention rate and the number of charge/discharge cycles of a nickel-cadmium storage battery, Figure 2 is a diagram showing the relationship between discharge capacity ratio and discharge rate, and Figure 3 is a diagram showing the relationship between charging efficiency and charging rate. FIG. Name of agent: Patent attorney Toshio Nakao and one other person α-
O Komei α negative toughness impact dragon flood L-ge dji second figure force (converted t rate (C, to)

Claims (4)

【特許請求の範囲】[Claims] (1)活物質と導電材と結着剤との混合物から成る層を
、電極表面に形成したことを特徴とするペースト式カド
ミウム負極。
(1) A paste-type cadmium negative electrode characterized in that a layer made of a mixture of an active material, a conductive material, and a binder is formed on the electrode surface.
(2)活物質と導電材の配合量が、重量比で7対3〜1
対9である特許請求の範囲第1項記載のペースト式カド
ミウム負極。
(2) The active material and conductive material are mixed in a weight ratio of 7:3 to 1
9. The paste-type cadmium negative electrode according to claim 1, which is a cadmium negative electrode.
(3)導電材が炭素粉末あるいはその化合物である特許
請求の範囲第1項又は第2項記載のペースト式カドミウ
ム負極。
(3) A paste-type cadmium negative electrode according to claim 1 or 2, wherein the conductive material is carbon powder or a compound thereof.
(4)層の厚みが、8〜50μである特許請求の範囲第
1項から第3項のいずれかに記載のペースト式カドミウ
ム負極。
(4) The paste-type cadmium negative electrode according to any one of claims 1 to 3, wherein the layer has a thickness of 8 to 50 μm.
JP61291825A 1986-12-08 1986-12-08 Paste type cadmium negative electrode Pending JPS63146352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291825A JPS63146352A (en) 1986-12-08 1986-12-08 Paste type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291825A JPS63146352A (en) 1986-12-08 1986-12-08 Paste type cadmium negative electrode

Publications (1)

Publication Number Publication Date
JPS63146352A true JPS63146352A (en) 1988-06-18

Family

ID=17773901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291825A Pending JPS63146352A (en) 1986-12-08 1986-12-08 Paste type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JPS63146352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189863A (en) * 1988-01-26 1989-07-31 Shin Kobe Electric Mach Co Ltd Manufacture of cadmium negative electrode plate for alkaline storage battery
JPH03159065A (en) * 1989-11-17 1991-07-09 Matsushita Electric Ind Co Ltd Nickel-cadmium storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189863A (en) * 1988-01-26 1989-07-31 Shin Kobe Electric Mach Co Ltd Manufacture of cadmium negative electrode plate for alkaline storage battery
JPH03159065A (en) * 1989-11-17 1991-07-09 Matsushita Electric Ind Co Ltd Nickel-cadmium storage battery

Similar Documents

Publication Publication Date Title
JP2003051306A (en) Negative electrode for lead-acid battery
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS63146352A (en) Paste type cadmium negative electrode
CN1199299C (en) Cadmium cathode and Ni-Cd accumulator comprising same
JP3010992B2 (en) Battery electrode
JP2589750B2 (en) Nickel cadmium storage battery
JPS63158746A (en) Paste type cadmium negative electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2000182611A (en) Alkaline storage battery and its manufacture
JPH0636768A (en) Electrode substrate for alkaline storage battery, its manufacture, and electrode for alkaline storage battery using it
JP2506777B2 (en) Method for producing paste type cadmium negative electrode
JPS6215994B2 (en)
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JPS61259456A (en) Manufacture of negative cadmium electrode
CN1153404A (en) Nickel-hydrogen cell cathode alloy material and method for making Ni-H cell using same
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JPH03238755A (en) Cadmium negative electrode for alkaline storage battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPS58158867A (en) Zinc pole
JPS58163160A (en) Alkaline zinc storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPS617565A (en) Paste type cadmium negative electrode
JPS61264672A (en) Manufacture of cadmium negative electrode
JPS63244560A (en) Cadmium negative electrode for alkaline battery