JP2966623B2 - Nickel-hydrogen battery - Google Patents

Nickel-hydrogen battery

Info

Publication number
JP2966623B2
JP2966623B2 JP4016423A JP1642392A JP2966623B2 JP 2966623 B2 JP2966623 B2 JP 2966623B2 JP 4016423 A JP4016423 A JP 4016423A JP 1642392 A JP1642392 A JP 1642392A JP 2966623 B2 JP2966623 B2 JP 2966623B2
Authority
JP
Japan
Prior art keywords
battery
nickel
electrode
positive electrode
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4016423A
Other languages
Japanese (ja)
Other versions
JPH05217599A (en
Inventor
衛 木本
義人 近野
正夫 武江
房吾 水瀧
義典 松浦
晃治 西尾
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP4016423A priority Critical patent/JP2966623B2/en
Publication of JPH05217599A publication Critical patent/JPH05217599A/en
Application granted granted Critical
Publication of JP2966623B2 publication Critical patent/JP2966623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル−水素電池に関
し、特にニッケル正極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nickel-metal hydride batteries, and more particularly to improvements in nickel positive electrodes.

【0002】[0002]

【従来の技術】近年、水素を可逆的に吸蔵,放出するこ
とができる水素吸蔵合金の開発が盛んに行われており、
この水素吸蔵合金を用いたニッケル−水素蓄電池につい
ての研究も行われている。そして、このニッケル−水素
蓄電池は、従来からよく用いられる鉛電池及びニッケル
−カドミウム電池等に比べて、軽量化を図ることがで
き、しかも高容量化を達成することが可能となるといっ
た利点を奏するので有望である。
2. Description of the Related Art In recent years, hydrogen storage alloys capable of reversibly storing and releasing hydrogen have been actively developed.
Research has been conducted on nickel-hydrogen storage batteries using this hydrogen storage alloy. The nickel-hydrogen storage battery has the advantages of being lighter in weight and capable of achieving higher capacity than conventional lead batteries and nickel-cadmium batteries. So promising.

【0003】ここで、上記ニッケル−水素蓄電池の負極
としては、LaNi5 や、その改良である三元素系のL
aNi4 Co、及びLaNi4 Cuなどの水素吸蔵合金
が用いられており、一方、正極としては通常、ニッケル
正極が用いられている。
Here, as the negative electrode of the nickel-hydrogen storage battery, LaNi 5 or a three-element L
A hydrogen storage alloy such as aNi 4 Co and LaNi 4 Cu is used, while a nickel positive electrode is usually used as the positive electrode.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記ニッケ
ル−水素蓄電池では、過充電時に正極から発生する酸素
ガスを負極で吸収させるような構成となっている。この
場合、電極群が地表と垂直に配置された電池(所謂、据
置型の電池)では、以下に示すような課題を有してい
た。
The above nickel-hydrogen storage battery has a structure in which oxygen gas generated from the positive electrode during overcharge is absorbed by the negative electrode. In this case, a battery in which the electrode group is arranged perpendicular to the surface of the earth (a so-called stationary battery) has the following problems.

【0005】即ち、過充電時には正極全体から酸素ガス
が発生し、この酸素ガスは電極間を通って上方に移動す
る。この場合、酸素ガスが正極の下部から発生するので
あれば、酸素ガス発生から電極の上端に達するまでにあ
る程度の時間を要するので、酸素ガスと負極との接触時
間が長くなる。したがって、電極の上端に到達するまで
に多くの酸素ガスは吸収される。これに対して、酸素ガ
スが正極の上部から発生すると、酸素ガスと負極との接
触時間が短くなるため、多くの酸素ガスが吸収されない
ことになる。この結果、電池の上部に酸素ガスが溜まっ
て、セパレータに含浸された電解液が押し下げられる。
加えて、電池内圧が高くなって安全弁が作動するため、
酸素ガスと共に電解液が電池外に放出される。これらの
ことから、電解液の量(特に、電池上部における電解液
の量)が少なくなって、サイクル特性が低下するという
課題を有していた。特に、角型で大型の電池では、上記
課題が顕著となる。
That is, at the time of overcharging, oxygen gas is generated from the entire positive electrode, and this oxygen gas moves upward through between the electrodes. In this case, if the oxygen gas is generated from the lower part of the positive electrode, a certain time is required from the generation of the oxygen gas to the upper end of the electrode, so that the contact time between the oxygen gas and the negative electrode becomes longer. Therefore, a large amount of oxygen gas is absorbed before reaching the upper end of the electrode. On the other hand, when the oxygen gas is generated from the upper portion of the positive electrode, the contact time between the oxygen gas and the negative electrode is shortened, so that much oxygen gas is not absorbed. As a result, oxygen gas accumulates in the upper part of the battery, and the electrolyte impregnated in the separator is pushed down.
In addition, since the internal pressure of the battery increases and the safety valve operates,
The electrolyte is discharged out of the battery together with the oxygen gas. For these reasons, the amount of the electrolytic solution (particularly, the amount of the electrolytic solution in the upper part of the battery) is reduced, and the cycle characteristics are deteriorated. In particular, the above problem becomes remarkable in a square and large battery.

【0006】本発明は係る現状を考慮してなされたもの
であって、電池内圧が上昇するのを抑制してサイクル特
性を飛躍的に向上させることができるニッケル−水素電
池の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has as its object to provide a nickel-hydrogen battery capable of suppressing an increase in battery internal pressure and dramatically improving cycle characteristics. .

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、ニッケル正極と水素吸蔵合金負極との間に
は、電解液が含浸されたセパレータが配置された構造の
電極群を有し、且つこの電極群が電池の高さ方向に延設
されたニッケル−水素電池において、前記ニッケル正極
は、下部から上部にいくにつれて酸素過電圧が大きくな
るように構成されていることを特徴とする。
In order to achieve the above object, the present invention has an electrode group having a structure in which a separator impregnated with an electrolyte is disposed between a nickel positive electrode and a hydrogen storage alloy negative electrode. In a nickel-hydrogen battery in which the electrode group extends in the height direction of the battery, the nickel positive electrode is configured such that an oxygen overvoltage increases from a lower portion to an upper portion. .

【0008】[0008]

【作用】上記構成であれば、過充電時には、酸素ガスは
ニッケル正極の下部から優先的に発生し、ニッケル正極
の上部からは余り発生しないので、多くの酸素ガスは、
負極との接触時間が長くなる。したがって、大部分の酸
素ガスは電極の上端に到達するまでに負極で吸収される
ことになる。これにより、電池の上部に酸素ガスが溜ま
るのを抑制することができるので、セパレータに含浸さ
れた電解液が押し下げられることがない。加えて、電池
内圧が低く抑えられるので、安全弁が作動せず、酸素ガ
スと共に電解液が電池外に放出されることもない。これ
らのことから、電解液の量(特に、電池上部における電
解液の量)が減少するのを抑制できるので、サイクル特
性を飛躍的に向上させることができる。
According to the above configuration, at the time of overcharging, oxygen gas is preferentially generated from the lower part of the nickel positive electrode and not much generated from the upper part of the nickel positive electrode.
The contact time with the negative electrode increases. Therefore, most of the oxygen gas is absorbed by the negative electrode before reaching the upper end of the electrode. Thereby, the accumulation of oxygen gas in the upper part of the battery can be suppressed, so that the electrolyte impregnated in the separator is not pushed down. In addition, since the internal pressure of the battery is kept low, the safety valve does not operate, and the electrolyte is not discharged out of the battery together with the oxygen gas. For these reasons, it is possible to suppress a decrease in the amount of the electrolytic solution (particularly, the amount of the electrolytic solution in the upper part of the battery), so that the cycle characteristics can be dramatically improved.

