JPH10334900A - Manufacture of alkaline storage batter and its electrode - Google Patents

Manufacture of alkaline storage batter and its electrode

Info

Publication number
JPH10334900A
JPH10334900A JP9141969A JP14196997A JPH10334900A JP H10334900 A JPH10334900 A JP H10334900A JP 9141969 A JP9141969 A JP 9141969A JP 14196997 A JP14196997 A JP 14196997A JP H10334900 A JPH10334900 A JP H10334900A
Authority
JP
Japan
Prior art keywords
nickel
fibers
core material
electrode
conductive core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9141969A
Other languages
Japanese (ja)
Other versions
JP3451888B2 (en
Inventor
Toru Inagaki
徹 稲垣
Hiroki Takeshima
宏樹 竹島
Kazushige Sugimoto
一茂 杉本
Katsuhiro Okamoto
克博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14196997A priority Critical patent/JP3451888B2/en
Publication of JPH10334900A publication Critical patent/JPH10334900A/en
Application granted granted Critical
Publication of JP3451888B2 publication Critical patent/JP3451888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve charge/discharge characteristic by using a base board formed by integrating a conductive core material, composed of a porous material such as a metal board or a net, netted nickel fibers arranged on the both surfaces of the conductive core material, and nickel fibers raised between the netted nickel fibers with each other. SOLUTION: After a phenol-based adhesive has been applied on the both sides of a nickel plated steel punching metal 1 of numerical aperture 42%, rayon fibers are transplanted so as to be stuck to the surface of the punching metal 1 into a net state and then raised outwards from between the netted rayon fibers. After the surfaces of the punching metal 1 and the rayon fibers have been coated with nickel to a prescribed thickness, the rayon fibers and the adhesive are thermally decomposed and removed, and the surface nickel and the core material are burned. Then the base board obtained is filled with an active material. In this case, most of nickel fibers 3 raised from between the netted nickel fibers 2 are combined together adjacent to the tip by bundles each with a plural fibers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池とそ
の電極の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery and a method for manufacturing an electrode thereof.

【0002】[0002]

【従来の技術】アルカリ蓄電池はその利用機器である通
信機、パーソナルコンピュータなどの携帯化が進むにつ
れて市場規模を拡大してきた。これらの分野においては
最近では軽量かつ高容量な電池への需要が急激に伸びて
いる。また、電動工具、補助動力など大電流での充放電
が必要とされる用途においても、アルカリ蓄電池の需要
は高まっている。
2. Description of the Related Art The market size of alkaline storage batteries has been expanding as portable devices such as communication devices and personal computers have been used. In these fields, the demand for lightweight and high-capacity batteries has been rapidly increasing recently. In addition, demands for alkaline storage batteries are increasing also in applications that require charging and discharging with a large current, such as power tools and auxiliary power.

【0003】アルカリ蓄電池用電極の製造法は大別し
て、パンチングメタルなどの導電性芯材にニッケル粉末
と増粘剤とを混練したペーストを塗着し、これを焼結し
た基板に活物質を含浸することによって得られる焼結式
と、発泡メタルやニッケル不織布などの金属多孔体ある
いはパンチングメタル、エキスパンドメタルなどの導電
性芯材に、活物質を含むペーストを充填または塗着して
得られるペースト式とがある。
The method of manufacturing an electrode for an alkaline storage battery is roughly divided into a method in which a paste obtained by kneading a nickel powder and a thickener on a conductive core material such as punching metal is applied, and a substrate obtained by sintering the paste is impregnated with an active material. And a paste type obtained by filling or applying a paste containing an active material to a conductive core material such as a porous metal such as foamed metal or nickel non-woven fabric or a punching metal or expanded metal. There is.

【0004】本発明に類似したものとしては、先に公開
された特開昭61−293618号公報において、ステ
ンレス鋼網に繊維状ニッケルを植毛し、これを圧延して
焼結した基板が提案されている。これは、上述したよう
な焼結式極板において焼結されたニッケル基板亀裂発生
や、基板厚みの制御が不可能となるといった不都合を解
決するものである。
[0004] As a device similar to the present invention, Japanese Patent Application Laid-Open No. 61-293618 published earlier discloses a substrate in which fibrous nickel is implanted in a stainless steel net, which is rolled and sintered. ing. This solves the inconvenience of cracking of the nickel substrate sintered in the sintered electrode plate as described above and the inability to control the thickness of the substrate.

【0005】また、特開平8−144153号公報で
は、炭素繊維を含む糸条からなる基布層と基布層より起
毛した立毛部からなる炭素繊維パイル布帛が提案されて
いる。これは、二次電池、特にナトリウム−硫黄電池の
電極導電材(基板)として使用することをねらいとした
ものであり、アルカリ蓄電池用基板としては不向きであ
った。
Further, Japanese Patent Application Laid-Open No. 8-144153 proposes a carbon fiber pile fabric comprising a base fabric layer made of a thread containing carbon fibers and a raised portion raised from the base fabric layer. This is intended to be used as an electrode conductive material (substrate) of a secondary battery, particularly a sodium-sulfur battery, and is not suitable as a substrate for an alkaline storage battery.

【0006】[0006]

【発明が解決しようとする課題】ペースト式電極の基板
としては、活物質の導電性が低いニッケル極では発泡メ
タルやニッケル不織布などの金属多孔体が使用されてい
る。これらの基板は、基板中央部に導電性芯材が通って
いる焼結式基板と比較して、活物質から電流出入口とし
ての電極端子までの集電経路が長いため大電流での充放
電特性が劣る。また、焼結式基板と比べ総じて基板の空
孔径が大きいため、基板強度や活物質の保持力も劣る。
ニッケル極においては充放電を繰り返すと活物質の体積
が大きく変化し、電解液を吸収して極板が膨潤する。そ
の際、活物質の保持力が低いと、基板と活物質粒子との
接触性が低下しやすく集電能力の劣化が大きい。
As a substrate for a paste type electrode, a porous metal such as a foamed metal or a nickel nonwoven fabric is used for a nickel electrode having a low conductivity of an active material. These substrates have a longer current collection path from the active material to the electrode terminal as a current inlet / outlet compared to sintered substrates in which a conductive core material passes through the center of the substrate. Is inferior. Further, since the pore diameter of the substrate is generally larger than that of the sintered substrate, the substrate strength and the active material holding power are also inferior.
In the nickel electrode, when charge and discharge are repeated, the volume of the active material changes greatly, and the electrode plate swells by absorbing the electrolytic solution. At this time, if the holding power of the active material is low, the contact between the substrate and the active material particles is likely to be reduced, and the current collecting ability is greatly deteriorated.

【0007】一方、活物質の導電性が比較的高いカドミ
ウム極、水素吸蔵合金極では基板としてパンチングメタ
ルなどの二次元の導電性芯材を使用し、さらに導電性を
補うためにカーボン粉末あるいは金属繊維などの導電
材、活物質保持力を補うための結着剤などを添加した電
極が普及している。しかし、導電材の添加によっても大
電流で充放電する場合には集電能力が不足していた。
On the other hand, a cadmium electrode and a hydrogen-absorbing alloy electrode having relatively high conductivity of the active material use a two-dimensional conductive core material such as a punched metal as a substrate, and further use carbon powder or metal to supplement the conductivity. 2. Description of the Related Art Electrodes to which a conductive material such as fiber, a binder for supplementing an active material holding power, and the like are added have been widely used. However, when charging and discharging with a large current even by adding a conductive material, the current collecting ability is insufficient.

【0008】なお、ニッケル極についても電極製造コス
トの低廉化のため、パンチングメタルなどの二次元の導
電性芯材を使用した電極の検討が従来からなされている
が、適当な導電材、結着剤が得られていないため、充放
電特性、充放電の繰り返し寿命特性が劣るため、まだ実
用化されていない。
In order to reduce the manufacturing cost of the nickel electrode, an electrode using a two-dimensional conductive core material such as a punched metal has been conventionally studied. Since no agent has been obtained, the charge / discharge characteristics and the charge / discharge repetition life characteristics are inferior, and thus have not yet been put to practical use.

【0009】焼結式電極は大電流での充放電特性はペー
スト式より優れているが、ペースト式で用いられている
基板と比べて空孔率が低く、また多孔体の厚みを厚くす
ることが困難であるため単位体積当たりの電池容量はペ
ースト式より低い。さらに焼結式の空孔径はペースト式
のそれより小さいため、必要量の活物質を充填するため
には溶液の含浸を数回くり返す必要があるなど製法が繁
雑であるという課題もある。
Although the sintered electrode has better charge / discharge characteristics at a large current than the paste type, it has a lower porosity and a thicker porous body than the substrate used in the paste type. Battery capacity per unit volume is lower than that of the paste type. Furthermore, since the pore diameter of the sintered type is smaller than that of the paste type, there is also a problem that the production method is complicated, for example, it is necessary to repeat the impregnation of the solution several times in order to fill the required amount of the active material.

【0010】本発明は、このような課題を解決するもの
で、アルカリ蓄電池において従来のペースト式電極と同
等の電池容量を維持するとともに、活物質保持力、集電
機能が改善された、優れた充放電特性をもった電極を提
供するものである。
[0010] The present invention solves the above-described problems, and is an excellent alkaline storage battery that maintains a battery capacity equivalent to that of a conventional paste-type electrode and has improved active material holding power and current collecting function. An object of the present invention is to provide an electrode having charge / discharge characteristics.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明では金属板またはネット等の多孔性素材から
なる導電性芯材と、この導電性芯材の両表面に配された
網状ニッケル繊維と、この網状ニッケル繊維の間から起
毛しているニッケル繊維とが一体化した基板を用いた電
極とこれを用いたアルカリ蓄電池を提供するものであ
る。
According to the present invention, there is provided a conductive core made of a porous material such as a metal plate or a net, and a mesh formed on both surfaces of the conductive core. It is an object of the present invention to provide an electrode using a substrate in which nickel fibers and nickel fibers raised from between the mesh nickel fibers are integrated, and an alkaline storage battery using the same.

【0012】また、この電極の製造法は、導電性芯材の
両面に接着剤を塗布してから樹脂繊維を導電性芯材の表
面に網状に付着させた後、さらに静電植毛工法などによ
り網状の樹脂繊維の間から外方に向けて起毛した状態に
樹脂繊維を植毛する工程と、導電性芯材および樹脂繊維
の表面に例えば無電解メッキや電気メッキによって所望
の厚みまでニッケルを被覆する工程と、次いで樹脂繊維
と接着剤を熱分解除去し、導電性芯材の表面および樹脂
繊維表面を被覆しているニッケルと芯材とを焼結する工
程から得られた基板に活物質を充填する工程とからなる
ものである。
[0012] Further, the method of manufacturing the electrode is such that an adhesive is applied to both surfaces of the conductive core material, and then the resin fibers are adhered to the surface of the conductive core material in a net-like manner. A step of planting the resin fibers in a state of being raised outward from between the mesh-like resin fibers, and coating the surface of the conductive core material and the resin fibers with nickel to a desired thickness by, for example, electroless plating or electroplating. The active material is filled in the substrate obtained from the step of sintering the core material with nickel, which covers the surface of the conductive core material and the resin fiber surface, by thermally decomposing and removing the resin fiber and the adhesive. And the step of performing

【0013】[0013]

【発明の実施の形態】請求項1に記載の発明は、アルカ
リ蓄電池について規定したものであり、正極と負極とセ
パレータとアルカリ電解液とからなるアルカリ蓄電池で
あって、正・負極のうちの少なくとも一方の電極は、導
電性芯材と、この導電性芯材の両表面に配された網状ニ
ッケル繊維と、この網状ニッケル繊維の間から起毛して
いるニッケル繊維とが一体化していて、かつ起毛したニ
ッケル繊維の大部分はその先端近傍で複数本ずつ結合し
ている基板に活物質が充填されているものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is directed to an alkaline storage battery, which is an alkaline storage battery comprising a positive electrode, a negative electrode, a separator and an alkaline electrolyte, wherein at least one of the positive and negative electrodes is provided. One of the electrodes has a conductive core material, a reticulated nickel fiber disposed on both surfaces of the conductive core material, and a nickel fiber raised from between the reticulated nickel fibers integrated with the conductive core material. Most of the nickel fibers thus obtained are those in which the active material is filled in a substrate connected in plurals near the tip thereof.

【0014】なお、この網状ニッケル繊維を構成するニ
ッケル繊維の長さは、網状ニッケル繊維の間から起毛し
ているニッケル繊維の長さより長いほうがニッケル繊維
どうしがより緊密に交絡して起毛ニッケル繊維のつけ根
部を補強する上からも、集電経路の他面化からも好まし
い。
The length of the nickel fibers constituting the reticulated nickel fibers is preferably longer than the length of the nickel fibers raised between the reticulated nickel fibers because the nickel fibers are more closely entangled with each other, and It is preferable from the viewpoint of reinforcing the base and from the standpoint of the current collecting path.

【0015】また、請求項3に記載の発明は、この電極
の製造法について規定したものである。
[0015] The invention according to claim 3 specifies a method of manufacturing the electrode.

【0016】樹脂繊維は静電気を利用した静電植毛工法
によると、接着剤が塗布されているパンチングメタルな
どの導電性芯材表面に、ほぼ当間隔をおいて直立した構
造に植毛される。その間隔は繊維の長さ、直径によって
規制され、繊維長さが短くなるほど、直径が細くなるほ
ど狭くなる。この植毛間隔が狭くなるにともないニッケ
ル被覆後に形成されるニッケル繊維の密度も高まって活
物質から基板までの集電経路が短くなるため、電極とし
ての充放電特性が向上する。
According to the electrostatic flocking method utilizing static electricity, the resin fibers are planted in a vertically upright structure at substantially equal intervals on the surface of a conductive core material such as a punching metal to which an adhesive is applied. The interval is regulated by the length and diameter of the fiber. As the spacing between the flocks becomes narrower, the density of nickel fibers formed after nickel coating increases, and the current collection path from the active material to the substrate becomes shorter, so that the charge / discharge characteristics as an electrode are improved.

【0017】このような植毛部分が直立した構造では導
電性芯材の垂直方向にのみ集電経路が存在するが、より
効率的に基板の集電性を向上させるためには導電性芯材
の斜めや平行方向にも繊維が位置して集電経路が存在す
る方がよい。そこで導電性芯材から直立して植毛されて
いる繊維の根元に、これと交絡させて網状ニッケル繊維
を配すると大幅に基板全体としての抵抗が低減して充放
電特性が向上する。
In such a structure in which the flocking portion is upright, a current collecting path exists only in the vertical direction of the conductive core material. However, in order to more efficiently improve the current collecting property of the substrate, the conductive core material has It is better that the fibers are located in a diagonal or parallel direction so that a current collecting path exists. Therefore, if a net-like nickel fiber is entangled with the root of the fiber which is planted upright from the conductive core material and is entangled with the fiber, the resistance of the whole substrate is greatly reduced and the charge / discharge characteristics are improved.

【0018】さらに基板の、とくに導電性芯材近傍の活
物質保持力が向上し、充放電を繰り返したときの活物質
の体積変化の影響を抑制するため、サイクル寿命特性も
向上する。
Furthermore, the active material holding power of the substrate, especially in the vicinity of the conductive core material, is improved, and the effect of the volume change of the active material when charge and discharge are repeated is suppressed, so that the cycle life characteristics are also improved.

【0019】[0019]

【実施例】【Example】

(実施例)厚さ60μm、パンチング孔径1mm、開孔
率42%のニッケルメッキした鉄製パンチングメタルの
両面にフェノール系接着剤(固形分20%)を、その塗
布量が50g/m2になるようにスプレーで塗布した。
続いて、接着剤が乾燥する前に、直径30μm、長さ4
mmのレーヨン繊維をふりかけて導電性芯材の両面に付
着させて網状の構造を形成した。このときの繊維量は3
g/m2とした。その後、直径30μm、長さ2mmの
レーヨン繊維を電極を備えたふるいから振り落としつ
つ、ふるい内の電極とパンチングメタルとの間に70k
Vの電圧を印加してレーヨン繊維を帯電させて静電植毛
を行った。このときの繊維量は50g/m2とした。
(Example) A phenolic adhesive (solid content: 20%) was applied to both surfaces of a nickel-plated iron punched metal having a thickness of 60 μm, a punching hole diameter of 1 mm, and a hole opening ratio of 42% so that the coating amount was 50 g / m 2. Was applied by spraying.
Subsequently, before the adhesive dries, the diameter is 30 μm and the length is 4 μm.
mm rayon fiber was sprinkled and attached to both surfaces of the conductive core material to form a net-like structure. The fiber amount at this time is 3
g / m 2 . Then, while shaking rayon fibers having a diameter of 30 μm and a length of 2 mm from the sieve provided with the electrodes, 70 k between the electrodes in the sieve and the punching metal.
A voltage of V was applied to charge the rayon fibers, and electrostatic flocking was performed. At this time, the fiber amount was 50 g / m 2 .

【0020】次いで接着剤を硬化させるため120℃で
10分間乾燥させた後、無電解メッキによりレーヨン繊
維およびパンチングメタルの表面に厚さ0.5μmのニ
ッケル−リン合金を被覆した。その後、電気メッキ用ワ
ット浴中で電流密度10A/dm2でニッケルメッキ重
量が300g/m2になるように電気ニッケルメッキを
施した。
Then, after drying at 120 ° C. for 10 minutes to cure the adhesive, the surface of the rayon fiber and the punching metal was coated with a 0.5 μm thick nickel-phosphorus alloy by electroless plating. Thereafter, electro-nickel plating was performed in a watt bath for electro-plating at a current density of 10 A / dm 2 and a nickel plating weight of 300 g / m 2 .

【0021】この後、先のフェノール系接着剤とレーヨ
ン繊維とを熱分解して除去するために大気中で700℃
で5分間の焼成をおこなった。続いて、窒素−水素気流
中において1000℃でパンチングメタルとニッケル繊
維の焼結を行い、本発明による基板aを作製した。得ら
れた基板aの厚みは約4mmであった。
Then, the phenolic adhesive and the rayon fiber are removed by thermal decomposition at 700 ° C.
For 5 minutes. Subsequently, the punched metal and the nickel fiber were sintered at 1000 ° C. in a nitrogen-hydrogen stream to produce a substrate a according to the present invention. The thickness of the obtained substrate a was about 4 mm.

【0022】図1はこの基板aの拡大概略図である。図
中1はニッケルメッキした鉄製パンチングメタルであ
り、2はレーヨン繊維が熱分解して中空となった網状ニ
ッケル繊維であり、3はコアであるレーヨン繊維が熱分
解して中空となった起毛しているニッケル繊維を示して
いる。
FIG. 1 is an enlarged schematic view of the substrate a. In the figure, 1 is a nickel-plated iron punching metal, 2 is a net-like nickel fiber which is hollow due to thermal decomposition of rayon fiber, and 3 is a brushed fiber which is hollow when the rayon fiber as a core is thermally decomposed. Shows nickel fibers.

【0023】次に得られた基板aを加圧して厚さ1.4
mmに調整した後、所定の位置に5mm四方の金型で厚
さ約0.2mmまで圧縮して活物質が充填されないリー
ド取付部分を形成した。
Next, the obtained substrate a is pressed to a thickness of 1.4.
After adjusting the thickness to mm, a lead attachment portion not filled with the active material was formed at a predetermined position by compressing to a thickness of about 0.2 mm with a 5 mm square mold.

【0024】続いて市販の水酸化ニッケル90部と水酸
化コバルト10部にペースト中の水分率が30%となる
量の水を加えて混練したペーストを基板aに充填し、9
0℃で30分間乾燥した後、加圧して厚さ0.7mmに
調整した。このようにして得られたニッケル電極を幅3
5mm、長さ110mmに裁断した。このニッケル電極
の容量は約1600mAhである。そして活物質が充填
されていない所定の位置にニッケルリード板をスポット
溶接してニッケル極4とした。
Subsequently, 90 parts of commercially available nickel hydroxide and 10 parts of cobalt hydroxide were mixed with water in such an amount that the water content of the paste became 30%, and the mixture was kneaded and filled into a substrate a.
After drying at 0 ° C. for 30 minutes, the pressure was adjusted to 0.7 mm in thickness. The nickel electrode obtained in this way was
It was cut into 5 mm and 110 mm in length. The capacity of this nickel electrode is about 1600 mAh. Then, a nickel lead plate was spot-welded to a predetermined position where the active material was not filled to form a nickel electrode 4.

【0025】負極には水素吸蔵合金極を用いた。これは
MmNi3.55Mn0.4Al0.3Co0. 75からなる組成の水
素吸蔵合金を粉砕して50μm以下の粉末を用意し、こ
れを80℃の31%KOH水溶液に1時間入れて、合金
粉末表面の酸化被膜を取り除く活性化処理を行った。こ
の粉末に1.5wt%カルボキシメチルセルロース水溶
液を加えたペーストを発泡状ニッケル板に充填し、90
℃で30分間乾燥した後、加圧して厚さ0.4mmに調
整した。その後5wt%のフッ素樹脂ディスパージョン
でコーティングし、乾燥した後、幅35mm、長さ14
5mmに裁断して水素合金極5とした。
A hydrogen storage alloy electrode was used as the negative electrode. This provides the following powder 50μm by pulverizing a hydrogen absorbing alloy having a composition consisting of MmNi 3.55 Mn 0.4 Al 0.3 Co 0. 75, put 1 hour it in 31% KOH aqueous solution of 80 ° C., the alloy powder surface An activation treatment for removing the oxide film was performed. A paste obtained by adding a 1.5 wt% carboxymethylcellulose aqueous solution to this powder was filled in a foamed nickel plate, and
After drying at 30 ° C. for 30 minutes, the pressure was adjusted to 0.4 mm in thickness. After that, it is coated with a 5 wt% fluororesin dispersion, dried, and then has a width of 35 mm and a length of 14 mm.
It was cut to 5 mm to obtain a hydrogen alloy electrode 5.

【0026】このニッケル極4と水素吸蔵合金極5との
間にスルホン化処理したポリプロピレン製不織布セパレ
ータ6を介在させて渦巻状に捲回し、4/5Aサイズの
電池ケース7に収納した。その後、比重1.30の水酸
化カリウム水溶液に30g/lの水酸化リチウムを溶解
した電解液を所定量注入し、正極端子を固定した封口板
8でケース開口部を封口して図2に示すような密閉型ニ
ッケル−水素蓄電池を構成した。このようにして本発明
の電池Aを作製した。
A nonwoven fabric separator 6 made of sulfonated polypropylene was interposed between the nickel electrode 4 and the hydrogen storage alloy electrode 5 and spirally wound, and housed in a battery case 7 of 4/5 A size. Thereafter, a predetermined amount of an electrolytic solution obtained by dissolving 30 g / l of lithium hydroxide in a potassium hydroxide aqueous solution having a specific gravity of 1.30 was injected, and the opening of the case was closed with a sealing plate 8 to which the positive electrode terminal was fixed, as shown in FIG. Such a sealed nickel-hydrogen storage battery was constructed. Thus, Battery A of the present invention was produced.

【0027】(比較例)厚さ60μm、パンチング孔径
1mm、開孔率42%のニッケルメッキした鉄製パンチ
ングメタルの両面にフェノール系接着剤(固形分20
%)を、その塗布量が50g/m2になるようにスプレ
ーで塗布した。続いて、接着剤が乾燥する前に、直径3
0μm、長さ2mmのレーヨン繊維を電極を備えたふる
いから振り落としつつ、ふるい内の電極とパンチングメ
タルとの間に70kVの電圧を印加してレーヨン繊維を
帯電させて静電植毛を行った。このときの繊維量は50
g/m2とした。この後、引き続いて実施例と同様にニ
ッケル被覆、熱処理工程を経て比較のための基板bを作
製した。この基板bを用いて実施例と同様にして電池B
を作製した。
Comparative Example A phenolic adhesive (solid content: 20%) was applied to both sides of a nickel-plated iron punched metal having a thickness of 60 μm, a punching hole diameter of 1 mm, and a porosity of 42%.
%) Was applied by spraying so that the applied amount was 50 g / m 2 . Subsequently, before the adhesive dries, the diameter 3
While shaking rayon fibers having a length of 0 μm and a length of 2 mm from the sieve provided with the electrodes, a voltage of 70 kV was applied between the electrodes in the sieve and the punching metal to charge the rayon fibers to perform electrostatic flocking. The fiber amount at this time is 50
g / m 2 . Thereafter, a substrate b for comparison was manufactured through a nickel coating and a heat treatment process in the same manner as in the example. Using this substrate b, battery B
Was prepared.

【0028】次に電池A,Bの放電特性を評価した。1
CmAで72分間充電した後、放電電流を0.2Cm
A,1CmA,3CmAとして1.0Vまで放電したと
きのそれぞれの電池の放電容量を(表1)に示す。
Next, the discharge characteristics of the batteries A and B were evaluated. 1
After charging with CmA for 72 minutes, the discharge current was increased to 0.2 Cm
Table 1 shows the discharge capacities of the respective batteries when discharged to 1.0 V at A, 1 CmA, and 3 CmA.

【0029】[0029]

【表1】 [Table 1]

【0030】(表1)の結果に示すように、実施例によ
る電池Aは電池Bに比較して放電容量、放電平均電圧と
もに向上した。これは活物質の保持力、集電機能の両面
で改善されたからである。
As shown in the results in Table 1, the battery A according to the example had improved discharge capacity and average discharge voltage as compared with the battery B. This is because both the holding power of the active material and the current collecting function have been improved.

【0031】次に、電池A,Bの各3セルについて、2
0℃で0.5CmAで3時間充電し、1CmAで0.9
Vまで放電するサイクル寿命試験を行い、放電容量が初
期容量の60%まで低下したときのサイクル数を(表
2)に示す。
Next, for each of the three cells A and B,
Charge at 0.5 CmA for 3 hours at 0 ° C. and 0.9 at 1 CmA
A cycle life test for discharging to V was performed, and the number of cycles when the discharge capacity was reduced to 60% of the initial capacity is shown in (Table 2).

【0032】[0032]

【表2】 [Table 2]

【0033】(表2)の結果に示すように実施例による
電池Aは電池Bに比較して、充放電サイクル寿命特性が
大幅に向上した。これも基板の活物質の保持力と集電機
能が良好であることによるものである。
As shown in the results of Table 2, the battery A according to the example had significantly improved charge / discharge cycle life characteristics as compared with the battery B. This is also due to the good holding power of the active material and the current collecting function of the substrate.

【0034】なお、実施例では導電性芯材にパンチング
メタルを使用したが、開孔部のない金属板や金網、エキ
スパンドメタルなどを使用しても同様な効果が得られ
る。用いる樹脂繊維についてもレーヨン繊維以外にアク
リル、ナイロンなどの樹脂繊維を使用してもよい。
Although the punching metal is used as the conductive core material in the embodiment, a similar effect can be obtained by using a metal plate, a metal net, an expanded metal, etc. having no holes. Resin fibers such as acrylic and nylon may be used in addition to rayon fibers.

【0035】また、実施例では植毛型基板をニッケル極
に使用した場合について述べたが、カドミウム極、水素
吸蔵合金極等の負極に使用した場合についても同様な効
果が得られる。
Further, in the embodiment, the case where the flocking type substrate is used for the nickel electrode has been described. However, similar effects can be obtained when the flocking type substrate is used for the negative electrode such as the cadmium electrode and the hydrogen storage alloy electrode.

【0036】[0036]

【発明の効果】本発明によれば、アルカリ蓄電池および
その電極において、基板の集電性、活物質保持力が改善
されるため、充放電特性、充放電サイクル寿命特性が向
上する。
According to the present invention, in the alkaline storage battery and its electrode, the current collecting property of the substrate and the active material holding power are improved, so that the charge / discharge characteristics and the charge / discharge cycle life characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における基板の拡大模式図FIG. 1 is an enlarged schematic view of a substrate according to an embodiment of the present invention.

【図2】同実施例における電池の断面概略図FIG. 2 is a schematic cross-sectional view of the battery in the example.

【符号の説明】[Explanation of symbols]

1 ニッケルメッキした鉄製パンチングメタル 2 網状ニッケル繊維 3 起毛したニッケル繊維 4 ニッケル極 5 水素吸蔵合金極 6 セパレータ 7 電池ケース 8 封口板 DESCRIPTION OF SYMBOLS 1 Nickel-plated iron punching metal 2 Reticulated nickel fiber 3 Brushed nickel fiber 4 Nickel electrode 5 Hydrogen storage alloy electrode 6 Separator 7 Battery case 8 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 克博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuhiro Okamoto, Inventor 1006 Oaza Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極と負極とセパレータとアルカリ電解液
とからなり、正・負極のうちの少なくとも一方の電極
は、金属板またはネット等の多孔性素材からなる導電性
芯材と、この導電性芯材の両表面に配された網状ニッケ
ル繊維と、この網状ニッケル繊維の間から起毛している
ニッケル繊維とが一体化した基板に活物質を充填したも
のであるアルカリ蓄電池。
1. A positive electrode, a negative electrode, a separator, and an alkaline electrolyte. At least one of the positive and negative electrodes has a conductive core made of a porous material such as a metal plate or a net. An alkaline storage battery in which an active material is filled in a substrate in which mesh nickel fibers arranged on both surfaces of a core material and nickel fibers raised from between the mesh nickel fibers are integrated.
【請求項2】網状ニッケル繊維を構成するニッケル繊維
の長さは、網状ニッケル繊維の間から起毛しているニッ
ケル繊維の長さより長い請求項1記載のアルカリ蓄電
池。
2. The alkaline storage battery according to claim 1, wherein the length of the nickel fibers constituting the mesh nickel fibers is longer than the length of the nickel fibers raised from between the mesh nickel fibers.
【請求項3】正極と負極とセパレータとアルカリ電解液
とからなり、正・負極のうちの少なくとも一方の電極
は、金属板またはネット等の多孔性素材からなる導電性
芯材と、この導電性芯材の両表面に配された網状ニッケ
ル繊維と、この網状ニッケル繊維の間から起毛している
ニッケル繊維とが一体化した基板に活物質を充填したも
のであり、この電極は、 前記導電性芯材の両面に接着剤を塗布してから樹脂繊維
を導電性芯材の表面に網状に付着させる工程と、樹脂繊
維をこの網状の樹脂繊維の間から樹脂繊維を起毛した状
態で植毛する工程と、次いで前記導電性芯材および樹脂
繊維の表面を所望の厚みのニッケルで被覆する工程と、
前記樹脂繊維と接着剤を熱分解除去し、前記導電性芯材
および樹脂繊維の表面を被覆しているニッケルと導電性
芯材とを焼結する工程より得た基板に、活物質を充填し
て得られたものであるアルカリ蓄電池用電極の製造法。
3. A positive electrode, a negative electrode, a separator, and an alkaline electrolyte. At least one of the positive electrode and the negative electrode has a conductive core material made of a porous material such as a metal plate or a net. An active material is filled in a substrate in which mesh nickel fibers arranged on both surfaces of the core material and nickel fibers raised from between the mesh nickel fibers are integrated with each other. A step of applying an adhesive to both surfaces of the core material and then attaching the resin fibers to the surface of the conductive core material in a net-like manner; and a step of planting the resin fibers in a state where the resin fibers are raised from between the net-like resin fibers. And then covering the surfaces of the conductive core material and the resin fibers with nickel of a desired thickness,
The resin fiber and the adhesive are thermally decomposed and removed, and the substrate obtained from the step of sintering the conductive core material and nickel covering the surface of the resin fiber and the conductive core material is filled with an active material. A method for producing an electrode for an alkaline storage battery obtained by the above method.
JP14196997A 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode Expired - Fee Related JP3451888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14196997A JP3451888B2 (en) 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14196997A JP3451888B2 (en) 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode

Publications (2)

Publication Number Publication Date
JPH10334900A true JPH10334900A (en) 1998-12-18
JP3451888B2 JP3451888B2 (en) 2003-09-29

Family

ID=15304347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14196997A Expired - Fee Related JP3451888B2 (en) 1997-05-30 1997-05-30 Manufacturing method of alkaline storage battery and its electrode

Country Status (1)

Country Link
JP (1) JP3451888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092113A1 (en) * 2000-10-31 2003-11-06 Kawasaki Jukogyo Kabushiki Kaisha Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092113A1 (en) * 2000-10-31 2003-11-06 Kawasaki Jukogyo Kabushiki Kaisha Battery

Also Published As

Publication number Publication date
JP3451888B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
CN102856538B (en) Negative plate, include the cylindrical battery of this negative plate
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
CN1095208C (en) Method for producing alkaline battery and electrode thereof
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3451888B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2002025604A (en) Alkaline secondary battery
JP3424501B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3438538B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3440753B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3473350B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPH10334895A (en) Manufacture of alkaline storage battery and its electrode
JPH10334892A (en) Manufacture of alkaline storage battery and its electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH10334901A (en) Alkaline storage battery and manufacture of its electrode
JP3037034B2 (en) Electrodes for alkaline secondary batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3686316B2 (en) Alkaline secondary battery
JP3941341B2 (en) Alkaline battery and nickel plate
JP3384109B2 (en) Nickel plate
JPH10334896A (en) Manufacture of alkaline storage battery and its electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees