JPH0582027B2 - - Google Patents

Info

Publication number
JPH0582027B2
JPH0582027B2 JP60104394A JP10439485A JPH0582027B2 JP H0582027 B2 JPH0582027 B2 JP H0582027B2 JP 60104394 A JP60104394 A JP 60104394A JP 10439485 A JP10439485 A JP 10439485A JP H0582027 B2 JPH0582027 B2 JP H0582027B2
Authority
JP
Japan
Prior art keywords
active material
nickel
cobalt
foil
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60104394A
Other languages
Japanese (ja)
Other versions
JPS61263047A (en
Inventor
Masahiko Oshitani
Kenji Takeshima
Hiroshi Uramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP60104394A priority Critical patent/JPS61263047A/en
Publication of JPS61263047A publication Critical patent/JPS61263047A/en
Publication of JPH0582027B2 publication Critical patent/JPH0582027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ電池用ニツケル極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to nickel electrodes for alkaline batteries.

従来技術とその問題点 従来、小形アルカリ電池に用いられるニツケル
極は、2つのタイプに分類される。
Prior Art and Its Problems Conventionally, nickel electrodes used in small alkaline batteries are classified into two types.

その1つはシンター式と呼ばれるものであり、
2〜3μの微細なニツケル粉末を穿孔鋼板に焼結
させた十数ミクロンの微孔性焼結基板に硝酸ニツ
ケル溶液を含浸させる。その後アルカリ溶液中で
水酸化ニツケルに変化させることによつて、活物
質を充填させる所謂、溶液含浸法を用いるもので
ある。このものは、微孔性焼結基板細孔に活物質
が保持されるため、活物質と集電体の接触が良好
である。しかしながら、公知の如く活物質を充填
するには、煩雑な工程を必要とするために、非常
に高価な極板となる。
One of them is called the sinter method,
A nickel nitrate solution is impregnated into a microporous sintered substrate of ten or more microns, which is made by sintering fine nickel powder of 2 to 3 microns onto a perforated steel plate. The so-called solution impregnation method is then used to fill the active material by changing it into nickel hydroxide in an alkaline solution. In this case, since the active material is held in the pores of the microporous sintered substrate, there is good contact between the active material and the current collector. However, as is known, filling the active material requires a complicated process, resulting in a very expensive electrode plate.

他の1つは、水酸化ニツケル活物質に水、及び
増粘剤を加えることによつてペースト状となし、
数十〜数百ミクロンの細孔からなるニツケル繊維
焼結体に、直接充填する所謂、ペースト式と称さ
れるものである。
The other is made into a paste by adding water and a thickener to a nickel hydroxide active material;
This is a so-called paste method in which the nickel fiber sintered body having pores of several tens to several hundred microns is directly filled.

シンター式に比べて、水酸化ニツケル活物質そ
のものから出発するために製造工程が大巾に簡略
化される。しかしシンター基板に比べてより大き
な細孔から成り立つているので、集電性が非常に
悪い。しかし近年、水酸化ニツケルに酸化コバル
トを添加することによつてシンター式に近似した
性能が得られるようになつてきた。
Compared to the sinter method, the manufacturing process is greatly simplified because it starts from the nickel hydroxide active material itself. However, since it consists of larger pores than a sintered substrate, its current collecting properties are very poor. However, in recent years, it has become possible to obtain performance similar to that of the sinter method by adding cobalt oxide to nickel hydroxide.

これよりもさらに簡略化された製法は、ニツケ
ルメツキ穿孔鋼板やニツケル箔等に直接水酸化ニ
ツケル活物質をコーテイングする方法である。し
かしながらこの製法により作成された極板は、上
記のものよりもさらに活物質と集電体との接触が
悪いために、充分な性能が得られず実用化出来な
かつた。
A manufacturing method that is even simpler than this is to directly coat a nickel hydroxide active material on a nickel-metal perforated steel plate, nickel foil, or the like. However, since the contact between the active material and the current collector was even worse than that of the above-mentioned electrode plate produced by this manufacturing method, sufficient performance could not be obtained and it could not be put to practical use.

発明の目的 本発明は、活物質利用率を向上した、高性能で
且つ生産性の優れた超薄形のアルカリ電池用ニツ
ケル極を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide an ultra-thin nickel electrode for alkaline batteries with improved active material utilization, high performance, and excellent productivity.

発明の構成 即ち、本発明は上記の目的を達成するためにコ
バルトメツキしたニツケル箔に水酸化ニツケル及
び酸化コバルトを主体とする活物質層を該箔の両
面に付着したものである。
Structure of the Invention That is, in order to achieve the above-mentioned object, the present invention is a nickel foil plated with cobalt, and active material layers mainly composed of nickel hydroxide and cobalt oxide are attached to both sides of the foil.

実施例 以下本発明の一実施例について詳述する。厚さ
が20〜50μのニツケル箔に硫酸コバルトアンモニ
ウム、酢酸アンモニウム、酢酸、ホルマリン、硫
酸カドミウム等からなるコバルトメツキ浴を用い
て、厚み1〜3μのコバルトメツキをした。
EXAMPLE An example of the present invention will be described in detail below. A nickel foil with a thickness of 20 to 50 μm was plated with cobalt to a thickness of 1 to 3 μm using a cobalt plating bath consisting of cobalt ammonium sulfate, ammonium acetate, acetic acid, formalin, cadmium sulfate, etc.

活物質は、水酸化ニツケル90%に酸化コバルト
10%を加えてよく混合した後、2%のテフロンを
含有する水溶液を少量加えてよく練合させ、ロー
ラープレスによつて約40μのシート状とした。
The active material is 90% nickel hydroxide and cobalt oxide.
After adding 10% and mixing well, a small amount of an aqueous solution containing 2% Teflon was added and kneaded well, and a sheet of about 40 μm was formed using a roller press.

第1図はコバルトメツキしたニツケル箔シート
1の両面にローラーにより活物質層2を圧着して
いる状態を示したものである。得られたニツケル
正極板4はコバルトメツキニツケル箔シートを芯
金として両側に活物質層をもつ厚味が0.08〜0.11
mmのものである。このニツケル正極板を2cm×4
cmに切断し、この正極板と正極よりも容量が大き
い2枚のカドミウム負極板をセパレータを介して
サンドイツチ構造とした。これを比重1.26の苛性
カリウム水溶液中に充放電させ正極板の活物質利
用率を測定した。
FIG. 1 shows a state in which an active material layer 2 is pressed onto both sides of a cobalt-plated nickel foil sheet 1 by a roller. The obtained nickel positive electrode plate 4 has a cobalt metsuki nickel foil sheet as a core metal, has active material layers on both sides, and has a thickness of 0.08 to 0.11.
mm. This nickel positive electrode plate is 2cm x 4
This positive electrode plate and two cadmium negative electrode plates having a larger capacity than the positive electrode were placed in a sandwich structure with a separator in between. This was charged and discharged into a caustic potassium aqueous solution with a specific gravity of 1.26, and the active material utilization rate of the positive electrode plate was measured.

尚比較のために、同一寸法の同一組成で同一活
物質量でニツケル箔にコバルトメツキ処理を施し
ていない正極板、水酸化ニツケルのみで酸化コバ
ルトを含まない活物質組成であり、コバルトメツ
キ処理を施していないニツケル箔を用いた正極
板、さらにコバルトメツキ処理したニツケル箔
に、水酸化ニツケルのみで酸化コバルトを含まな
い正極板も併せて試験した。第2図はこれらの試
験結果を示したものである。0.1C電流で15時間充
電した後、0.2C電流で0Vvs.Hg/HgOまで放電
した時の正極板の活物質利用率を比較した。第2
図のIは本発明品であり、は水酸化ニツケルに
酸化コバルトを含む活物質をニツケル箔に圧着し
たもの、は水酸化ニツケル活物質をニツケル箔
に圧着したもの、は水酸化ニツケル活物質をコ
バルトメツキしたニツケル箔に圧着したものであ
る。第2図より明らかな如く、活物質に酸化コバ
ルトを含有すると水酸化ニツケルのみよりも利用
率は向上するが、ニツケル箔にコバルトメツキを
施すとさらに向上する。ニツケル箔にコバルトメ
ツキを施していないと、活物質中に酸化コバルト
を含有していても活物質利用率は劣り、且つサイ
クルの進行に伴なつて容量の低下が著しい。尚、
この理由は以下に示した如く解析される。
For comparison, a positive electrode plate with the same dimensions and the same composition and the same amount of active material is used, with a nickel foil without cobalt plating treatment, and a positive electrode plate with an active material composition of only nickel hydroxide without cobalt oxide, and a positive electrode plate with the same active material amount and nickel foil, and a positive electrode plate with an active material composition of only nickel hydroxide without cobalt oxide. A positive electrode plate using untreated nickel foil, a nickel foil treated with cobalt plating, and a positive electrode plate containing only nickel hydroxide and no cobalt oxide were also tested. Figure 2 shows the results of these tests. After charging with 0.1C current for 15 hours, we compared the active material utilization rate of the positive electrode plate when discharging to 0V vs. Hg/HgO with 0.2C current. Second
I in the figure is a product of the present invention, 1 is a product in which a nickel hydroxide active material containing cobalt oxide is bonded to a nickel foil, 2 is a product in which a nickel hydroxide active material is bonded to a nickel foil, and 2 is a product in which a nickel hydroxide active material is bonded to a nickel foil. It is crimped onto cobalt plated nickel foil. As is clear from FIG. 2, when the active material contains cobalt oxide, the utilization rate is improved more than when using only nickel hydroxide, but when the nickel foil is plated with cobalt, the utilization rate is further improved. If the nickel foil is not plated with cobalt, the active material utilization rate will be poor even if the active material contains cobalt oxide, and the capacity will decrease significantly as the cycle progresses. still,
The reason for this is analyzed as shown below.

水に溶解しないが、アルカリ電解液には可溶な
酸化コバルト(CoO)はアルカリ液中でブルー色
のHCoO2 -イオンを生成する。このイオンは正極
充放電々位でCoOOHとなり、格子欠陥を持つ良
電導性物質に変化し、電導性の乏しい水酸化ニツ
ケル粒子をコーテイングする形で沈澱している。
このCoOOHのコーテイングにより、水酸化ニツ
ケル粒子間は、電導性が改良され、活物質の隅々
まで電子が行き渡る。このCoOOHのコーテイン
グされた水酸化ニツケルは、それらよりもはるか
に表面積の少ないニツケル箔集電体と接触する。
Cobalt oxide (CoO), which is insoluble in water but soluble in alkaline electrolytes, forms blue-colored HCoO 2 - ions in alkaline solutions. These ions turn into CoOOH during charging and discharging of the positive electrode, change into a highly conductive material with lattice defects, and precipitate in the form of a coating of nickel hydroxide particles with poor conductivity.
This CoOOH coating improves the electrical conductivity between the nickel hydroxide particles, allowing electrons to spread throughout the active material. This CoOOH coated nickel hydroxide contacts a nickel foil current collector that has much less surface area than they do.

一方、ニツケル箔表面も活物質中に添加された
酸化コバルトから生成するHCoO2 -によつて
CoOOH層が形成されるが、それは不均一なもの
であり、多少ニツケル箔と活物質粒子の接触を良
好にしているが、これは不充分な状態である。ニ
ツケル箔にコバルトメツキを施したものは、コバ
ルトの溶解によるHCoO2 -イオンがニツケル箔と
活物質粒子の接触界面に有効に供給される。この
ため電導性の良好なCoOOHによる完全な結合状
態が形成される。ただしメツキされたコバルトは
金属であるために、酸化コバルトよりもアルカリ
電解液に溶解する速度が悪く、電解液に浸漬後約
15〜20時間放置する必要があつた。又、の電極
のサイクルの進行に伴なう容量低下は、CoOOH
による活物質粒子と集電体との接触が不充分なた
めに、充放電による活物質の膨張、収縮によつて
切断されていくためと考えられる。
On the other hand, the surface of the nickel foil is also affected by HCoO 2 - generated from cobalt oxide added to the active material.
Although a CoOOH layer is formed, it is non-uniform and provides some good contact between the nickel foil and the active material particles, but this is not sufficient. When the nickel foil is plated with cobalt, HCoO 2 - ions due to the dissolution of cobalt are effectively supplied to the contact interface between the nickel foil and the active material particles. Therefore, a completely bonded state is formed by CoOOH having good conductivity. However, since plated cobalt is a metal, it dissolves slower in alkaline electrolyte than cobalt oxide, and after being immersed in electrolyte, approximately
It was necessary to leave it for 15 to 20 hours. In addition, the capacity decrease with the progress of the electrode cycle of CoOOH
This is thought to be due to insufficient contact between the active material particles and the current collector, which causes the active material to expand and contract due to charging and discharging, leading to breakage.

上記実施例において用いたニツケル箔に、微細
孔を設けたものは、活物質層の付着が容易であり
生産効率が高く、集電体としてもより優れてい
る。
The nickel foil used in the above examples provided with micropores allows easy attachment of the active material layer, has high production efficiency, and is also better as a current collector.

発明の効果 上記の如く、本発明は活物質の利用率を向上し
た、高性能で活つ生産性の優れた超薄形のアルカ
リ電池用ニツケル極を提供することが出来るの
で、その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention can provide an ultra-thin nickel electrode for alkaline batteries with improved active material utilization, high performance, and excellent productivity, and therefore has industrial value. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は活物質の集電体への付着工程を示した
図、第2図は各種正極板の特性比較した図であ
る。 1……活物質シート、2……ニツケル箔シー
ト、3……ローラープレス、4……ニツケル極。
FIG. 1 is a diagram showing a process of attaching an active material to a current collector, and FIG. 2 is a diagram comparing characteristics of various positive electrode plates. 1... Active material sheet, 2... Nickel foil sheet, 3... Roller press, 4... Nickel pole.

Claims (1)

【特許請求の範囲】[Claims] 1 コバルトメツキしたニツケル箔に水酸化ニツ
ケル及び酸化コバルトを主体とする活物質層を該
箔の両面に付着することを特徴とするアルカリ電
池用ニツケル極。
1. A nickel electrode for an alkaline battery, comprising a cobalt-plated nickel foil and an active material layer mainly composed of nickel hydroxide and cobalt oxide attached to both sides of the foil.
JP60104394A 1985-05-16 1985-05-16 Nickel electrode for alkaline battery Granted JPS61263047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104394A JPS61263047A (en) 1985-05-16 1985-05-16 Nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104394A JPS61263047A (en) 1985-05-16 1985-05-16 Nickel electrode for alkaline battery

Publications (2)

Publication Number Publication Date
JPS61263047A JPS61263047A (en) 1986-11-21
JPH0582027B2 true JPH0582027B2 (en) 1993-11-17

Family

ID=14379517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104394A Granted JPS61263047A (en) 1985-05-16 1985-05-16 Nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPS61263047A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265165A (en) * 1989-04-04 1990-10-29 Yuasa Battery Co Ltd Nickel electrode for alkaline storage battery
JP2663644B2 (en) * 1989-08-22 1997-10-15 株式会社ユアサコーポレーション Nickel electrode for alkaline storage battery
JP3225608B2 (en) * 1992-06-25 2001-11-05 日本電池株式会社 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211770A (en) * 1984-04-03 1985-10-24 Japan Storage Battery Co Ltd Positive electrode plate for alkaline battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211770A (en) * 1984-04-03 1985-10-24 Japan Storage Battery Co Ltd Positive electrode plate for alkaline battery

Also Published As

Publication number Publication date
JPS61263047A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
JPS6157661B2 (en)
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JPH0582027B2 (en)
JPH0526304B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0429189B2 (en)
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
CN111435730B (en) Method for forming interface layer of lead-carbon composite material on lead-based substrate
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
RU2098891C1 (en) Electrode for alkali storage battery and method for its manufacturing
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH04349355A (en) Electrode base for alkali storage battery
JPH01302668A (en) Electrode for alkaline storage battery
JPS61124068A (en) Nickel cadmium alkaline battery
JPH0410181B2 (en)
JPS61110962A (en) Manufacture of positive nickel plate for alkaline storage battery
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP4085434B2 (en) Alkaline battery electrode
JPH04344B2 (en)
EP0331599A1 (en) Process for obtaining electrodes with a non-woven support of nickel or nickel alloy fibres
JPS60130055A (en) Manufacture of positive plate containing cobalt hydroxide
JPS58135573A (en) Production method of zinc negative electrode for alkaline battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term