【0009】[0009]

【実施例】本発明の一実施例を、図1に基づいて、以下
に説明する。 〔実施例1〕図1は本発明の一実施例に係る据置型ニッ
ケル−水素アルカリ蓄電池の部分断面斜視図であり、電
池缶1内には、ニッケル正極2と、水素吸蔵合金(Mm
Ni 3.2 Co1.0 Mn0.6 Al0.2 )を含む負極3とが
交互に重ねられており、且つこれら正負両極2・3と正
負両極2・3間に介挿されたセパレータ4とから成る電
極群5が設けられている。そして、この電極群5はそれ
ぞれ絶縁シート6に囲まれている。また、上記電池缶1
の上面1aには、正極端子7と安全弁8と負極端子9と
が設けられており、正極端子7は上記正極2と、負極端
子9は上記負極3とそれぞれ接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.
Will be described. [Embodiment 1] Fig. 1 shows a stationary type nipper according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional perspective view of a Kel-hydrogen alkaline storage battery;
A nickel positive electrode 2 and a hydrogen storage alloy (Mm
Ni 3.2Co1.0Mn0.6Al0.2) Containing negative electrode 3
Are alternately stacked, and these positive and negative poles 2 and 3 are
A separator 4 interposed between the negative electrodes 2 and 3;
A pole group 5 is provided. And this electrode group 5
Each is surrounded by an insulating sheet 6. The battery can 1
A positive terminal 7, a safety valve 8, a negative terminal 9
The positive electrode terminal 7 is connected to the positive electrode 2 and the negative electrode terminal.
The terminals 9 are respectively connected to the negative electrodes 3.

【0010】ここで、上記ニッケル正極2を、以下のよ
うにして作製した。先ず初めに、還元性雰囲気中で乾燥
することにより得た多孔度80%のニッケル焼結基板
を、硝酸ニッケル溶融塩(温度80℃、比重1.75)
に浸漬する。次に、上記ニッケル焼結基板を25%の苛
性ソーダ水溶液に浸漬することにより、上記硝酸ニッケ
ルを活物質である水酸化ニッケルに変化させる。次い
で、水洗によりアルカリを除去し、乾燥を行う。このよ
うな一連の活物質充填操作を4回繰り返す。
Here, the nickel positive electrode 2 was manufactured as follows. First, a nickel sintered substrate having a porosity of 80% obtained by drying in a reducing atmosphere is melted with a molten salt of nickel nitrate (temperature: 80 ° C., specific gravity: 1.75).
Soak in Next, the nickel nitrate is converted into nickel hydroxide, which is an active material, by immersing the nickel sintered substrate in a 25% aqueous solution of caustic soda. Next, the alkali is removed by washing with water and drying is performed. Such a series of active material filling operations is repeated four times.

【0011】この後、最後の活物質充填操作を行うので
あるが、この際、極板上部と極板下部とを別個の硝酸ニ
ッケル溶融塩に浸漬する。具体的には、極板下部を上記
と同様の硝酸ニッケル溶融塩に浸漬する一方、極板上部
を硝酸コバルトが5wt%の割合で添加された硝酸ニッケ
ル溶融塩に浸漬する。そうすると、次工程で苛性ソーダ
水溶液に浸漬した際、極板下部には水酸化ニッケルのみ
が生成するが、極板上部には水酸化ニッケルのみならず
水酸化コバルト(5wt%)が生成することになる。尚、
最後に水洗によりアルカリを除去し、乾燥を行うことに
より正極を作製した。
Thereafter, the last active material filling operation is performed. At this time, the upper part and the lower part of the electrode plate are immersed in separate molten salts of nickel nitrate. Specifically, the lower part of the electrode plate is immersed in the same molten salt of nickel nitrate as described above, while the upper part of the electrode plate is immersed in the molten salt of nickel nitrate to which cobalt nitrate is added at a ratio of 5 wt%. Then, when immersed in an aqueous solution of caustic soda in the next step, only nickel hydroxide is generated at the lower part of the electrode plate, but not only nickel hydroxide but also cobalt hydroxide (5 wt%) is generated at the upper part of the electrode plate. . still,
Finally, the alkali was removed by washing with water and drying was performed to produce a positive electrode.

