JPS5851669B2 - Manufacturing method of battery electrode substrate - Google Patents

Manufacturing method of battery electrode substrate

Info

Publication number
JPS5851669B2
JPS5851669B2 JP53113189A JP11318978A JPS5851669B2 JP S5851669 B2 JPS5851669 B2 JP S5851669B2 JP 53113189 A JP53113189 A JP 53113189A JP 11318978 A JP11318978 A JP 11318978A JP S5851669 B2 JPS5851669 B2 JP S5851669B2
Authority
JP
Japan
Prior art keywords
porous body
conductive powder
manufacturing
electrode substrate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53113189A
Other languages
Japanese (ja)
Other versions
JPS5539180A (en
Inventor
勉 岩城
千之助 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53113189A priority Critical patent/JPS5851669B2/en
Publication of JPS5539180A publication Critical patent/JPS5539180A/en
Publication of JPS5851669B2 publication Critical patent/JPS5851669B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 一般に各種ポータフル機器、移動用、据置用などに用い
られる電池の電極としては、大別してペースト式、粉末
加圧式、クラッド式とポケット式、焼結式などがある。
DETAILED DESCRIPTION OF THE INVENTION Generally, the electrodes of batteries used for various portable devices, mobile devices, stationary devices, etc. can be roughly divided into paste type, powder press type, clad type, pocket type, and sintered type.

これらのうちペースト式は、鉛電池で最も良く知られて
おり、鉛粉な主とする活物質粉末を水と硫酸を用いて練
合してペースト状にし、これを鉛を主とする格子に塗着
することにより得られる。
Among these, the paste type is best known for lead batteries, in which active material powder, mainly lead powder, is kneaded with water and sulfuric acid to form a paste, and this is placed on a lattice mainly made of lead. Obtained by painting.

最近アルカリ電池にも非焼結式と称して、スクリーンや
孔あき板、エキスパンデッドメタルなどに水酸化ニッケ
ルや酸化カドミウムを主とし、結着剤を用いてペースト
状にしたものが塗着されて電極として用いられている。
Recently, alkaline batteries have also been coated with a paste made from nickel hydroxide or cadmium oxide, using a binder, on screens, perforated plates, expanded metal, etc., which are called non-sintered batteries. It is used as an electrode.

しかし、現在の技術ではこの方式の電極は十分な電解液
を用いた電池では寿命に問題があるので、主に電解液量
を規制した密閉型電池に用いられている。
However, with current technology, this type of electrode has a problem with the lifespan of batteries that use a sufficient amount of electrolyte, so it is mainly used in sealed batteries where the amount of electrolyte is regulated.

また加圧式は特に一次電池の二酸化マンガン極、酸化水
銀極、酸化銀極などに用いられており、活物質粉末を主
として用いた電極材料を加圧成型したものである。
The pressurized type is particularly used for manganese dioxide electrodes, mercury oxide electrodes, silver oxide electrodes, etc. of primary batteries, and is made by press-molding electrode materials mainly using active material powder.

これらのペースト式や加圧式はいずれも製法が簡単であ
り低コストになるとともに、電池特性上でも比較的すぐ
れているので、電極の製法上主流を占めている。
These paste type and pressurized type are both easy to manufacture and low cost, and have relatively excellent battery characteristics, so they are the mainstream methods for manufacturing electrodes.

しかし、一次電池は別にして二次電池に用いて充放電を
繰り返すと耐久性に問題があり、活物質の脱落や電極の
ふ(れが生じ易い。
However, if used as a secondary battery (aside from a primary battery) and repeatedly charged and discharged, there is a problem in durability, and the active material is likely to fall off and the electrodes may swell.

また鉛電池のクラッド式やアルカリ電池のポケット式は
このようなペースト式の問題点を解決して長寿命化を可
能にしたものであるが、逆に高放電での電圧低下が比較
的大きいので、主に低放電用の用途に用いられている。
In addition, clad lead-acid batteries and pocket alkaline batteries solve the problems of paste-type batteries and have a longer lifespan, but on the other hand, the voltage drop at high discharge is relatively large. , is mainly used for low discharge applications.

焼結式は、焼結基体を用いているため、電池特性、寿命
ともに大きな改善が認められている。
Since the sintered type uses a sintered base, significant improvements have been observed in both battery characteristics and lifespan.

しかし、焼結体の製法、活物質の充填などに工程の複雑
さがあるため、コストの点でかなり不利な面を有してい
る。
However, since the manufacturing method of the sintered body and the process of filling the active material are complicated, it is quite disadvantageous in terms of cost.

したがって最近では性能は焼結式に近づけ、しかも低廉
化をはかる試みが多くなされている。
Therefore, in recent years, many attempts have been made to bring the performance closer to that of the sintered type and to reduce the cost.

本発明はそのうちの一つの有効な電極基体の製造法を提
供するものである。
The present invention provides one of the effective methods for manufacturing an electrode substrate.

すなわち、天然あるいは合成樹脂からなる織物、不織布
、フェルトなどの繊維で構成された多孔体内に耐電解液
性の導電性粉末を含有させ、ついで全体を金属メッキし
て繊維状多孔性金属体を得、これを電極基体とするもの
である。
That is, electrolyte-resistant conductive powder is contained in a porous body made of fibers such as woven fabrics, non-woven fabrics, or felt made of natural or synthetic resin, and then the entire body is plated with metal to obtain a fibrous porous metal body. , this is used as an electrode base.

一般に織物、不織布、フェルトなどはそれ自身十分な強
度を有しているため、これに金属メッキを施して得られ
る多孔体は厚さも任意に、かつ高多孔度で、しかも強度
の大きいものが得られ、従来の焼結基板や金属繊維を集
めて焼結などにより得られる多孔体や発泡メタルなどよ
りもむしろすぐれている。
Generally, woven fabrics, non-woven fabrics, felts, etc. have sufficient strength by themselves, so the porous bodies obtained by applying metal plating to them can be made to any desired thickness, have high porosity, and have high strength. It is superior to conventional sintered substrates, porous materials obtained by gathering and sintering metal fibers, and foamed metals.

例えば、現在広く用いられている円筒状電池に用いるた
めに、うず巻状に巻いても他の電極に比べて亀裂や破損
はきわめて少ない。
For example, even when wound into a spiral shape for use in cylindrical batteries, which are currently widely used, cracks and breakage are extremely rare compared to other electrodes.

また繊維の上に金属メッキがされているため、金属量が
少なくても繊維状に互いにからまった形状を呈している
ので、導電性の点でもすぐれているなどの長所を有する
In addition, since the fibers are plated with metal, even if the amount of metal is small, the fibers are entangled with each other, so they have advantages such as excellent conductivity.

ただ織物や不織布、フェルトなどを金属層の芯にして得
られた金属多孔体であるので、孔の形状が焼結式や発泡
メタルのような球状ではなく、正方形状あるいは長方形
状になっている。
However, since it is a metal porous body obtained by using woven fabric, non-woven fabric, felt, etc. as the core of the metal layer, the pores are square or rectangular rather than spherical as in sintered or foamed metal. .

活物質粉末は一般的には球状であるため、充填された活
物質の保持力についてはやや問題がある。
Since the active material powder is generally spherical, there is a slight problem with the holding power of the filled active material.

また繊維の表面は一般的に平滑であるため、これにメッ
キしたものもやはり平滑で、粉末から得られた焼結体に
比べると凹凸がほとんどなく、その点からも活物質との
付着力の点や改良が望まれる。
In addition, since the surface of fibers is generally smooth, those plated with it are also smooth and have almost no irregularities compared to sintered bodies obtained from powder, and from this point of view, the adhesion with active materials is also improved. Points and improvements are desired.

すなわち、これらは活物質の均一な充填と寿命に関連す
ることになる。
That is, these are related to uniform filling and lifetime of the active material.

そこで本発明では、繊維で構成された多孔体に金属メッ
キを施して得られる電極基体の上記問題点を解消する有
効な手段を提供するものである。
Therefore, the present invention provides an effective means for solving the above-mentioned problems of an electrode base obtained by metal plating a porous body made of fibers.

すなわち、繊維で構成された多孔体に、耐電解液性を有
する導電性粉末を含有させ、かつ全体を金属メッキする
もので、金属メッキの前に導電性粉末を介在させるよう
にしているため、金属メッキ後に得られた繊維状金属多
孔体と導電性粉末の一体化は完全となり、また導電性粉
末の介在により繊維で形成された孔形が正方形や長方形
から球状に近づき、しかも表面状態は複雑化するため、
活物質の保持能力が向上する。
In other words, a porous body made of fibers contains conductive powder that is resistant to electrolyte, and the entire body is plated with metal, and the conductive powder is interposed before the metal plating. The fibrous metal porous material obtained after metal plating and the conductive powder are completely integrated, and due to the presence of the conductive powder, the pores formed by the fibers change from square or rectangular to spherical, and the surface condition is complex. In order to
The ability to retain active materials is improved.

したがって活物質の均一充填性は向上し、かつ寿命も向
上する。
Therefore, the uniform filling property of the active material is improved and the life span is also improved.

なお、耐電解液性を有する導電性粉末を多孔体内へ介在
させる方法としては、この粉末を好ましくは結着剤を含
む溶媒に分散させておき、これを多孔体内に含浸させた
後乾燥する方法が最も有効である。
In addition, as a method for interposing a conductive powder having electrolyte resistance into a porous body, this powder is preferably dispersed in a solvent containing a binder, and the porous body is impregnated with this, followed by drying. is the most effective.

その他に、多孔体の表面層にのみ粉末を一体化しても活
物質の保持力の向上には効果があるため、この場合には
粉末と結着剤による分散液をスプレー等により多孔体の
表面に付着させた後乾燥する方法も有効である。
In addition, integrating powder only into the surface layer of the porous material is effective in improving the retention of the active material, so in this case, a dispersion of the powder and binder may be sprayed onto the surface of the porous material. A method of adhering the material to a surface and then drying it is also effective.

また導電性粉末を水あるいはアルコール等の分散媒に分
散させ、これを多孔体に含浸させた後乾燥するようにし
てもよい。
Alternatively, the conductive powder may be dispersed in a dispersion medium such as water or alcohol, impregnated into a porous body, and then dried.

上記導電性粉末と多孔体を一体化した後の金属メッキを
する場合においては、導電性粉末が介在されているため
、いきなり電解メッキを行なっても全体へのメッキは一
応は可能であるが、初期のメッキの効率を考慮するとま
ず無電解メッキを行なってから電解メッキを行なうこと
が好ましい方法といえる。
When performing metal plating after integrating the conductive powder and the porous body, since the conductive powder is interposed, it is possible to plate the entire body even if electrolytic plating is performed immediately. Considering the efficiency of initial plating, it is preferable to first perform electroless plating and then perform electrolytic plating.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

まず厚さ約0.8mm、平均孔径150μ、多孔度約9
0%のポリプロピレンからなるフェルトを用意する。
First, the thickness is about 0.8mm, the average pore diameter is 150μ, and the porosity is about 9.
A felt made of 0% polypropylene is prepared.

方カルボキシメチルセルロースの1重量%水溶液50重
量部にカーボニルニッケル粉末10重量部を加え十分攪
拌しながらこの液中に上記フェルトを浸漬する。
10 parts by weight of carbonyl nickel powder was added to 50 parts by weight of a 1% by weight aqueous solution of carboxymethylcellulose, and the felt was immersed in this solution with sufficient stirring.

その後フェルトを液から引き上げて80℃で1時間乾燥
する。
Thereafter, the felt was taken out of the liquid and dried at 80° C. for 1 hour.

次いでニッケルの無電解メッキおよび電解メッキを行な
って約20μのニッケルメッキ層を形成して、芯材にポ
リプロピレン繊維を有する繊維状ニッケル多孔体を得る
Next, electroless plating and electrolytic plating of nickel are performed to form a nickel plating layer of about 20 μm, thereby obtaining a fibrous nickel porous body having a polypropylene fiber as a core material.

この場合の多孔度は約86%であった。The porosity in this case was about 86%.

そしてこの電極基体にリード板をスポット溶接した後、
硝酸ニッケル溶液を含浸し、か性カリ水溶液中で電解す
る、いわゆる含浸−電解を5回繰り返して活物質を充填
した。
After spot welding a lead plate to this electrode base,
The active material was filled by impregnating with a nickel nitrate solution and electrolyzing in a caustic potassium aqueous solution, so-called impregnation-electrolysis five times.

このようにして得られた電極と公知のカドミウム極を用
いて単2型密閉電池を製作し、この電池をAとし、比較
のためにAとはカーボニルニッケル粉末を含有させてい
ない点が相違するのみでそれ以外は同じ製法で得られた
電池なり、また公知の多孔度82%の焼結基板を用い、
これに含浸−電解法で8回充填を繰り返して得られたニ
ッケル極を用いた電池をCとしてそれぞれの性能を比較
した。
A AA-type sealed battery was manufactured using the electrode obtained in this way and a known cadmium electrode, and this battery was designated as A.For comparison, this battery differs from A in that it does not contain carbonyl nickel powder. Otherwise, the battery was obtained using the same manufacturing method, and a known sintered substrate with a porosity of 82% was used.
A battery using a nickel electrode obtained by repeating filling 8 times using the impregnation-electrolysis method was designated as C, and the performance of each battery was compared.

第1図はA−Cの電池をそれぞれ20個用意し、25℃
の雰囲気中で300mAで放電させた場合の平均放電曲
線を示したもので、容量はA=B>C1電圧はすべてほ
ぼ同じであった。
In Figure 1, 20 batteries of A to C are prepared and heated at 25°C.
The figure shows an average discharge curve when the batteries were discharged at 300 mA in an atmosphere of 100 mA, and the capacity was almost the same for all voltages A=B>C1.

第2図は45℃の雰囲気中で3,5Aで放電させた場合
の平均放電特性を示したもので、容量の傾向は第1図の
場合とほぼ同じであり、また電圧はA、Cに比べてBが
ごくわずか低い程度である。
Figure 2 shows the average discharge characteristics when discharging at 3.5A in an atmosphere at 45°C.The trend in capacity is almost the same as in Figure 1, and the voltage changes to A and C. In comparison, B is only slightly lower.

最後に5時間率充電−1時間率放電の条件で寿命試験を
行なったところ、1000サイクルでAは77%、Bは
69%、Cは78%の容量を維持しており、AはBに比
べて容量低下がかなり少ないことが認められた。
Finally, we conducted a life test under the conditions of 5 hour rate charging and 1 hour rate discharging, and found that A maintained 77% capacity, B 69% capacity, and C 78% capacity after 1000 cycles. It was observed that the decrease in capacity was considerably smaller.

以上の結果から、本発明の製造法により得られる電極基
体は、多孔度が一般に78〜83%程度の多孔度を有す
る焼結体に比べて大きいので、活物質の充填回数は少な
くてすみ、しかも充填量を多くすることが容易である特
長を有するとともに、電圧、寿命とも焼結式にはほとん
ど劣らないことが明らかとなった。
From the above results, the electrode substrate obtained by the manufacturing method of the present invention has a larger porosity than a sintered body, which generally has a porosity of about 78 to 83%, so the number of times the active material is filled can be reduced. Moreover, it has the advantage that it is easy to increase the amount of filling, and it has become clear that it is almost as good as the sintering type in terms of voltage and life.

また多孔度が大きいことは、活物質保持体としての金属
の含有量が少なくてもよいことを示すとともに、焼結体
のようにスクリーン等の芯材を必要としない等価格の点
でも有利である。
In addition, the high porosity means that the content of metal as an active material holder may be small, and it is also advantageous in terms of cost since it does not require a core material such as a screen unlike sintered bodies. be.

また上記実施例においては、繊維から構成されている多
孔体としてフェルトを用いたが、織物や不織布も用いる
ことができる。
Furthermore, in the above embodiments, felt was used as the porous body made of fibers, but woven or non-woven fabrics may also be used.

また材料としては実施例で示したポリプロピレンの他に
、ポリエチレン、ポリ塩化ビニル、塩化ビニル−アクリ
ロニトリル共重合体等通常の合成樹脂やセルロール系の
アセタール化物等の天然繊維を用いることができる。
In addition to the polypropylene shown in the examples, as the material, ordinary synthetic resins such as polyethylene, polyvinyl chloride, vinyl chloride-acrylonitrile copolymer, etc., and natural fibers such as cellulose acetalized products can be used.

また導電性粉末としては、上記実施例においてはニッケ
ル粉末を用いたが、その他鉄、ステンレス鋼粉末、炭素
、黒鉛粉末等も利用することができる。
Further, as the conductive powder, nickel powder was used in the above embodiments, but iron, stainless steel powder, carbon, graphite powder, etc. may also be used.

またその結着剤としては、カルボキシメチルセルロース
やポリビニルアルコールのような親水性を有する物の他
にフッソ樹脂、ポリスチロール、ポリ塩化ビニル等通常
の結着剤を用いることができる。
As the binder, in addition to hydrophilic substances such as carboxymethyl cellulose and polyvinyl alcohol, common binders such as fluorocarbon resin, polystyrene, and polyvinyl chloride can be used.

上記実施例ではニッケル極について詳述したが、酸化カ
ドミウムあるいは水酸化カドミウム等を充填すればカド
ミウム極としても同様に製造することができ、同じ効果
が得られる。
Although a nickel electrode was described in detail in the above embodiment, a cadmium electrode can be manufactured in the same manner by filling with cadmium oxide, cadmium hydroxide, etc., and the same effect can be obtained.

また充填の方法は、ニッケル極、カドミウム極とも実施
例で示した活物質への転化を伴う充填法の他に活物質を
直接充填するペースト方式も採用することができる。
As for the filling method, in addition to the filling method involving conversion into an active material as shown in the examples for both the nickel electrode and the cadmium electrode, a paste method for directly filling the active material can also be adopted.

以上のように本発明によれば、繊維で構成された多孔体
に、耐電解液性を有する導電性粉末を含有させ、ついで
金属メッキを施すだけの簡単な工程で品質、価格の点で
すぐれた電池用電極基体を得ることができる。
As described above, according to the present invention, a porous body composed of fibers contains electroconductive powder having resistance to electrolyte, and is then coated with metal, which is a simple process that achieves excellent quality and cost. A battery electrode substrate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は各種電池の放電特性の比較を示す
グラフである。
FIGS. 1 and 2 are graphs showing a comparison of discharge characteristics of various batteries.

Claims (1)

【特許請求の範囲】 1 繊維で構成された多孔体に、耐電解液性を有する導
電性粉末を含有させ、ついで金属メッキを施すことを特
徴とする電池用電極基体の製造法。 2 前記導電性粉末を多孔体に含有させる工程が、導電
性粉末を分散させた分散媒を多孔体に含浸させることか
らなる特許請求の範囲第1項記載の電池用電極基体の製
造法。 3 前記導電性粉末を多孔体に含有させる工程が、導電
性粉末を分散させた結着剤溶液を多孔体に含浸させるこ
とからなる特許請求の範囲第1項記載の電池用電極基体
の製造法。 4 前記導電性粉末を多孔体に含有させる工程が、導電
性粉末を分散させた結着剤溶液を多孔体の表面にスプレ
ーにより付着させることからなる特許請求の範囲第1項
記載の電池用電極基体の製造法。 5 前記金属メッキする工程が、まず無電解メッキを施
し、次に電解メッキを施すことからなる特許請求の範囲
第1項記載の電池用電極基体の製造法。
[Scope of Claims] 1. A method for manufacturing an electrode substrate for a battery, which comprises incorporating a conductive powder having electrolyte resistance into a porous body made of fibers, and then applying metal plating to the porous body. 2. The method for producing a battery electrode substrate according to claim 1, wherein the step of incorporating the conductive powder into the porous body comprises impregnating the porous body with a dispersion medium in which the conductive powder is dispersed. 3. The method for producing a battery electrode substrate according to claim 1, wherein the step of incorporating the conductive powder into the porous body comprises impregnating the porous body with a binder solution in which the conductive powder is dispersed. . 4. The battery electrode according to claim 1, wherein the step of incorporating the conductive powder into the porous body comprises applying a binder solution in which the conductive powder is dispersed to the surface of the porous body by spraying. Substrate manufacturing method. 5. The method of manufacturing a battery electrode substrate according to claim 1, wherein the metal plating step comprises first performing electroless plating and then performing electrolytic plating.
JP53113189A 1978-09-13 1978-09-13 Manufacturing method of battery electrode substrate Expired JPS5851669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53113189A JPS5851669B2 (en) 1978-09-13 1978-09-13 Manufacturing method of battery electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53113189A JPS5851669B2 (en) 1978-09-13 1978-09-13 Manufacturing method of battery electrode substrate

Publications (2)

Publication Number Publication Date
JPS5539180A JPS5539180A (en) 1980-03-18
JPS5851669B2 true JPS5851669B2 (en) 1983-11-17

Family

ID=14605802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53113189A Expired JPS5851669B2 (en) 1978-09-13 1978-09-13 Manufacturing method of battery electrode substrate

Country Status (1)

Country Link
JP (1) JPS5851669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732856Y2 (en) * 1989-03-02 1995-07-31 東海興業株式会社 Weather strip
JP2753921B2 (en) * 1992-06-04 1998-05-20 富士写真フイルム株式会社 Positive photoresist composition
EP0630758B1 (en) * 1993-06-21 1998-10-07 Mitsubishi Paper Mills, Ltd. Heat-sensitive recording material
JP2963945B2 (en) 1997-05-08 1999-10-18 大塚化学株式会社 2,2'-bis (6-benzotriazolylphenol) compound
JP2001313038A (en) 2000-02-21 2001-11-09 Mitsubishi Materials Corp Current collector material for alkali secondary cell and manufacturing method of the same, and alkali secondary cell using the same

Also Published As

Publication number Publication date
JPS5539180A (en) 1980-03-18

Similar Documents

Publication Publication Date Title
GB2027260A (en) Zinc electrodes
JPS6327823B2 (en)
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JPS6048869B2 (en) battery electrode
JPH0132633B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS6048868B2 (en) Manufacturing method of electrode substrate
JPS6254235B2 (en)
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JPH0794181A (en) Nonsintered nickel electrode and manufacture thereof
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0582027B2 (en)
JPS61110966A (en) Electrode for cell
JP4085434B2 (en) Alkaline battery electrode
JPH0693359B2 (en) Method for producing paste type electrode for battery
JPH07335210A (en) Electrode for alkaline battery
JPS59217950A (en) Flexible electrode for alkaline storage battery
JPS6327822B2 (en)
JPH10334893A (en) Manufacture of alkaline storage battery and its electrode
JPS5897265A (en) Manufacture of nickel electrode for battery
JPS5923464A (en) Manufacture of nickel electrode for battery
JPH0982334A (en) Electrode substrate for battery
JPS588555B2 (en) Manufacturing method of electrode plates for alkaline batteries
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof