JPS60211770A - Positive electrode plate for alkaline battery - Google Patents

Positive electrode plate for alkaline battery

Info

Publication number
JPS60211770A
JPS60211770A JP59066973A JP6697384A JPS60211770A JP S60211770 A JPS60211770 A JP S60211770A JP 59066973 A JP59066973 A JP 59066973A JP 6697384 A JP6697384 A JP 6697384A JP S60211770 A JPS60211770 A JP S60211770A
Authority
JP
Japan
Prior art keywords
cobalt
positive electrode
powder
electrode plate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59066973A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamitsu
中満 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59066973A priority Critical patent/JPS60211770A/en
Publication of JPS60211770A publication Critical patent/JPS60211770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To remarkably improve the performance of a paste type positive electrode plate in which cobalt powder is added as a bonding agent by covering the surface of a conductive support body with cobalt metal or using the support body made of cobalt metal. CONSTITUTION:The mixed powder between the nickel hydroxide powder containing cobalt hydroxide, carbonyl nickel powder as conductive material, and the cobalt powder as a bonding agent obtained by hydrogen-reducing cobalt oxalate is pasted in a carboxymethylcellulose aqueous solution. Then, both surfaces of nickel net to which electrolytic cobalt plating is applied is coated with this paste and the thickness is adjusted, then the paste is dried by hot air. Furthermore, a positive electrode plate is obtained by immersing the said plate in a polytetrafluoroethylene dispersion solution and then drying, pressurizing, and molding it. The exfoliation of an active material is suppressed and life performance and discharge performance are improved.

Description

【発明の詳細な説明】 本発明は、ペースト状にした正極活物質を導電性支持体
の両面に直接塗布して成るアルカリ電池用正極板の改良
に関するものであり、導電性支持体をコバルトで被覆す
ること、あるいはコバルト金属より成る支持体を用いる
ことによって正極板の性能を向上させることを目的とす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a positive electrode plate for alkaline batteries in which a paste-like positive electrode active material is directly coated on both sides of a conductive support, and the conductive support is coated with cobalt. The purpose is to improve the performance of the positive electrode plate by coating it or using a support made of cobalt metal.

従来、アルカリ電池の正極板の基板としては、ニッケル
粉末の焼結体が用いられているが、その多孔度は70〜
80%程度であり、これ以上に多孔度を上げると、その
機械的強度が著しく減少し、したがってその空隙内に正
極活物質を充填した場合に、基板の変形、亀裂や活物質
の剥離等を招来する欠点があった。また、活物質を充填
り−る場合、通常、減圧含浸法とよばれる方法、すなわ
ち硝酸ニッケルや硫酸ニッケル等の塩の水溶液を基板に
減圧含浸したのち、アルカリ水溶液で処理し、ざらに湯
洗、乾燥するという操作を繰り返り方法がとられている
。しかしながら、−回の操作によって充填される量は少
く、しかも、2回目から充填される量は次第に減少して
くるので通常4〜10回の操作を繰り返1−必要がある
。そのため製造工程が複雑で製造]ストが高くなるとい
う欠点があった。
Conventionally, a sintered body of nickel powder has been used as the substrate for the positive electrode plate of alkaline batteries, but its porosity is between 70 and 70.
The porosity is approximately 80%, and if the porosity is increased beyond this level, its mechanical strength will be significantly reduced, and therefore, when the positive electrode active material is filled into the voids, deformation of the substrate, cracking, and peeling of the active material may occur. There were drawbacks that came with it. In addition, when filling the active material, a method called vacuum impregnation is usually used, in which the substrate is impregnated with an aqueous solution of salts such as nickel nitrate or nickel sulfate under reduced pressure, then treated with an alkaline aqueous solution, and then roughly washed with hot water. A method is used in which the steps of drying are repeated. However, the amount filled in the first operation is small, and the amount filled from the second time onward gradually decreases, so it is usually necessary to repeat the operation 4 to 10 times. This has the disadvantage that the manufacturing process is complicated and manufacturing costs are high.

そこで近年、ニッケル網や多孔状ニッケル板等の活物質
支持体の両面にペースト状にした正極活物質を直接塗f
li するものが注目されてきている。
Therefore, in recent years, a positive electrode active material in paste form has been applied directly to both sides of an active material support such as a nickel mesh or a porous nickel plate.
People who do li are attracting attention.

ニッケル網等の両面にペースト状活物質を直接塗布して
なる正極板は、極板の体積に対して活物質支持体の体積
の占める割合が極めて小さいために正極板の高容量化を
はかることができるとともに、製造方法が極めて簡便に
なり連続工程が可能で経済的にも極めて右利である。
A positive electrode plate made by directly applying a paste active material to both sides of a nickel mesh, etc., has a very small ratio of the volume of the active material support to the volume of the electrode plate, so it is difficult to increase the capacity of the positive electrode plate. In addition to this, the manufacturing method is extremely simple and can be carried out continuously, making it economically advantageous.

しかしながら、正極活物質を有機高分子等の結着剤のみ
によって保持する場合には結着剤の結着力が小さいため
に充放電時の活物質の膨張やガスの発生等によって活物
質が脱落して極板の寿命が著しく短くなるという欠点が
ある。そこで、活物質の結着ノJを高めるためにコバル
ト粉末を添加することが提案されている。コバルト粉末
を添加すると充電時において極板が硬化し、活物質粒子
同士の結合力が高まって活物質粒子の脱落は著しく減少
するが、活物質層と支持体との結合力が弱いために充放
電を繰り返すど活物質層が支持体から剥離してJJ52
落するという不都合がある。
However, when the positive electrode active material is held only by a binder such as an organic polymer, the binding force of the binder is small, and the active material may fall off due to expansion of the active material or gas generation during charging and discharging. This has the disadvantage that the life of the electrode plate is significantly shortened. Therefore, it has been proposed to add cobalt powder to increase the binding strength of the active material. When cobalt powder is added, the electrode plates harden during charging, increasing the bonding force between active material particles and significantly reducing the shedding of active material particles, but since the bonding force between the active material layer and the support is weak, filling When the discharge is repeated, the active material layer peels off from the support and JJ52
There is the inconvenience of falling.

本発明は、上記のような欠点を解決すべくなされたもの
であり、結着剤としてコバルト粉末を添加したペースト
式正極板において、導電性支持体の表面をコバルト金属
によって被覆すること、あるいはコバルト金属より成る
支持体を用いることによって、正極活物質支持体との結
合力を向上させて正極板の性能を著しく向上できること
を見出したことに基づくものである。
The present invention has been made to solve the above-mentioned drawbacks, and in a paste-type positive electrode plate containing cobalt powder as a binder, the surface of the conductive support is coated with cobalt metal, or cobalt metal is added as a binder. This is based on the discovery that by using a support made of metal, the bonding force with the positive electrode active material support can be improved and the performance of the positive electrode plate can be significantly improved.

以下、本発明の実施例ならびにその効果を詳述する。Examples of the present invention and its effects will be described in detail below.

本発明による正極板は次のようにして製作した。A positive electrode plate according to the present invention was manufactured as follows.

まず、水酸化コバルトを3%含/υだ水酸化ニッケル粉
末60部と、導電材としてカーボニルニッケル粉末20
部と、結着剤としてシュウ酸コバルトを水素還元して得
たコバルト粉末20部との混合粉末を、1.0%カルボ
キシメチルセルロース水溶液でペースト化する。つぎに
、このペーストを電解コバルトメッキを施した20メツ
シユのニッケル網の両面に塗布して厚さを1.0III
Illに調節した後、80℃で1時間熱風乾燥する。さ
らにこの極板を5%ポリテトラフルAロエチレン分散液
中に浸漬してから再び80°Cて 1時間乾燥した後、
厚さが0.65mmになるように加圧成型して本発明に
よる正極板Aを得た。比較のために、ニッケル網にコバ
ルトメッキを施さない従来法による正極板Bを製作した
First, 60 parts of nickel hydroxide powder containing 3% cobalt hydroxide and 20 parts of carbonyl nickel powder as a conductive material.
A mixed powder of 20 parts of cobalt powder obtained by hydrogen reduction of cobalt oxalate as a binder is made into a paste with a 1.0% carboxymethyl cellulose aqueous solution. Next, this paste was applied to both sides of a 20-mesh nickel mesh plated with electrolytic cobalt to a thickness of 1.0III.
After adjusting the temperature to Ill, it was dried with hot air at 80° C. for 1 hour. Further, this electrode plate was immersed in a 5% polytetrafluor A ethylene dispersion and dried again at 80°C for 1 hour.
A positive electrode plate A according to the present invention was obtained by pressure molding to a thickness of 0.65 mm. For comparison, a positive electrode plate B was manufactured using a conventional method in which the nickel mesh was not plated with cobalt.

これらの正極板1枚と対極として焼結式カドミウム負極
根2枚と電解液としてS 、 G 、1.250 (2
0’C)KO+−1水溶液とを用いてフラツデツドタイ
プの電池を構成した。そして、この電池を金属コバルト
1g当り138111Aの電流で10時間充電して金属
]パルl−をオキシ水酸化コバルトに変化させた後、水
酸化ニッケルの理論容量に対して0.IOAの電流で1
6時間充電した後、0.20Aで1.0■まで放電して
活物質利用率をめた。これらの電池の放電特性の比較を
第1図に示す。図から本発明による電池は放電電圧が高
く活物質利用率も高いことがわかる。
One of these positive electrode plates, two sintered cadmium negative electrode plates as counter electrodes, and S, G, 1.250 (2
0'C) KO+-1 aqueous solution was used to construct a flat type battery. Then, this battery was charged for 10 hours with a current of 138111A per gram of metal cobalt to change the metal [Pal l-] into cobalt oxyhydroxide, and then the theoretical capacity of nickel hydroxide was 0. 1 at IOA current
After charging for 6 hours, the battery was discharged to 1.0μ at 0.20A to determine the active material utilization rate. A comparison of the discharge characteristics of these batteries is shown in FIG. The figure shows that the battery according to the present invention has a high discharge voltage and a high active material utilization rate.

つぎにこれらの電池それぞれ10セルずつを用いT O
,IOAテ、16時Ill 充if L tc後0,2
CAr 1.OVまで放電するという充放電サイクル試
敵をおこなった場合の活物質利用率の変化を第2図に示
す。
Next, using 10 cells each of these batteries, T O
, IOAte, 16:00 Ill if L tc after 0,2
CAr 1. Figure 2 shows changes in the active material utilization rate when a charge/discharge cycle test was performed in which the battery was discharged to OV.

図から、本発明による電池Aは従来法による電池Bと比
較して寿命性能が極めてすぐれていることがわかる。従
来法による電池Bの場合には、丈イクルが進むと正極活
物質が支持体から完全に剥離してしまう場合があったが
、本発明による電池への場合には活物質粒子がわずかに
脱落するのみであり、活物質が完全に剥i′TJる電池
はなかった。
From the figure, it can be seen that battery A according to the present invention has extremely superior life performance compared to battery B according to the conventional method. In the case of battery B manufactured by the conventional method, the positive electrode active material sometimes completely peeled off from the support as the cycle progressed, but in the case of the battery according to the present invention, the active material particles slightly fell off. There was no battery in which the active material completely peeled off.

何故、支持体表面をコバルトで被覆すると活物質の剥離
が防止できて極板性能が著しく向上するのかは次のよう
な理由によるものと考えられる。
The reason why coating the support surface with cobalt prevents the active material from peeling off and significantly improves the electrode plate performance is thought to be due to the following reasons.

すなわち、ペースト式正極板を製作する際にコバルト粉
末を添加すると、充電時にコバルトが水酸化コバルトに
、ざらにオキシ水酸化コバルトに酸化される際の結晶生
長等によって極板内にオキシ水酸化コバルトによる導電
性の網目構造が形成されて極板が硬化し活物質1粒子が
強固に保持されると考えられている。ニッケル網等の支
持体の両面に塗布されたそれぞれの活物質層中では上記
のような効果によって活物質粒子が充分に強く保持され
ているが、支持体近傍では活物質層中に支持体が存在す
るために支持体をはさんだ活物質層同士の接触面積が支
持体の面積だけ減少覆ることになって結合力が充分に得
られないと考えられる。すなわち、極板中の活物質粒子
の結合力は支持体近傍において最も弱くなることになる
。そのために充放電にJ、る活物質の脱落は支持体近傍
において生じやづく、活物質層の剥離による極板の崩壊
に至るものと考えられる。ところが、本発明によると、
支持体表面に存在する金属コバルトと活物質中のコバル
ト粒子とが強固に結合することにより、極板中の活物質
粒子の結合力は、むしろ支持体近傍において最も強くな
ると考えられる。そのために、活物質の剥離が抑制され
て寿命性能が向上し、また集電性が向」ニすることによ
って放電性能も向上するものと考えられる。
In other words, if cobalt powder is added when manufacturing a paste-type positive electrode plate, cobalt oxyhydroxide will form inside the electrode plate due to crystal growth when the cobalt is oxidized to cobalt hydroxide and roughly to cobalt oxyhydroxide during charging. It is believed that a conductive network structure is formed by the oxidation process, the electrode plate is hardened, and one particle of the active material is firmly held. In each active material layer coated on both sides of a support such as a nickel mesh, the active material particles are held sufficiently strong due to the above-mentioned effects, but in the vicinity of the support, the support is It is considered that due to the presence of the active material layers, the contact area between the active material layers sandwiching the supports is reduced by the area of the supports, and a sufficient bonding force cannot be obtained. That is, the bonding force between the active material particles in the electrode plate is the weakest near the support. For this reason, it is thought that the active material falls off during charging and discharging, which tends to occur near the support, leading to the collapse of the electrode plate due to peeling of the active material layer. However, according to the present invention,
It is thought that the binding force between the active material particles in the electrode plate is rather strongest near the support due to the strong bond between the metal cobalt present on the surface of the support and the cobalt particles in the active material. For this reason, it is thought that exfoliation of the active material is suppressed to improve life performance, and discharge performance is also improved by improving current collection performance.

また、本発明のように支持体表面をコバルトで被覆する
と、支持体の酸素過電圧が大きくなるために充電終期の
支持体からの酸素発生が抑制されてガス発生による活物
質の剥離を抑制する効果もあるものと考えられる。
In addition, when the surface of the support is coated with cobalt as in the present invention, the oxygen overvoltage of the support becomes large, which suppresses oxygen generation from the support at the end of charging, and has the effect of suppressing peeling of the active material due to gas generation. It is thought that there are also.

なお、実施例では支持体表面をコバルトで被覆覆る手段
として電解コバルトメッキを用いたが、他の方法、例え
ば無電解コバルトメッキやスラリー状にしたコバルト粉
末を吹き付け、あるいは塗布した後乾燥する方法等を用
いても同様の効果が得られる。
In the examples, electrolytic cobalt plating was used as a means of coating the surface of the support with cobalt, but other methods may be used, such as electroless cobalt plating, spraying slurry-formed cobalt powder, or drying after coating. A similar effect can be obtained by using .

以上述べたように、結着剤とし゛Cコバルト粉末を用い
るペースト式のアルカリ電池用正極板において活物質支
持体表面をコバルトで被iすることによって性能のすぐ
れた正極板を1qることができる。
As described above, in a paste-type positive electrode plate for an alkaline battery using cobalt powder as a binder, a positive electrode plate with excellent performance can be obtained by coating the surface of the active material support with cobalt.

なお、少くとも活物質支持体表面に金属コバルトが存在
すれば上記のような効果が得られるのであるから、全体
がコバルト金属より成る支持体を用いても同様の効果が
得られることはいうまでもない。
It should be noted that since the above effects can be obtained at least if metal cobalt is present on the surface of the active material support, it goes without saying that the same effect can be obtained even if a support made entirely of cobalt metal is used. Nor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本光明による電池と従来
法による電池との放電特性の比較図および寿命性能の比
較図である。 △・・・・・・本発明品、B・・・・・・従来品体力 
宴 利 川 平 (%) オ 2 回 席 族1!ブイフル散(1!7)
FIG. 1 and FIG. 2 are diagrams comparing the discharge characteristics and life performance of a battery according to the present invention and a battery according to the conventional method, respectively. △・・・Invention product, B・・・Conventional product physical strength
Banquet Toshikawahira (%) O 2nd class Family 1! Buifurusan (1!7)

Claims (1)

【特許請求の範囲】 1、水酸化ニッケル粉末と導電材粉末と結着剤としての
コバルト粉末との混合粉末をペースト化したものを、コ
バルト金属より成る支持体あるいは少くともその表面を
コバルト金属で被覆した導電性支持体、例えば網あるい
は多孔状の板等の両面に塗布することを特徴とするアル
カリ電池用正極板。 2、前記コバルト金属で被覆した導電性支持体がコバル
トメッキを施した導電性支持体である特許請求の範囲第
1項記載のアルカリ電池用正極板。 3、前記コバルト金属で被覆した導電性支持体が導電性
支持体の表面にスラリー状のコバルト粉末を吹き付ける
かあるいは塗布した後乾燥したものである特許請求の範
囲第1項記載のアルカリ電池用正極板。
[Claims] 1. A paste made of a mixed powder of nickel hydroxide powder, conductive material powder, and cobalt powder as a binder is made into a paste, and a support made of cobalt metal or at least its surface is coated with cobalt metal. A positive electrode plate for an alkaline battery, characterized in that it is coated on both sides of a coated conductive support, such as a net or a porous plate. 2. The positive electrode plate for an alkaline battery according to claim 1, wherein the conductive support coated with cobalt metal is a conductive support plated with cobalt. 3. The positive electrode for an alkaline battery according to claim 1, wherein the conductive support coated with cobalt metal is obtained by spraying or coating slurry cobalt powder on the surface of the conductive support and then drying it. Board.
JP59066973A 1984-04-03 1984-04-03 Positive electrode plate for alkaline battery Pending JPS60211770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066973A JPS60211770A (en) 1984-04-03 1984-04-03 Positive electrode plate for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066973A JPS60211770A (en) 1984-04-03 1984-04-03 Positive electrode plate for alkaline battery

Publications (1)

Publication Number Publication Date
JPS60211770A true JPS60211770A (en) 1985-10-24

Family

ID=13331474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066973A Pending JPS60211770A (en) 1984-04-03 1984-04-03 Positive electrode plate for alkaline battery

Country Status (1)

Country Link
JP (1) JPS60211770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
CN107946154A (en) * 2017-11-25 2018-04-20 浙江江山三友电子有限公司 A kind of processing technology and its process equipment of high on-off times fluorescent tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPH0582027B2 (en) * 1985-05-16 1993-11-17 Yuasa Battery Co Ltd
CN107946154A (en) * 2017-11-25 2018-04-20 浙江江山三友电子有限公司 A kind of processing technology and its process equipment of high on-off times fluorescent tube
CN107946154B (en) * 2017-11-25 2024-01-30 浙江江山三友电子有限公司 Processing technology and processing equipment for high-switching-frequency lamp tube

Similar Documents

Publication Publication Date Title
JPS60211770A (en) Positive electrode plate for alkaline battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPS60143569A (en) Positive plate for alkaline battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3158416B2 (en) Cathode plate for paste-type nickel cadmium storage battery
JP3941341B2 (en) Alkaline battery and nickel plate
JP3191830B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS61110962A (en) Manufacture of positive nickel plate for alkaline storage battery
JPH0963573A (en) Manufacture of hydrogen storage alloy electrode
JPH0326501B2 (en)
JPS60216449A (en) Manufacture of paste type cadmium negative plate
JP2000348731A (en) Nickel electrode for alkaline storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH0377271A (en) Nickel electrode for alkaline storage battery
JPH03133059A (en) Manufacture of paste type cadmium negative electrode
JPH04344B2 (en)
JPH0416905B2 (en)
JPS62229763A (en) Nonsintered nickel positive electrode
JPH05242885A (en) Paste type cathode plate for alkaline storage battery