【0012】この後、上記正極2と負極3とセパレータ
4とから成る電極群5を電池缶1内に配置することによ
り電池を作製した。このようにして作製した電池を、以
下(A1 )電池と称する。 〔実施例2〕最後の活物質充填操作において、極板下部
を硝酸コバルトが5wt%の割合で添加された硝酸ニッケ
ル溶融塩に浸漬し、極板上部を硝酸コバルトが7wt%の
割合で添加された硝酸ニッケル溶融塩に浸漬する他は、
上記実施例1と同様にして電池を作製した。
Thereafter, an electrode group 5 including the positive electrode 2, the negative electrode 3, and the separator 4 was disposed in the battery can 1 to complete a battery. The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery. Example 2 In the last active material filling operation, the lower part of the electrode plate was immersed in a molten salt of nickel nitrate to which 5% by weight of cobalt nitrate was added, and the upper part of the electrode plate was added by 7% by weight of cobalt nitrate. Other than immersion in molten nickel nitrate,
A battery was manufactured in the same manner as in Example 1.

【0013】このようにして作製した電池を、以下(A
2 )電池と称する。 〔実施例3〕最後の活物質充填操作において、極板上部
を硝酸コバルトが10wt%の割合で添加された硝酸ニッ
ケル溶融塩に浸漬する他は、上記実施例2と同様にして
電池を作製した。
The battery fabricated in this manner is referred to as (A)
2 ) Called a battery. Example 3 A battery was fabricated in the same manner as in Example 2 except that in the last active material filling operation, the upper part of the electrode plate was immersed in a molten salt of nickel nitrate to which 10% by weight of cobalt nitrate was added. .

【0014】このようにして作製した電池を、以下(A
3 )電池と称する。 〔実施例4〕最後の活物質充填操作において、極板上部
を硝酸カドミウムが5wt%の割合で添加された硝酸ニッ
ケル溶融塩に浸漬する他は、上記実施例1と同様にして
電池を作製した。尚、この場合には、極板上部に水酸化
カドミウムが生成することになる。
The battery fabricated in this manner is referred to as (A)
3 ) Called a battery. Example 4 A battery was fabricated in the same manner as in Example 1 except that in the last active material filling operation, the upper part of the electrode plate was immersed in a molten salt of nickel nitrate to which 5% by weight of cadmium nitrate was added. . In this case, cadmium hydroxide is generated on the upper part of the electrode plate.

【0015】このようにして作製した電池を、以下(A
4 )電池と称する。 〔実施例5〕最後の活物質充填操作において、極板下部
を硝酸カドミウムが5wt%の割合で添加された硝酸ニッ
ケル溶融塩に浸漬し、極板上部を硝酸カドミウムが7wt
%の割合で添加された硝酸ニッケル溶融塩に浸漬する他
は、上記実施例1と同様にして電池を作製した。
The battery fabricated in this manner is referred to as (A)
4 ) Called a battery. [Example 5] In the last active material filling operation, the lower part of the electrode plate was immersed in a molten salt of nickel nitrate to which cadmium nitrate was added at a ratio of 5 wt%, and the upper part of the electrode plate was coated with 7 wt% of cadmium nitrate.
%, Except that the battery was immersed in the molten salt of nickel nitrate added at a rate of%.

【0016】このようにして作製した電池を、以下(A
5 )電池と称する。 〔実施例6〕最後の活物質充填操作において、極板上部
を硝酸亜鉛が5wt%の割合で添加された硝酸ニッケル溶
融塩に浸漬する他は、上記実施例1と同様にして電池を
作製した。尚、この場合には、極板上部に水酸化亜鉛が
生成することになる。
The battery fabricated in this manner is referred to as (A)
5 ) Called a battery. Example 6 A battery was manufactured in the same manner as in Example 1 except that in the last active material filling operation, the upper part of the electrode plate was immersed in a molten salt of nickel nitrate to which zinc nitrate was added at a ratio of 5 wt%. . In this case, zinc hydroxide is generated at the upper part of the electrode plate.

【0017】このようにして作製した電池を、以下(A
6 )電池と称する。 〔実施例7〕最後の活物質充填操作において、極板下部
を硝酸亜鉛が5wt%の割合で添加された硝酸ニッケル溶
融塩に浸漬し、極板上部を硝酸亜鉛が7wt%の割合で添
加された硝酸ニッケル溶融塩に浸漬する他は、上記実施
例1と同様にして電池を作製した。
The battery fabricated in this manner is referred to as (A)
6 ) Called a battery. [Example 7] In the last active material filling operation, the lower part of the electrode plate was immersed in a molten salt of nickel nitrate to which zinc nitrate was added at a ratio of 5 wt%, and the upper part of the electrode plate was added at a ratio of 7 wt%. A battery was fabricated in the same manner as in Example 1 except that the battery was immersed in a molten salt of nickel nitrate.

【0018】このようにして作製した電池を、以下(A
7 )電池と称する。 〔実施例8〕最後の活物質充填操作において、極板下部
を硝酸コバルトと硝酸亜鉛とが共に5wt%の割合で添加
された硝酸ニッケル溶融塩に浸漬し、極板上部を硝酸コ
バルトと硝酸亜鉛とが共に7wt%の割合で添加された硝
酸ニッケル溶融塩に浸漬する他は、上記実施例1と同様
にして電池を作製した。
The battery fabricated in this manner is referred to as (A)
7 ) Called a battery. Example 8 In the last active material filling operation, the lower part of the electrode plate was immersed in a molten salt of nickel nitrate to which both cobalt nitrate and zinc nitrate were added at a ratio of 5 wt%, and the upper part of the electrode plate was coated with cobalt nitrate and zinc nitrate. A battery was produced in the same manner as in Example 1 except that both were immersed in a molten salt of nickel nitrate added at a ratio of 7 wt%.

【0019】このようにして作製した電池を、以下(A
8 )電池と称する。 〔比較例1〕最後の活物質充填操作において、極板下部
のみならず極板上部も硝酸コバルトが添加されていない
硝酸ニッケル溶融塩に浸漬する他は、上記実施例1と同
様にして電池を作製した。
The battery fabricated in this manner is referred to as (A)
8 ) Called a battery. [Comparative Example 1] In the last active material filling operation, except that not only the lower part of the electrode plate but also the upper part of the electrode plate were immersed in molten nickel nitrate to which cobalt nitrate was not added, Produced.

【0020】このようにして作製した電池を、以下(X
1 )電池と称する。 〔比較例2〕最後の活物質充填操作において、極板上部
のみならず極板下部も硝酸コバルトが5wt%の割合で添
加された硝酸ニッケル溶融塩に浸漬する他は、上記実施
例1と同様にして電池を作製した。
The battery fabricated in this manner is referred to as (X
1 ) Called a battery. [Comparative Example 2] Same as Example 1 except that in the last active material filling operation, not only the upper part of the electrode plate but also the lower part of the electrode plate were immersed in a molten salt of nickel nitrate to which 5% by weight of cobalt nitrate was added. To produce a battery.

【0021】このようにして作製した電池を、以下(X
2 )電池と称する。 〔実験1〕上記本発明の(A1 )電池〜(A8 )電池及
び比較例の(X1 )電池,(X2)電池において、過充
電後の電池内圧を測定したので、その結果を下記表1に
示す。尚、実験条件は、0.3Cの電流で電池容量の1
20%まで充電するという条件である。
The battery fabricated in this manner is referred to as (X
2 ) Called a battery. [Experiment 1] The internal pressures of the batteries (A 1 ) to (A 8 ) of the present invention and the batteries (X 1 ) and (X 2 ) of the comparative examples after overcharging were measured. It is shown in Table 1 below. The experimental conditions were as follows.
The condition is that the battery is charged up to 20%.

【0022】[0022]

【表1】 [Table 1]

【0023】上記表1より明らかなように、本発明(A
1 )電池〜(A8 )電池は比較例の(X1 )電池,(X
2 )電池に比べて電池内圧が低下していることが認めら
れる。これは、比較例の(X1 )電池,(X2 )電池で
は、正極の上部,下部共に添加剤が添加されていない
か、或いは同量の添加剤が添加されているので、正極の
上部と下部との間で酸素過電圧の差異がない。したがっ
て、酸素ガスが正極全体から均一に発生する。これに対
して、本発明(A1 )電池〜(A8 )電池では、Co
(OH)2 等の添加剤の量が正極の上部と下部とで異な
っているので、正極の上部が下部より酸素過電圧が大き
くなる。この結果、酸素ガスが正極の下部から優先的に
発生するという理由による。 〔実験2〕上記本発明の(A1 )電池〜(A8 )電池及
び比較例の(X1 )電池,(X2)電池におけるサイク
ル特性を調べたので、その結果を上記表1に併せて示
す。尚、実験条件は、0.3Cの電流で充放電を行うと
いう条件であり、電池容量が初期容量の1/2となった
時点を寿命としている。
As is clear from Table 1, the present invention (A
1 ) Batteries to (A 8 ) batteries are (X 1 ) batteries of comparative examples,
2 ) It is recognized that the internal pressure of the battery is lower than that of the battery. This is because, in the (X 1 ) battery and the (X 2 ) battery of the comparative examples, no additive was added to the upper and lower portions of the positive electrode, or the same amount of additive was added to the upper and lower portions of the positive electrode. There is no difference in oxygen overvoltage between the upper and lower parts. Therefore, oxygen gas is uniformly generated from the entire positive electrode. On the other hand, in the batteries (A 1 ) to (A 8 ) of the present invention, Co
Since the amount of the additive such as (OH) 2 is different between the upper part and the lower part of the positive electrode, the upper part of the positive electrode has a larger oxygen overvoltage than the lower part. As a result, oxygen gas is preferentially generated from the lower part of the positive electrode. [Experiment 2] The cycle characteristics of the batteries (A 1 ) to (A 8 ) of the present invention and the batteries (X 1 ) and (X 2 ) of the comparative examples were examined. The results are shown in Table 1 above. Shown. Note that the experimental condition is that charging and discharging are performed with a current of 0.3 C, and the time when the battery capacity becomes 1/2 of the initial capacity is defined as the life.

【0024】上記表1より明らかなように、本発明(A
1 )電池〜(A8 )電池は比較例の(X1 )電池,(X
2 )電池に比べてサイクル特性が飛躍的に向上している
ことが認められる。これは、比較例の(X1 )電池,
(X2 )電池では、上記実験1で示す如く如く酸素ガス
が正極全体から均一に発生するので、多量の酸素ガスが
負極に吸収されず、このため電池の上部に酸素ガスが溜
まる。したがって、セパレータに含浸された電解液が押
し下げられると共に、電池内圧が高くなって安全弁が作
動するため、電解液が電池外に放出される。これらのこ
とから、電解液の量(特に、電池上部における電解液の
量)が少なくなる。これに対して、本発明の(A1 )電
池〜(A8 )電池では、上記実験1で示す如く如く酸素
ガスは正極の下部から優先的に発生するので、多くの酸
素ガスが負極で吸収され、このため電池の上部に余り酸
素ガスが溜まらない。したがって、セパレータに含浸さ
れた電解液が押し下げられたり、電解液が電池外に放出
されるのを抑制できるので、電解液の量の減少を低減す
ることができるという理由によるものと考えられる。 〔その他の事項〕 上記実施例では正極を上下に2分割するようにして作
製しているが、このような構成に限定するものではな
く、3分割以上となるようにして作製しても良いことは
勿論である。 上記実施例では、過電圧を調整するための添加剤とし
て水酸化コバルト等を用いているが、これらに限定する
ものではない。
As is clear from Table 1, the present invention (A
1 ) Batteries to (A 8 ) batteries are (X 1 ) batteries of comparative examples,
2 ) It is recognized that cycle characteristics are dramatically improved as compared with batteries. This is the (X 1 ) battery of the comparative example,
In the (X 2 ) battery, as shown in Experiment 1, oxygen gas is uniformly generated from the entire positive electrode, so that a large amount of oxygen gas is not absorbed by the negative electrode, and thus oxygen gas accumulates in the upper part of the battery. Therefore, the electrolyte impregnated in the separator is pushed down, and the internal pressure of the battery is increased to operate the safety valve, so that the electrolyte is discharged out of the battery. For these reasons, the amount of the electrolyte (particularly, the amount of the electrolyte in the upper part of the battery) is reduced. On the other hand, in the batteries (A 1 ) to (A 8 ) of the present invention, as shown in Experiment 1, oxygen gas is preferentially generated from the lower part of the positive electrode, so that a large amount of oxygen gas is absorbed by the negative electrode. Therefore, oxygen gas does not sufficiently accumulate in the upper part of the battery. Therefore, it is considered that the electrolyte solution impregnated in the separator can be suppressed from being pushed down and the electrolyte solution can be prevented from being discharged out of the battery, so that the decrease in the amount of the electrolyte solution can be reduced. [Other Matters] In the above embodiment, the positive electrode is manufactured so as to be vertically divided into two parts. However, the present invention is not limited to such a configuration, and the positive electrode may be manufactured so as to be divided into three or more parts. Of course. In the above embodiment, cobalt hydroxide or the like is used as an additive for adjusting the overvoltage, but is not limited thereto.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、過
充電時であっても電池内圧の上昇を抑制することができ
るので、電解液の量が余り減少しない。この結果、サイ
クル特性を飛躍的に向上させることができるといった優
れた効果を奏する。
As described above, according to the present invention, an increase in the internal pressure of the battery can be suppressed even during overcharge, so that the amount of the electrolyte does not decrease much. As a result, an excellent effect that the cycle characteristics can be significantly improved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る据置型ニッケル−水素
アルカリ蓄電池の部分断面斜視図である。
FIG. 1 is a partial sectional perspective view of a stationary nickel-hydrogen alkaline storage battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 正極 3 負極 4 セパレータ 5 電極群 2 Positive electrode 3 Negative electrode 4 Separator 5 Electrode group

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水瀧 房吾 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 松浦 義典 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 昭51−104538(JP,A) 特開 平3−184275(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/30 H01M 4/32 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Fugo Mizutaki 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Yoshinori Matsuura 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18 Keihanhondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Furukawa 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. (56) References JP JP-A-51-104538 (JP, A) JP-A-3-184275 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/30 H01M 4/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル正極と水素吸蔵合金負極との間
には、電解液が含浸されたセパレータが配置された構造
の電極群を有し、且つこの電極群が電池の高さ方向に延
設されたニッケル−水素電池において、 前記ニッケル正極は、下部から上部にいくにつれて酸素
過電圧が大きくなるように構成されていることを特徴と
するニッケル−水素電池。
An electrode group having a structure in which a separator impregnated with an electrolytic solution is arranged between a nickel positive electrode and a hydrogen storage alloy negative electrode, and the electrode group extends in the height direction of the battery. The nickel-hydrogen battery according to claim 1, wherein the nickel positive electrode is configured such that an oxygen overvoltage increases from a lower portion to an upper portion.
JP4016423A 1992-01-31 1992-01-31 Nickel-hydrogen battery Expired - Fee Related JP2966623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016423A JP2966623B2 (en) 1992-01-31 1992-01-31 Nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016423A JP2966623B2 (en) 1992-01-31 1992-01-31 Nickel-hydrogen battery

Publications (2)

Publication Number Publication Date
JPH05217599A JPH05217599A (en) 1993-08-27
JP2966623B2 true JP2966623B2 (en) 1999-10-25

Family

ID=11915833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016423A Expired - Fee Related JP2966623B2 (en) 1992-01-31 1992-01-31 Nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JP2966623B2 (en)

Also Published As

Publication number Publication date
JPH05217599A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
JP3287367B2 (en) Sealed nickel zinc battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
US6183899B1 (en) Maintenance-free open industrial type alkaline electrolyte storage battery
JP2966623B2 (en) Nickel-hydrogen battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3802703B2 (en) Nickel metal hydride battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JPH0568828B2 (en)
JP2995893B2 (en) Nickel / metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3157226B2 (en) Alkaline storage battery
JPH01134862A (en) Alkaline zinc storage battery
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JPH05283071A (en) Activation of metal hydride storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP2847872B2 (en) Hydrogen storage electrode
JP2703284B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery using the electrode
JP4079571B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPS6084768A (en) Alkaline zinc storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees