JPH0517661B2 - - Google Patents

Info

Publication number
JPH0517661B2
JPH0517661B2 JP59071606A JP7160684A JPH0517661B2 JP H0517661 B2 JPH0517661 B2 JP H0517661B2 JP 59071606 A JP59071606 A JP 59071606A JP 7160684 A JP7160684 A JP 7160684A JP H0517661 B2 JPH0517661 B2 JP H0517661B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
nickel
paste
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59071606A
Other languages
Japanese (ja)
Other versions
JPS60216452A (en
Inventor
Masahiko Oshitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUASA KOOHOREESHON KK
Original Assignee
YUASA KOOHOREESHON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUASA KOOHOREESHON KK filed Critical YUASA KOOHOREESHON KK
Priority to JP59071606A priority Critical patent/JPS60216452A/en
Publication of JPS60216452A publication Critical patent/JPS60216452A/en
Publication of JPH0517661B2 publication Critical patent/JPH0517661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ蓄電池用正極板、特にぺース
ト式ニツケル板に係り、高性能で低価格かつ生産
性の高いニツケル正極板を提供することを目的と
する。 従来アルカリ蓄電池用ニツケル正極板として
は、ニツケル粉末を穿孔鋼板あるいはニツケルネ
ツト等に焼結させた多孔体基板に、活物質を充填
させた焼結式極板がよく知られている。 この多孔体基板は、ニツケル粉末を単に穿孔鋼
板あるいは、ニツケルネツト等に焼結させたもの
であり、ニツケル粉末粒子間の結合が弱く、高多
孔度にすると脱落が生じるために、実用上多孔度
80%程度が限界である。 又、これらの多孔体基板はニツケル粉末粒子間
結合が弱いため、常に穿孔鋼板、ニツケルネツト
等の芯金を必要とし、単位体積あたりの活物質充
填量が芯金体積分だけ少なくなる欠点を有してい
る。 さらに多孔体細孔が10μm以下と小さいために、
充填方法は繁雑な工程を繰返す溶液含浸法に限定
されている。これらの欠点を改良する試みとし
て、例えば芯金をもたないニツケルメツキ鉄繊維
焼結体、ニツケル繊維焼結体等に直接固体活物質
を充填させる。いわゆるペースト式充填方法等が
行なわれている。その他、直接固体活物質を充填
させたものには、ポケツト式極板があるが、この
ものは穿孔鋼板を加工し、ポケツト部を作り、そ
の中に活物質を充填する構造のため、ポケツト部
の穿孔鋼板の占める体積が大きく、単位面積あた
りの充填密度はかなり低いものである。 これまで金属繊維の製造方法として、安価なも
のとして切削加工法あるいは金属粉末を繊維状に
加工焼結させたもの等がある。 切削加工法には固定されたバイト状を線径数mm
の金属線を移動させることによつて繊維を切削す
る場合と、施削加工における自動振動を利用す
る、いわゆるびびり振動切削加工による2種類が
ある。金属繊維の径は4μm程度より製造可能であ
り、繊維径が細ければ細い程、表面積が増大する
ので活物質利用率は向上する。一方繊維径が太く
なれば表面積が減少し、確実に活物質利用率が低
下するために、50μm以上の繊維はメリツトが少
ない。実用上の活物質の充填しやすい基板の細孔
分布、引張強度、活物質利用率を考慮した場合、
4〜50μm程度が望ましい。この繊維をエアーレ
ード法やその他の方法によつて均一分布させた
後、約1000℃前後の高温還元雰囲気下で焼結する
と、多孔体基板が得られる。多孔体基板は、繊維
量、焼結温度、時間等をコントロールすることに
よつて、多孔度85〜98%程度の実用強度を満足す
るものが得られる。なおこの多孔体基板が鉄繊維
である場合、アルカリ電解液中での腐蝕を防止す
るために10〜20%のニツケルメツキを必要とす
る。 従来これらの多孔体基板に水酸化ニツケルを主
成分とする活物質を充填した場合、例えば焼結式
極板に比べ活物質利用率が低くなる欠点を有し
た。本発明はこの点を改良するべくなされたもの
で、多孔体基板にあらかじめコバルトメツキを施
す事により活物質利用率を向上させ得る事に着目
したものである。本発明によればまず多孔体基板
に1〜2μm程度のコバルトメツキを施し、このコ
バルトメツキされた多孔体基板に、水酸化ニツケ
ルを主成分とし、少量の水酸化カドミウム、ある
いは水酸化コバルトを共晶状態で含有する活物質
を水等の溶剤でスラリー状として充填後乾燥し、
厚味調節して正極板とする。以下本発明の一実施
例について詳述する。 びびり振動切削加工法によつて得たニツケル繊
維をエアーレード法で分布した後、還元性雰囲気
下1050℃で約30分間焼結させ、厚み2mm、多孔度
95%の多孔体基板を得た。しかる後、硫酸コバル
トアンモニウム、酢酸アンモニウム、酢酸、ホル
マリン、硫酸カドミウム等からなるメツキ浴で1
〜2μmのコバルトメツキをほどこした。 このコバルトメツキされた多孔体に、水酸化ニ
ツケル94モル%、水酸化コバルト5モル%、水酸
化カドミウム1モル%からなる共晶物質に約10重
量%のニツケル粉末を加えてよく混合し、さらに
約40重量%の水および約2重量%のカルボキシメ
チルセルローズを加えてスラリー状にしたものを
充填した後、乾燥、厚味調節して0.7mmの正極板
とした。活物質の充填密度は約1.8g/c.c.である。
この正極板を4×4cmに切断し、水酸化カリウム
電解液中で充放電し、エネルギー密度(mAh/
c.c.)を測定した。なお比較のために同一寸法のコ
バルトメツキをしていない正極板のエネルギー密
度(mAh/c.c.)をもとめた。 表1は比重1.24の水酸化カリウム電解液中にて
0.1C電流で15時間充填した後、0.2℃電流で0V
(VS.Hg/HgO)まで放電させた時のエネルギー
密度(mAh/c.c.)の比較を示した。
The present invention relates to a positive electrode plate for an alkaline storage battery, particularly a paste-type nickel plate, and an object of the present invention is to provide a high-performance, low-cost, and highly productive nickel positive electrode plate. Conventionally, as a nickel positive electrode plate for an alkaline storage battery, a sintered type electrode plate is well known, in which a porous substrate made by sintering nickel powder into a perforated steel plate or a nickel net is filled with an active material. This porous substrate is made by simply sintering nickel powder into a perforated steel plate or nickel net, and the bond between the nickel powder particles is weak and falling off occurs when the porosity is increased.
The limit is about 80%. In addition, since these porous substrates have weak bonds between nickel powder particles, they always require a core metal such as a perforated steel plate or nickel net, and have the disadvantage that the amount of active material filled per unit volume is reduced by the volume of the core metal. ing. Furthermore, since the pores of the porous material are as small as 10 μm or less,
The filling method is limited to the solution impregnation method, which involves repeated complicated steps. In an attempt to improve these drawbacks, for example, a solid active material is directly filled into a nickel-plated iron fiber sintered body, a nickel fiber sintered body, etc. without a core metal. A so-called paste filling method is used. Another type of electrode plate that is directly filled with a solid active material is a pocket type electrode plate, but this type has a structure in which a perforated steel plate is processed to create a pocket part and the active material is filled in the pocket part. The perforated steel plate occupies a large volume, and the packing density per unit area is quite low. Hitherto, inexpensive methods for manufacturing metal fibers include cutting methods and methods in which metal powder is processed and sintered into fibers. The cutting method uses a fixed bit shape with a wire diameter of several mm.
There are two types of cutting: one is cutting fibers by moving a metal wire, and the other is so-called chatter vibration cutting, which utilizes automatic vibration during cutting. Metal fibers can be manufactured with a diameter of about 4 μm, and the thinner the fiber diameter, the greater the surface area and the better the utilization of the active material. On the other hand, as the fiber diameter increases, the surface area decreases and the active material utilization rate definitely decreases, so fibers with a diameter of 50 μm or more have little merit. Considering the pore distribution, tensile strength, and active material utilization rate of a substrate that is easy to fill with active materials in practical use,
The thickness is preferably about 4 to 50 μm. A porous substrate is obtained by uniformly distributing the fibers using an air-laid method or other methods and then sintering them in a reducing atmosphere at a high temperature of about 1000°C. By controlling the amount of fiber, sintering temperature, time, etc., a porous substrate having a porosity of about 85 to 98% and satisfying practical strength can be obtained. Note that if this porous substrate is made of iron fiber, nickel plating of 10 to 20% is required to prevent corrosion in an alkaline electrolyte. Conventionally, when these porous substrates are filled with an active material containing nickel hydroxide as a main component, the active material utilization rate is lower than that of, for example, a sintered electrode plate. The present invention has been made to improve this point, and focuses on the fact that the active material utilization rate can be improved by applying cobalt plating to the porous substrate in advance. According to the present invention, first, a porous substrate is plated with cobalt of about 1 to 2 μm, and the cobalt-plated porous substrate is coated with nickel hydroxide as a main component and a small amount of cadmium hydroxide or cobalt hydroxide. The active material contained in a crystalline state is filled in a slurry form with a solvent such as water, and then dried.
Adjust the thickness and use it as a positive electrode plate. An embodiment of the present invention will be described in detail below. After distributing the nickel fiber obtained by the chatter vibration cutting method using the air lading method, it was sintered at 1050°C for about 30 minutes in a reducing atmosphere to a thickness of 2 mm and porosity.
A 95% porous substrate was obtained. After that, it is heated in a plating bath consisting of cobalt ammonium sulfate, ammonium acetate, acetic acid, formalin, cadmium sulfate, etc.
~2 μm cobalt plating was applied. To this cobalt-plated porous body, about 10% by weight of nickel powder is added to a eutectic material consisting of 94% by mole of nickel hydroxide, 5% by mole of cobalt hydroxide, and 1% by mole of cadmium hydroxide, and then mixed well. A slurry made by adding about 40% by weight of water and about 2% by weight of carboxymethyl cellulose was filled, dried, and the thickness was adjusted to obtain a positive electrode plate of 0.7 mm. The packing density of the active material is approximately 1.8 g/cc.
This positive electrode plate was cut into 4 x 4 cm pieces, charged and discharged in a potassium hydroxide electrolyte, and the energy density (mAh/
cc) was measured. For comparison, the energy density (mAh/cc) of a positive electrode plate with the same dimensions but not plated with cobalt was determined. Table 1 shows the results in potassium hydroxide electrolyte with a specific gravity of 1.24.
After filling for 15 hours with 0.1C current, 0V with 0.2℃ current
A comparison of energy density (mAh/cc) when discharged to (VS.Hg/HgO) is shown.

【表】 表1よりニツケル繊維多孔体表面をコバルトメ
ツキすることによつて活物質利用率が向上してい
る。 次に固定されたバイト上に線径数ミリの鉄線
を移動させて切削すシエイビング法により得た繊
維径20〜30μm、長さ約50mmの鉄繊維をエアーレ
ード法にて均一に分布させた後、水素雰囲気下
900℃で30分間焼結させ、厚み2mm、目付量約
500g/m2の多孔体を作製し、硫酸ニツケル・メ
ツキ浴で約3μm厚のニツケルメツキしたもの、
鉄インゴツトのびびり切削加工法により繊維径20
〜40μm、長さ約30mmの鉄繊維をと同様にして
作製した多孔体ニツケルメツキしたもの、あるい
はニツケル粉末あるいは酸化ニツケル粉末にカ
ルボキシメチルセルロース等の有機バインダーを
混合してスラリー状とし、約50μmの細い多数の
ノズルから押し出して不織布状とした後、1100
℃、水素雰囲気下の高温還元炉にて焼結してニツ
ケル繊維多孔体としたもの(高温還元法)、など
製法の異なる各種の繊維多孔体を用い、前記実施
例のニツケル繊維多孔体と同様にコバルトメツキ
した正極板とコバルトメツキしていない正極板と
を作製して正極板のエネルギー密度を測定した。
その結果を第1図に示す。第1図から明らかな如
く、どの種類の繊維多孔体を用いても、コバルト
メツキすることによつて活物質利用率の向上が認
められる。 このことからおそらく繊維多孔体と活物質との
接触面が活物質利用率の向上に対し重要な働きを
もつているものと推定される。すなわち、コバル
トはアリカリ電解液中アノード方向でCo→
HCoO2→Co2O3と一度溶解して沈澱する性質を
有するため、集電体表面と活物質を完全に接続す
る作用を持つために活物質利用率が向上するもの
と推定される。本発明の金属繊維正極板は、従来
のニツケル粉末焼結極板に比べてエネルギー密度
が約40%も向上している。この原因は、芯金を必
要とせずかつ高多孔度基板の使用可能によつて活
物質の高密度充填が可能になつたこと及び、従来
の金属繊維正極板より高い活物質利用率が実現で
きたからである。 電池のコンパクト化が要求される今日、本発明
によつて高エネルギー密度でしかも低コストのニ
ツケル正極板の製造が可能になり、その工業的価
値はきわて大なるものである。
[Table] From Table 1, the active material utilization rate is improved by plating the surface of the nickel fiber porous material with cobalt. Next, iron fibers with a fiber diameter of 20 to 30 μm and a length of about 50 mm obtained by a shaving method in which an iron wire with a wire diameter of several millimeters is moved onto a fixed cutting tool and cut are uniformly distributed using an air lading method. , under hydrogen atmosphere
Sintered at 900℃ for 30 minutes, thickness 2mm, basis weight approx.
A porous body of 500 g/m 2 was prepared and nickel plated to a thickness of approximately 3 μm in a nickel sulfate plating bath.
The fiber diameter is 20mm by the chatter cutting method of iron ingots.
Porous iron fibers with a length of ~40 μm and approximately 30 mm are made in the same manner as nickel plating, or nickel powder or nickel oxide powder is mixed with an organic binder such as carboxymethylcellulose to form a slurry, and a large number of thin, approximately 50 μm long iron fibers are prepared. After extruding it from a nozzle to form a non-woven fabric,
℃, in a high-temperature reduction furnace under a hydrogen atmosphere to form a nickel fiber porous body (high-temperature reduction method). A positive electrode plate plated with cobalt and a positive electrode plate not plated with cobalt were prepared, and the energy density of the positive electrode plates was measured.
The results are shown in FIG. As is clear from FIG. 1, no matter what type of fibrous porous material is used, the active material utilization rate can be improved by plating with cobalt. From this, it is presumed that the contact surface between the fibrous porous material and the active material plays an important role in improving the active material utilization rate. In other words, cobalt changes from Co→ in the anode direction in the alkaline electrolyte.
Since it has the property of dissolving once as HCoO 2 →Co 2 O 3 and precipitating, it is presumed that the active material utilization rate is improved because it has the effect of completely connecting the current collector surface and the active material. The metal fiber positive electrode plate of the present invention has an energy density that is approximately 40% higher than that of a conventional nickel powder sintered electrode plate. The reason for this is that high-density packing of the active material is now possible due to no need for a metal core and the use of a highly porous substrate, and a higher active material utilization rate than conventional metal fiber positive electrode plates can be achieved. This is because the. In today's world where batteries are required to be more compact, the present invention makes it possible to manufacture a nickel positive electrode plate with high energy density and at low cost, and its industrial value is extremely great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は充放電回数と正極板のエネルギー密度
との関係図である。
FIG. 1 is a diagram showing the relationship between the number of times of charging and discharging and the energy density of the positive electrode plate.

Claims (1)

【特許請求の範囲】 1 耐アルカリ性金属繊維を焼結してなる多孔体
基板にコバルトメツキ処理し、水酸化ニツケルを
主成分とする正極活物質を充填することを特徴と
するアルカリ蓄電池用ぺースト式正極板。 2 耐アルカリ性金属繊維が鉄線の切削による繊
維である特許請求の範囲第1項記載のアルカリ蓄
電池用ぺースト式正極板。 3 耐アルカリ性金属繊維が鉄インゴツトのびび
り振動切削による繊維である特許請求の範囲第1
項記載のアルカリ蓄電池用ぺースト式正極板。 4 耐アルカリ性金属繊維がニツケルインゴツト
のびびり振動切削による繊維である特許請求の範
囲第1項記載のアルカリ蓄電池用ぺースト式正極
板。 5 耐アルカリ性金属繊維がニツケル粉末あるい
は酸化ニツケル粉末を繊維加工した特許請求の範
囲第1項記載のアルカリ蓄電池用ぺースト式正極
板。
[Claims] 1. A paste for alkaline storage batteries, characterized in that a porous substrate formed by sintering alkali-resistant metal fibers is plated with cobalt and filled with a positive electrode active material whose main component is nickel hydroxide. Formula positive electrode plate. 2. A paste-type positive electrode plate for an alkaline storage battery according to claim 1, wherein the alkali-resistant metal fibers are fibers obtained by cutting iron wire. 3. Claim 1, wherein the alkali-resistant metal fibers are fibers produced by chatter vibration cutting of iron ingots.
Paste-type positive electrode plate for alkaline storage batteries as described in . 4. A paste type positive electrode plate for an alkaline storage battery according to claim 1, wherein the alkali-resistant metal fibers are fibers obtained by chatter vibration cutting of a nickel ingot. 5. The paste-type positive electrode plate for an alkaline storage battery according to claim 1, wherein the alkali-resistant metal fiber is fabricated from nickel powder or nickel oxide powder.
JP59071606A 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery Granted JPS60216452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59071606A JPS60216452A (en) 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59071606A JPS60216452A (en) 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS60216452A JPS60216452A (en) 1985-10-29
JPH0517661B2 true JPH0517661B2 (en) 1993-03-09

Family

ID=13465475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59071606A Granted JPS60216452A (en) 1984-04-09 1984-04-09 Paste type positive-electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS60216452A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290864A (en) * 1985-10-17 1987-04-25 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS62128448A (en) * 1985-11-28 1987-06-10 Yuasa Battery Co Ltd Hermetically sealed type nickel-zinc storage battery
JP3386634B2 (en) * 1995-07-31 2003-03-17 松下電器産業株式会社 Alkaline storage battery
US6120937A (en) * 1997-05-15 2000-09-19 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Also Published As

Publication number Publication date
JPS60216452A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP4514265B2 (en) Electrode and non-aqueous electrolyte secondary battery
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JPH0517661B2 (en)
JP3371473B2 (en) Paste positive electrode plate for alkaline storage batteries
JP3408008B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and its manufacture
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH0429189B2 (en)
JPS60250556A (en) Production of nickel-cadmium storage battery
JPS60143569A (en) Positive plate for alkaline battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JP2001236959A (en) Non-sintered alkali cell positive electrode
JPS62285360A (en) Negative electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2981537B2 (en) Negative electrode for alkaline batteries
JPH1140148A (en) Alkaline storage battery and manufacture of electrode thereof
JP2810460B2 (en) Positive plate for alkaline storage battery
JPH0318303B2 (en)
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees