JP2773253B2 - Manufacturing method of cadmium negative electrode for alkaline storage battery - Google Patents

Manufacturing method of cadmium negative electrode for alkaline storage battery

Info

Publication number
JP2773253B2
JP2773253B2 JP1148955A JP14895589A JP2773253B2 JP 2773253 B2 JP2773253 B2 JP 2773253B2 JP 1148955 A JP1148955 A JP 1148955A JP 14895589 A JP14895589 A JP 14895589A JP 2773253 B2 JP2773253 B2 JP 2773253B2
Authority
JP
Japan
Prior art keywords
cadmium
active material
nickel
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1148955A
Other languages
Japanese (ja)
Other versions
JPH0315153A (en
Inventor
勝己 山下
英男 海谷
雅子 草鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1148955A priority Critical patent/JP2773253B2/en
Publication of JPH0315153A publication Critical patent/JPH0315153A/en
Application granted granted Critical
Publication of JP2773253B2 publication Critical patent/JP2773253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用カドミウム負極の製造法
に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a cadmium negative electrode for an alkaline storage battery.

従来の技術 従来アルカリ蓄電池用カドミウム負極として、活物質
を結着剤とともに練合し、これを導電性支持体に塗着す
るペースト式負極が、製造工程が簡単であり、製造コス
トも安く、且つ高エネルギー密度が得られるという点で
広く採用されている。
2. Description of the Related Art Conventionally, as a cadmium negative electrode for an alkaline storage battery, a paste type negative electrode in which an active material is kneaded with a binder and applied to a conductive support has a simple manufacturing process, a low manufacturing cost, and Widely used in that high energy density can be obtained.

発明が解決しようとする課題 このようなペースト式カドミウム負極は、高エネルギ
ー密度が得られる等の利点を有する反面、電子伝導性に
劣るため過充電により正極から発生する酸素ガスの吸収
能力が悪く、密閉形電池に使用すると内部ガス圧が上昇
し易いという欠点があった。また40℃以上の高温領域に
おいては高濃度アルカリ溶液中での水酸化カドミウムの
溶解度が高くなり、充放電サイクルのくり返しにより、
カドミウムの溶解析出がくり返され、負極の変形や利用
率の低下、デンドライトの成長等により、比較的短寿命
になりやすいという欠点を有していた。
Problems to be Solved by the Invention Such a paste-type cadmium negative electrode has advantages such as obtaining a high energy density, but has a poor ability to absorb oxygen gas generated from the positive electrode due to overcharge due to poor electron conductivity, When used in a sealed battery, there is a disadvantage that the internal gas pressure tends to increase. In the high-temperature region of 40 ° C or higher, the solubility of cadmium hydroxide in a high-concentration alkaline solution increases, and the charge-discharge cycle is repeated.
Dissolution and deposition of cadmium were repeated, and the disadvantage was that the life of the negative electrode was likely to be relatively short due to deformation of the negative electrode, reduction in the utilization factor, growth of dendrites, and the like.

このような課題を解決するために、特公昭48−25149
号公報に見られるように無電解メッキまたは電解メッキ
により電極の表面に金属のニッケル層を設けることが提
案されているが、無電解メッキは活性化処理等の工程が
煩雑であり、また、電解メッキは、活物質である酸化カ
ドミウムまたは水酸化カドミウムの導電性が乏しいた
め、金属のニッケル層が不均一になりやすく、電池とし
て十分な効果が得られないという欠点を有していた。
In order to solve such problems, Japanese Patent Publication No. 48-25149
It is proposed to provide a metal nickel layer on the surface of an electrode by electroless plating or electrolytic plating as seen in Japanese Patent Publication No. The plating has a drawback that since the conductivity of cadmium oxide or cadmium hydroxide, which is an active material, is poor, the nickel layer of the metal tends to be nonuniform, and a sufficient effect as a battery cannot be obtained.

本発明は、このような課題を解決し、均一な金属ニッ
ケルの薄膜層を得ることにより、ガス吸収特性の優れ、
高温領域でも長寿命を有するアルカリ蓄電池用カドミウ
ム負極を得ることを目的とする。
The present invention solves such a problem, and by obtaining a uniform thin film layer of metallic nickel, has excellent gas absorption properties,
An object is to obtain a cadmium negative electrode for an alkaline storage battery having a long life even in a high temperature region.

課題を解決するための手段 このような課題を解決するために、本発明は活物質粉
末の表面官能基としてカルボキシル基,カルボニル基,
キノン基のうち少なくとも1種を有する炭素粉末または
炭素繊維との混合物をペースト状もしくはシート状とし
て導電性支持体に塗着,乾燥した後、硫酸ニッケルを主
体とするニッケル塩水溶液中で陰電解し、カドミウム活
物質表面に金属ニッケルの微孔性薄膜層を形成する工程
を有することを特徴とするアルカリ蓄電池用カドミウム
負極の製造法である。
Means for Solving the Problems To solve such problems, the present invention provides a carboxyl group, a carbonyl group,
A mixture with carbon powder or carbon fiber having at least one quinone group is applied to a conductive support in the form of a paste or a sheet, dried, and then subjected to negative electrolysis in a nickel salt aqueous solution mainly composed of nickel sulfate. And a step of forming a microporous thin film layer of metallic nickel on the surface of a cadmium active material.

作用 密閉形アルカリ蓄電池におけるカドミウム負極による
酸素ガス吸収反応は次式で示される。
The oxygen gas absorption reaction by the cadmium negative electrode in the sealed alkaline storage battery is expressed by the following equation.

Cd+1/2O2+H2O→Cd(OH) ……(1) つまり、気相,液相,固相の3相界面における反応で
あり、金属カドミウムと酸素ガスが多く接触する程反応
は活発である。ところが、ペースト式カドミウム負極は
活物質の導電性が低く、充電反応は芯体近傍から極板表
面に向って徐々に進行するため、金属カドミウムは導電
性芯体から離れた極板表面近傍に生成され難くなってい
る。これに対し、ペースト式カドミウム負極の活物質層
の表面に金属ニッケルの薄膜を設けた電極では、導電性
芯体を中心として生成する金属カドミウムが活物質の導
電性を有する金属ニッケルの薄膜層まで到達すると、そ
の到達した部分から金属ニッケルに沿って徐々に負極表
面近傍全体に優先的に金属カドミウムが析出し、その結
果、酸素ガス吸収能が向上する。
Cd + 1 / 2O 2 + H 2 O → Cd (OH) 2 (1) That is, the reaction is at the three-phase interface of the gas phase, the liquid phase, and the solid phase, and the more the metal cadmium and oxygen gas are in contact, the more active the reaction It is. However, since the paste-type cadmium negative electrode has low conductivity of the active material and the charging reaction gradually proceeds from the vicinity of the core toward the electrode surface, metal cadmium is generated near the surface of the electrode away from the conductive core. It is hard to be done. On the other hand, in an electrode in which a metal nickel thin film is provided on the surface of an active material layer of a paste-type cadmium negative electrode, metal cadmium generated around the conductive core is reduced to a metal nickel thin film layer having the conductivity of the active material. When it reaches, metal cadmium is preferentially deposited from the reached portion along the metal nickel gradually over the entire vicinity of the negative electrode surface, and as a result, the oxygen gas absorbing ability is improved.

また、40℃以上の高温領域において負極を放電した場
合、放電生成物がカドミ酸イオンとして溶出し、アルカ
リ電解液中を拡散し、次に充電した時に元に戻らず析出
する。これは充放電サイクルのくり返しにより促進さ
れ、負極は著しく変形し利用率が低下したり、デンドラ
イト等の成長によりセパレータ中を活物質が浸透し短絡
を引き起こしたり、寿命を短くする原因となる。しか
し、電極表面層に、極めて微細な金属ニッケル粒子を緻
密な層として形成することにより、高温領域での放電生
成物の溶解,拡散を防止することが可能となり、電池の
充放電サイクル寿命が大幅に向上する。
Further, when the negative electrode is discharged in a high temperature region of 40 ° C. or more, the discharge product elutes as cadmium ions, diffuses in the alkaline electrolyte, and precipitates without returning to the original state when charged next time. This is promoted by repeated charge / discharge cycles, and the negative electrode is remarkably deformed to lower the utilization factor, and the growth of dendrites or the like causes the active material to penetrate into the separator to cause a short circuit or shorten the life. However, by forming extremely fine metallic nickel particles as a dense layer on the electrode surface layer, it is possible to prevent the dissolution and diffusion of discharge products in a high-temperature region, and the charge / discharge cycle life of the battery is greatly increased. To improve.

ところが、電解メッキにより、ペースト式カドミウム
負極の活物質表面に金属ニッケルの薄膜層を形成する場
合、活物質表面の導電性が低いため、ニッケル析出の過
電圧が高くなり、活物質表面から水素ガスが発生する。
その結果、カドミウム活物質表面近傍がアルカリ性にな
り、水酸化ニッケルなどのニッケル化合物が析出する。
このニッケル化合物が金属ニッケルの薄膜層に混入した
場合、ニッケル化合物の導電性が低いため、金属ニッケ
ルの析出反応が不均一になりやすく、金属ニッケルの薄
膜層が不均一になる。その結果、充電反応において負極
表面近傍に析出する金属カドミウムの分布が不均一とな
ってしまい、酸素ガス吸収能力が十分に向上しない。ま
た、高温領域における充放電サイクル寿命も十分に向上
できないという欠点があった。
However, when a thin layer of metallic nickel is formed on the surface of the paste-type cadmium negative electrode active material by electrolytic plating, the conductivity of the active material surface is low, so that the overvoltage of nickel deposition increases and hydrogen gas is discharged from the active material surface. Occur.
As a result, the vicinity of the cadmium active material surface becomes alkaline, and a nickel compound such as nickel hydroxide precipitates.
When this nickel compound is mixed into the metal nickel thin film layer, the conductivity of the nickel compound is low, so that the deposition reaction of the metal nickel tends to be nonuniform, and the metal nickel thin film layer becomes nonuniform. As a result, the distribution of metal cadmium deposited near the negative electrode surface during the charging reaction becomes non-uniform, and the oxygen gas absorbing ability is not sufficiently improved. Further, there is a disadvantage that the charge / discharge cycle life in a high temperature region cannot be sufficiently improved.

ところが、本発明ではカドミウム活物質の中に導電性
を有する炭素粉末または炭素繊維を混入することによ
り、活物質層内部及び表面の導電性が向上し、陰電解す
る際に電流密度が均一になり、ニッケルの析出が不均一
になりやすい。
However, in the present invention, by mixing conductive carbon powder or carbon fiber into the cadmium active material, the conductivity inside and on the surface of the active material layer is improved, and the current density becomes uniform when performing negative electrolysis. , Nickel deposition tends to be non-uniform.

さらに、表面官能基として、カルボキシル基,カルボ
ニル基,キノン基のうち少なくとも1種を有する炭素粉
末または炭素繊維をカドミウム活物質中に添加すること
によりカドミウム活物質表面に、前記官能基が存在す
る。これらの官能基は、一般にニッケルメッキの均一電
着性,平滑性をよくする光沢剤に含まれる官能基として
知られており、ニッケルイオンと錯体を形成することに
より、ニッケル析出の過電圧を下げ、均一なニッケルメ
ッキ層を得ることができる。すなわち、本発明によれ
ば、カドミウム活物質層の導電性を向上すると同時にニ
ッケル析出の過電圧を下げることができるため、本来導
電性の低い酸化カドミウムまたは水酸化カドミウムのみ
から成る活物質表面層に金属ニッケルの微孔性薄膜層を
均一に形成することが可能となり、酸素ガス吸収能力の
向上と高温領域における充放電サイクル寿命の向上が可
能となった。
Further, by adding a carbon powder or a carbon fiber having at least one of a carboxyl group, a carbonyl group and a quinone group as a surface functional group to the cadmium active material, the functional group is present on the cadmium active material surface. These functional groups are generally known as functional groups contained in brighteners that improve the uniform electrodeposition and smoothness of nickel plating. By forming a complex with nickel ions, the overvoltage of nickel deposition is reduced, A uniform nickel plating layer can be obtained. That is, according to the present invention, the conductivity of the cadmium active material layer can be improved, and at the same time, the overvoltage of nickel deposition can be reduced, so that the active material surface layer consisting essentially of cadmium oxide or cadmium hydroxide, which has low conductivity, has a metal surface. The nickel microporous thin film layer can be formed uniformly, and the oxygen gas absorbing ability and the charge / discharge cycle life in a high temperature region can be improved.

実施例 炭素粉末として平均粒径0.5μmのカーボンブラック
を酸素中で約400℃で10分間加熱し、カーボンブラック
表面にカルボキシル基,カルボニル基を付与させた後、
平均粒径約1μmの酸化カドミウム粉末と重量比で5:95
の割合で混合し、さらにポリビニルアルコールのエチレ
ングリコール溶液を加え混練してペースト状にする。こ
のペーストを導電性支持体である厚さ0.1mmのニッケル
メッキした開孔鋼板に塗着し、約140℃で30分間乾燥
し、厚さ約0.5mmのカドミウム活物質塗着板を得た。次
にこのカドミウム活物質塗着板をPH3,液温約25℃に調整
した総量1モル/の硫酸ニッケル+塩化ニッケルの混
合液中で、ニッケルを対極として、電流密度0.1A/cm2
2分間陰電解して、カドミウム活物質表面にニッケルの
メッキ層を形成した後、水洗,乾燥した。次に前記極板
をアルカリ溶液中で理論容量の約40%充電し、水洗,乾
燥後、所定の寸法に切断してアルカリ蓄電池用カドミウ
ム負極を得た。この負極をaとする。
Example Carbon black having an average particle size of 0.5 μm as carbon powder was heated in oxygen at about 400 ° C. for 10 minutes to give carboxyl groups and carbonyl groups on the carbon black surface.
5:95 by weight ratio with cadmium oxide powder having an average particle size of about 1 μm
And a solution of polyvinyl alcohol in ethylene glycol is added and kneaded to form a paste. The paste was applied to a nickel-plated apertured steel plate having a thickness of 0.1 mm as a conductive support and dried at about 140 ° C. for 30 minutes to obtain a cadmium active material coated plate having a thickness of about 0.5 mm. Next, this cadmium active material coated plate was subjected to a current density of 0.1 A / cm 2 at a current density of 0.1 A / cm 2 in a mixed solution of nickel sulfate + nickel chloride having a total amount of 1 mol / pH adjusted to PH3 and a liquid temperature of about 25 ° C. After performing a negative electrolysis for a minute to form a nickel plating layer on the surface of the cadmium active material, the substrate was washed with water and dried. Next, the electrode plate was charged to about 40% of the theoretical capacity in an alkaline solution, washed with water, dried, and cut into a predetermined size to obtain a cadmium negative electrode for an alkaline storage battery. This negative electrode is referred to as a.

また、上記と同様の処理で、酸素中で加熱処理をしな
いで表面にカルボキシル基,カルボニル基を含まないカ
ーボンブラックを用いた電極をb、さらに、カーボンブ
ラックを添加せず、ニッケルメッキ処理のみを行なった
電極をも、また、比較品として、カーボンブラック添
加,ニッケルメッキ処理をせず、アルカリ溶液中で充電
のみ行った電極をdとした。
In the same manner as above, an electrode using carbon black having no carboxyl group or carbonyl group on the surface without heat treatment in oxygen was applied to the electrode b, and only nickel plating was performed without adding carbon black. The electrode thus obtained was also referred to as a comparative product, in which carbon black was not added and nickel plating was not performed, and only the electrode charged in an alkaline solution was designated as d.

上記、4種類のカドミウム負極を焼結式ニッケル正極
と組み合わせて、密閉形ニッケルカドミウム蓄電池を試
作し、サイクル寿命試験と過充電時の電池内圧試験を行
なった。
The above four types of cadmium negative electrodes were combined with a sintered nickel positive electrode to produce a sealed nickel cadmium storage battery, and a cycle life test and a battery internal pressure test during overcharge were performed.

サイクル寿命特性は、50℃で、1/3C相当の電流で4.5
時間充電し、1C相当の抵抗負荷で完全放電をする充放電
をくり返し、サイクルによる容量低下で評価した。
The cycle life characteristics are 4.5 at 50 ° C and 1 / 3C equivalent current.
The battery was charged for a period of time, and was repeatedly charged and discharged to completely discharge with a resistance load equivalent to 1 C, and the capacity was reduced by the cycle.

また過充電時の電池内圧特性は、20℃で2C相当の電流
で過充電したときの電池内圧で評価した。
In addition, the battery internal pressure characteristics at the time of overcharge were evaluated by the internal pressure of the battery when overcharged at 20 ° C. with a current equivalent to 2 C.

第1図は、1サイクル目の容量を100とした場合の容
量維持率と充放電サイクル数との関係を示す。図中Aは
本発明によるカドミウム負極aを用いた電池、B,Cは比
較の負極b,cを用いた電池、Dは比較の負極dを用いた
電池を示す。
FIG. 1 shows the relationship between the capacity retention ratio and the number of charge / discharge cycles when the capacity of the first cycle is 100. In the figure, A shows a battery using the cadmium negative electrode a according to the present invention, B and C show batteries using comparative negative electrodes b and c, and D shows a battery using comparative negative electrode d.

この結果から明らかなように、極板表面にニッケル主
体薄層を設けたa,b,cは比較例dに比べて大幅にサイク
ル寿命特性が向上しており、さらに表面官能基としてカ
ルボキシル基,カルボニル基を含むカーボンブラックを
添加したaは、さらに寿命が向上しているのが判る。
As is clear from these results, the cycle life characteristics of a, b, and c, in which a nickel-based thin layer was provided on the surface of the electrode plate, were significantly improved as compared with Comparative Example d. It can be seen that the life time of a to which carbon black containing a carbonyl group is added is further improved.

前に述べた通り、電極表面層に、極めて微細な金属ニ
ッケル粒子を緻密な層として形成することで、活物質の
溶解,析出による負極外側へのデンドライトの成長が防
止され寿命特性が向上する。ところが比較例b,cでは、
ニッケルの微粒子層の形成が不均一なため、ニッケル層
の少ない部分でデンドライトの成長が起こり、その結果
寿命低下を招き、本発明によるaに比較して、寿命特性
が劣っている。
As described above, by forming extremely fine metallic nickel particles as a dense layer on the electrode surface layer, dendrite growth outside the negative electrode due to dissolution and precipitation of the active material is prevented, and the life characteristics are improved. However, in Comparative Examples b and c,
Since the formation of the nickel fine particle layer is non-uniform, dendrite growth occurs in a portion where the nickel layer is small, resulting in a reduction in the life, and the life characteristics are inferior to those of a according to the present invention.

第2図は、20℃において2C相当の電流で充電した時の
電池内圧の変化を示したものである。なお放電は、20
℃,1C相当の電流で行った。
FIG. 2 shows a change in the internal pressure of the battery when charged at 20 ° C. with a current equivalent to 2 C. The discharge is 20
The test was performed at a temperature of 1 ° C and a current equivalent to 1C.

負極表面にニッケルの微孔性薄膜層を設けたものa,b,
cは比較例dに比べ内圧特性が良好となっている。さら
に本発明による電極aを用いた電池Aは、比較例b,cを
用いたものよりも、さらに特性が向上している。これ
は、前述のように本発明により、カドミウム活物質表面
に、非常に均一にニッケルの微孔性薄膜層が形成するた
めに、充電反応において負極表面近傍に析出する金属カ
ドミウムの分布が均一になり、ガス吸収が効率的に行な
われ、電池内圧特性が向上するものと考えられる。
A negative electrode surface provided with a nickel microporous thin film layer a, b,
c has better internal pressure characteristics than Comparative Example d. Further, the battery A using the electrode a according to the present invention has further improved characteristics as compared with those using the comparative examples b and c. This is because, as described above, according to the present invention, a nickel microporous thin film layer is formed very uniformly on the cadmium active material surface, so that the distribution of metal cadmium deposited near the negative electrode surface in the charging reaction is uniform. It is considered that gas absorption is efficiently performed and the internal pressure characteristics of the battery are improved.

なお、本実施例では、炭素粉末として、カーボンブラ
ックを用いたが、他の粉末として活性炭,人造黒鉛、ま
たは炭素繊維を用いても、酸素雰囲気中で高温加熱する
ことにより表面官能基を付与し、カドミウム活物質とよ
く分散させることにより、本実施例と同様の効果が得ら
れる。
In this example, carbon black was used as the carbon powder. However, even if activated carbon, artificial graphite, or carbon fiber was used as the other powder, the surface functional group was imparted by heating at a high temperature in an oxygen atmosphere. By dispersing the cadmium active material well, the same effect as in the present embodiment can be obtained.

なお、表面官能基としてカルボキシル基,カルボニル
基及びキノン基の存在は、化学分析並びにX線分光分
析,二次イオン質量分析等により同定確認を行なった。
The presence of carboxyl, carbonyl and quinone groups as surface functional groups was identified and confirmed by chemical analysis, X-ray spectroscopy, secondary ion mass spectrometry, and the like.

発明の効果 以上のように本発明によれば、カドミウム活物質表面
に非常に均一な金属ニッケルの微孔性薄膜層を形成する
ことにより、高温領域でも長寿命を有し、ガス吸収特性
の優れたアルカリ蓄電池用カドミウム負極を得ることが
できる。
Effects of the Invention As described above, according to the present invention, by forming a very uniform microporous thin film layer of metallic nickel on the surface of a cadmium active material, it has a long life even in a high temperature region and has excellent gas absorption characteristics. Thus, a cadmium negative electrode for an alkaline storage battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は密閉形ニッケルカドミウム蓄電池の容量維持率
と、充放電サイクルとの関係を示す図、第2図は充放電
時の電池内圧を示す図である。
FIG. 1 is a diagram showing a relationship between a capacity retention ratio of a sealed nickel cadmium storage battery and a charge / discharge cycle, and FIG. 2 is a diagram showing a battery internal pressure during charge / discharge.

フロントページの続き (56)参考文献 特開 平1−146252(JP,A) 特開 昭63−146360(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 H01M 4/26Continuation of the front page (56) References JP-A-1-146252 (JP, A) JP-A-63-146360 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4 / 24 H01M 4/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化カドミウムまたは水酸化カドミウムを
主体とする活物質粉末と表面官能基としてカルボキシル
基,カルボニル基,キノン基のうち少なくとも1種を有
する炭素粉末または炭素繊維との混合物をペースト状も
しくはシート状として導電性支持体に塗着して、カドミ
ウム活物質塗着板を得る工程と、このカドミウム活物質
塗着板を硫酸ニッケルを主体とするニッケル塩水溶液中
で陰電解しカドミウム活物質表面に金属ニッケルの微孔
性薄膜層を形成する工程を有することを特徴とするアル
カリ蓄電池用カドミウム負極の製造法。
A mixture of an active material powder mainly composed of cadmium oxide or cadmium hydroxide and a carbon powder or carbon fiber having at least one of carboxyl group, carbonyl group and quinone group as a surface functional group is formed into a paste or a mixture thereof. A step of applying a cadmium active material-coated plate by applying the cadmium active material-coated plate as a sheet, and subjecting the cadmium active material-coated plate to negative electrolysis in a nickel salt aqueous solution mainly composed of nickel sulfate to form a cadmium active material surface Forming a microporous thin film layer of metallic nickel on a cadmium negative electrode for an alkaline storage battery.
JP1148955A 1989-06-12 1989-06-12 Manufacturing method of cadmium negative electrode for alkaline storage battery Expired - Fee Related JP2773253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148955A JP2773253B2 (en) 1989-06-12 1989-06-12 Manufacturing method of cadmium negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148955A JP2773253B2 (en) 1989-06-12 1989-06-12 Manufacturing method of cadmium negative electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0315153A JPH0315153A (en) 1991-01-23
JP2773253B2 true JP2773253B2 (en) 1998-07-09

Family

ID=15464398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148955A Expired - Fee Related JP2773253B2 (en) 1989-06-12 1989-06-12 Manufacturing method of cadmium negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2773253B2 (en)

Also Published As

Publication number Publication date
JPH0315153A (en) 1991-01-23

Similar Documents

Publication Publication Date Title
EP1271674B1 (en) Method of manufacturing an electrode active material particle
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
US4938780A (en) Paste type cadmium anode and method for making same
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
CN1185666A (en) Positive pole-plate for lithium cell and lithium cell thereof
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP2854926B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JP2754800B2 (en) Nickel cadmium storage battery
JPH01187767A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JPH0410181B2 (en)
JP2762730B2 (en) Nickel-cadmium storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JP3249324B2 (en) Nickel active material for alkaline storage battery and its manufacturing method
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JP2589750B2 (en) Nickel cadmium storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH03159064A (en) Nickel-cadmium storage battery
JPH03745B2 (en)
JPS61264671A (en) Manufacture of paste type cadmium negative electrode for alkaline storage battery
JPS63308870A (en) Manufacture of paste type cadmium negative electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees