JPS63308870A - Manufacture of paste type cadmium negative electrode - Google Patents

Manufacture of paste type cadmium negative electrode

Info

Publication number
JPS63308870A
JPS63308870A JP62145555A JP14555587A JPS63308870A JP S63308870 A JPS63308870 A JP S63308870A JP 62145555 A JP62145555 A JP 62145555A JP 14555587 A JP14555587 A JP 14555587A JP S63308870 A JPS63308870 A JP S63308870A
Authority
JP
Japan
Prior art keywords
electrode plate
cadmium
negative electrode
copper
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145555A
Other languages
Japanese (ja)
Inventor
Hideo Kaiya
英男 海谷
Katsumi Yamashita
勝己 山下
Masako Kusaka
草鹿 雅子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62145555A priority Critical patent/JPS63308870A/en
Publication of JPS63308870A publication Critical patent/JPS63308870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve negative electrode's capability of absorbing an oxygen gas and to prevent a charge-and-discharge characteristic from being deteriorated, by dipping a formation-finished negative electrode plate into a solution containing copper ions so that copper is precipitated on the electrode plate. CONSTITUTION:After a conductive core material is coated with paste of an active material consisting of cadmium oxide powder or cadmium hydroxide powder mainly, this negative plate is negatively electrolyzed in an alkaline solution so that formation is performed to provide this plate with metallic cadmium as a material for auxiliary charge. Next the formation-finished electrode plate is dipped into a solution containing copper ions so as to precipitate copper on the electrode plate by the use of substitution reaction with cadmium, so that a conductive matrix of copper is formed on a surface of the electrode plate and inside the electrode plate. Hence, negative electrode plate's capability of absorbing an oxygen gas is improved and also a charge-and-discharge characteristic can be prevented from being deteriorated due to charge-and-discharge repetition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ペースト式カドミウム負極
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a paste-type cadmium negative electrode for alkaline storage batteries.

従来の技術 アルカリ蓄電池用ペースト式カドミウム負極は、一般に
酸化カドミウムあるいは水酸化カドミウムを主体とし、
これにカーボニルニッケル、グラファイト等の導電性粉
末、ポリビニルアルコール。
Conventional technology Paste-type cadmium negative electrodes for alkaline storage batteries generally consist of cadmium oxide or cadmium hydroxide.
In addition, carbonyl nickel, conductive powder such as graphite, and polyvinyl alcohol.

カルボキシメチルセルロース等の結着剤及び水やエチレ
ングリコール等の溶媒′を加え、混練してペーストとし
、これをニッケルメッキした開孔鋼板等の導電性芯材に
塗着し、乾燥した後、アルカリ溶液中で化成することに
よって製造される。
Add a binder such as carboxymethylcellulose and a solvent such as water or ethylene glycol, knead to make a paste, apply this to a conductive core material such as a nickel-plated perforated steel plate, dry it, and then apply an alkaline solution. It is manufactured by chemical conversion inside.

前記の化成工程の目的は、活物質材料に用いる酸化カド
ミウム、水酸化カドミウムなどの放電状態のカドミウム
化合物の一部または全部を充電状態の金属カドミウムに
変換し、負極内に予備充電部分を付与することにある。
The purpose of the above chemical conversion step is to convert part or all of the cadmium compound in a discharged state, such as cadmium oxide or cadmium hydroxide, used for the active material into metallic cadmium in a charged state, and to provide a pre-charged portion within the negative electrode. There is a particular thing.

発明が解決しようとする問題点 ペースト式カドミウム負極は、焼結式に比べて製造が容
易で、高い容量密度が得られる利点を有するが、焼結式
のような導電性マトリクスが存在しないため、電池充電
時に生成する金属カドミウムの成長が芯材近傍で起こり
、極板表面層まで達しにくい。このため過充電時に正極
から発生する酸素ガスとの反応が効率的に行われず、密
閉形電池に使用すると、電池の内圧が高くなるという欠
点がある。また、電池を高温雰囲気で放置したり、充放
電を繰り返したりすると、負極表面の活物質粒子の粗大
化を招き、充放電特性の劣化を招く。
Problems to be Solved by the Invention Paste-type cadmium negative electrodes have the advantage of being easier to manufacture than sintered-type cadmium negative electrodes and can provide higher capacity density, but because they do not have a conductive matrix like sintered-type ones, The growth of metallic cadmium generated during battery charging occurs near the core material, making it difficult to reach the surface layer of the electrode plate. For this reason, the reaction with oxygen gas generated from the positive electrode during overcharging does not occur efficiently, and when used in a sealed battery, there is a drawback that the internal pressure of the battery increases. Furthermore, if the battery is left in a high-temperature atmosphere or repeatedly charged and discharged, the active material particles on the surface of the negative electrode will become coarser, leading to deterioration of charge and discharge characteristics.

このような活物質粒子の粗大化は、活物質を保持する骨
格を有する焼結式では起こシにくい現象である。 ゛ このような問題を解決するため、ペースト式負極の表面
に電解ニッケルメッキを施す方法が提案されている(特
公昭61−61227号公報)が、工程が煩雑となると
いう欠点を有する。また、ペースト式負極の表面に炭素
粉末よりなる導電層を設ける方法も提案されている(特
開昭60−63875号公報)が、この方法によると、
炭素粉末が極板表面にのみ存在し、活物質内への導電性
マトリクスを形成しにくいという問題があり、さらに改
良の余地がある。また、化成工程後の極板をニッケルイ
オンを含む溶液に浸漬し、化成工程で成生した金属カド
ミウムとの置換反応によシ、ニッケル層を極板表面形成
する方法も提案されている(%開昭60−258854
号公報)。
Such coarsening of active material particles is a phenomenon that is unlikely to occur in a sintered type having a skeleton that holds the active material. In order to solve this problem, a method has been proposed in which electrolytic nickel plating is applied to the surface of a paste-type negative electrode (Japanese Patent Publication No. 61-61227), but this method has the disadvantage that the process is complicated. Additionally, a method has been proposed in which a conductive layer made of carbon powder is provided on the surface of a paste-type negative electrode (Japanese Patent Laid-Open No. 60-63875), but according to this method,
There is a problem in that the carbon powder exists only on the surface of the electrode plate, making it difficult to form a conductive matrix within the active material, and there is still room for further improvement. In addition, a method has been proposed in which the electrode plate after the chemical formation process is immersed in a solution containing nickel ions, and a nickel layer is formed on the electrode plate surface by a substitution reaction with the metal cadmium generated in the chemical formation process (% Kaisho 60-258854
Publication No.).

しかし、電解ニッケルメッキによる方法(特公昭61−
61227号公報)を含め、ニッケル層を形成する方法
については、′ニッケルの水素発生過電圧が低いため、
電池充電時に、水素が発生し。
However, the method using electrolytic nickel plating
Regarding methods of forming a nickel layer, including ``61227 Publication,'' ``nickel has a low hydrogen generation overvoltage;
Hydrogen is generated when charging the battery.

やすくなるという問題点がある。充電時に発生する水素
は、電池内で消費されないため、特に密閉形の電池では
、重要な問題となる。
The problem is that it becomes easier. Hydrogen generated during charging is not consumed within the battery, which is an important problem, especially for sealed batteries.

本発明は、以上のような問題点を解決し、高性能のペー
スト式カドミウム負極を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a high-performance paste-type cadmium negative electrode.

問題点を解決するための手段 本発明は、酸化カドミウム粉末もしくは、水酸化カドミ
ウム粉末を主とする活物質ペーストを導電性芯材に塗着
した後、前記極板をアルカリ液中で陰電解し、予備充電
量としての金属カドミウムを付与する化成を行ない、化
成後の極板を、銅イオンを含む溶液に浸漬し、カドミウ
ムとの置換反応により、銅を極板に析出させ、極板表面
、及び極板内に、銅の導電性マトリクスを形成すること
により、負極の酸素ガス吸収能力を向上するとともに、
充放電の繰シ返しによる充放電特性の劣化を防止するも
のである。
Means for Solving the Problems The present invention applies an active material paste mainly composed of cadmium oxide powder or cadmium hydroxide powder to a conductive core material, and then electrolyzes the electrode plate in an alkaline solution. , conducts chemical formation to impart metallic cadmium as a pre-charge amount, immerses the chemically formed electrode plate in a solution containing copper ions, and deposits copper on the electrode plate through a substitution reaction with cadmium. By forming a conductive matrix of copper within the electrode plate, the oxygen gas absorption ability of the negative electrode is improved, and
This prevents deterioration of charging and discharging characteristics due to repeated charging and discharging.

作  用 酸化カドミウムあるいは水酸化カドミウムを主とする活
物質ペーストを芯材に塗着した極板を、アルカリ溶液中
で陰電解すると、電気化学的に金属カドミウムが極板中
に生成する。この工程は、予備充電量を付与するために
一般的に行われる化成工程である。この化成済み極板を
、銅イオンを含む溶液中に浸漬すると、極板中の金属カ
ドミウムが銅より卑な電位をもつため、カドミウムが溶
解し、極板に銅が析出する置換反応が起こる。銅は種板
表面層と極板中の空孔内に析出し、導電性のマトリクス
を形成する。
Function When an electrode plate whose core material is coated with an active material paste mainly composed of cadmium oxide or cadmium hydroxide is subjected to negative electrolysis in an alkaline solution, metallic cadmium is electrochemically generated in the electrode plate. This process is a chemical conversion process that is generally performed to provide a preliminary charge amount. When this chemically formed electrode plate is immersed in a solution containing copper ions, the metal cadmium in the electrode plate has a lower potential than copper, so a substitution reaction occurs in which the cadmium dissolves and copper is deposited on the electrode plate. Copper precipitates in the surface layer of the seed plate and in the pores in the electrode plate, forming a conductive matrix.

上記の極板を密閉形蓄電池に用いると、電池充電時に負
極内に生成する金属カドミウムは、付与された金属鋼の
導電性マl−IJクスに沿って極板表面層まで均一に成
長する。一方、化成工程のみ行い、本発明のような導電
性マトリクスを有しない極板では、充電時の金属カドミ
ウムの生成が芯材付近に集中し、表面層まで達する割合
が少ない。
When the above electrode plate is used in a sealed storage battery, the metal cadmium generated in the negative electrode during battery charging grows uniformly to the electrode plate surface layer along the applied conductive marx of metal steel. On the other hand, in an electrode plate that undergoes only a chemical conversion process and does not have a conductive matrix like the one of the present invention, the generation of metallic cadmium during charging is concentrated near the core material, and the proportion of metal cadmium reaching the surface layer is small.

密閉形電池では、過充電時に正極よシ発生する酸素ガス
の負極での吸収反応が重要である。この酸素吸収が悪い
と、過充電時に電池内圧が上昇するので、大電流での充
電ができない。言い換えると、短時間充電ができない。
In sealed batteries, the absorption reaction at the negative electrode of oxygen gas generated from the positive electrode during overcharging is important. If this oxygen absorption is poor, the internal pressure of the battery will rise during overcharging, making it impossible to charge with a large current. In other words, it cannot be charged for a short period of time.

酸素ガスは、負極の金属カドミウムにより吸収されるも
のであるから、本発明によるもののように金属カドミウ
ムが極板表面に多く分布している方が有利である。
Since oxygen gas is absorbed by the metal cadmium of the negative electrode, it is advantageous for the metal cadmium to be distributed in large amounts on the electrode plate surface, as in the case of the present invention.

また、ペースト式カドミウム負極は、前述のように、高
温で活物質粒子の粗大化を招く欠点を有している。粗大
化した活物質粒子は、電気化学的に不活性であるため、
充放電特性が劣化するという結果となる。また、この現
象がさらに進行すると、デンドライト状に成長したカド
ミウム化合物がセパレータを貫通して正極に達し、内部
短絡の原因となる。このような活物質粗大化の現象は、
焼結式のように、活物質を物理的に保持する骨格をもた
ないペースト式で著しく、またその位置は極板表面で起
こシやすい。本発明によると、極板に銅のマトリクスが
でき、これが極板表面での活物質の粗大化を物理的にお
さえるため、前記のような特性劣化の防止に有効である
Further, as described above, the paste-type cadmium negative electrode has the drawback that the active material particles become coarse at high temperatures. Since the coarse active material particles are electrochemically inactive,
This results in deterioration of charge/discharge characteristics. Further, as this phenomenon progresses further, the cadmium compound that has grown in the form of a dendrite penetrates the separator and reaches the positive electrode, causing an internal short circuit. This phenomenon of active material coarsening is
This is particularly the case with paste types that do not have a skeleton that physically holds the active material, such as the sintered type, and is more likely to occur on the surface of the electrode plate. According to the present invention, a copper matrix is formed on the electrode plate, and this physically suppresses the coarsening of the active material on the electrode plate surface, which is effective in preventing the above-mentioned characteristic deterioration.

また、銅はアルカリ液に可溶であるが、金属カドミウム
よりも、責な電位であるため、金属カドミウムが存在す
る負極に存在する場合は銅は金属として存在し、アルカ
リ液中に溶出することはなく、安定した特性が得られる
In addition, although copper is soluble in alkaline liquid, it has a higher potential than metal cadmium, so if metal cadmium is present in the negative electrode, copper exists as a metal and cannot be eluted into alkaline liquid. stable characteristics can be obtained.

また、銅はニッケル等よりも、水素発生過電圧が高いた
め、充電時の水素発生も低下する。
Further, since copper has a higher hydrogen generation overvoltage than nickel or the like, hydrogen generation during charging is also reduced.

また、以上のような方法で、銅あるいはニッケルを置換
反応により負極に析出させる場合、その析出効率におい
て、銅はニッケルよシもすぐれている。化学メッキによ
りニッケルをメッキする場合、カドミウムが解媒毒とな
り、ニッケルの析出効率を低下させることが知られてい
る。置換反応によシニソケルを負極に析出させる場合も
化学メッキと同様な作用によシ、その析出効率が低下す
るものと考えられる。しかし、銅の場合は、このような
作用がなく析出効率はほぼ100%となる。
Further, when copper or nickel is deposited on the negative electrode by a substitution reaction using the method described above, copper is superior to nickel in terms of deposition efficiency. It is known that when nickel is plated by chemical plating, cadmium acts as a desolative poison and reduces the efficiency of nickel precipitation. It is thought that when Sinisokel is deposited on the negative electrode by a substitution reaction, the deposition efficiency decreases due to the same effect as in chemical plating. However, in the case of copper, there is no such effect and the precipitation efficiency is approximately 100%.

ニッケルの析出効率は約60%以下であわ、必要なニッ
ケル析出量を確保するために、溶解するカドミウムの材
料ロスを生じ、あるいは析出時間が長くなる等の工程面
の問題もある。
The precipitation efficiency of nickel is about 60% or less, and there are problems in the process, such as a loss of cadmium material to be dissolved or a long precipitation time in order to ensure the necessary amount of nickel precipitation.

以下、詳細を実施例で説明する。Details will be explained below using examples.

実施例 平均粒径約1μmの酸化カドミウム粉末をポリビニルア
ルコールのエチレンクリコール溶iで練合してペースト
とし、これをニッケルメッキした開孔鉄板に塗着し、乾
燥して約0.5n厚の極板とした。次に、この極板を比
重1.20の水酸化すトリウム水溶液中で陰電解し、金
属カドミウムを付与する化成を行い、水洗、乾燥した。
Example: Cadmium oxide powder with an average particle size of about 1 μm was kneaded with polyvinyl alcohol dissolved in ethylene glycol to make a paste, which was applied to a nickel-plated perforated iron plate and dried to form a paste with a thickness of about 0.5 nm. It was used as a pole plate. Next, this electrode plate was subjected to negative electrolysis in an aqueous solution of thorium hydroxide having a specific gravity of 1.20 to perform chemical conversion to impart metal cadmium, and was washed with water and dried.

その後pH3、液温30°Cに調整した硫酸銅の1モル
/l水溶液に約20秒間浸漬し、金属カドミウムの一部
と銅イオンの置換反応を行わせた。この処理により生成
した銅は、極板表面に被膜を形成するとともに、極板内
の空孔部に析出し、導電性のマ) IJクスを形成する
。実施例の場合、分析結果によれば、金属カドミウムの
約5〜10%が金属銅に置換された。
Thereafter, it was immersed for about 20 seconds in a 1 mol/l aqueous solution of copper sulfate adjusted to a pH of 3 and a liquid temperature of 30°C to cause a substitution reaction between a portion of the metal cadmium and copper ions. The copper produced by this treatment forms a film on the surface of the electrode plate, and is deposited in the holes within the electrode plate, forming a conductive matrix. In the case of the example, the analytical results showed that about 5 to 10% of the metallic cadmium was replaced by metallic copper.

この極板を水洗、乾燥した後、所定の寸法に切断し、焼
結式ニッケル正極と組み合わせて120゜mA h 相
当の密閉形蓄電池を構成し、電池特性を試験した。
After washing and drying this electrode plate, it was cut into a predetermined size and combined with a sintered nickel positive electrode to form a sealed storage battery equivalent to 120 mA h, and the battery characteristics were tested.

試験は、負極の酸素ガス吸収性を評価するための過充電
時の電池内圧試験と、高温特性を評価するための高温で
の充放電サイクル試験をした。電池内圧試験は、20’
Cにおいて1〜3C相当の電流で充電したときの電池内
圧のピークで評価し、充放電サイクル試験は、45°C
において1C相当の電流で充放電を繰り返したときの放
電時間で評価した。
The tests included a battery internal pressure test during overcharging to evaluate the oxygen gas absorption of the negative electrode, and a high-temperature charge-discharge cycle test to evaluate the high-temperature characteristics. Battery internal pressure test is 20'
Evaluation is made at the peak of the battery internal pressure when charged at a current equivalent to 1 to 3C at 45°C.
Evaluation was made based on the discharge time when charging and discharging were repeated at a current equivalent to 1C.

第1図は充電レートと電池内圧力のピークとの関係を示
す。aは上記実施例の負極を用いた電池、bは実施例の
化成工程までを行った比較例の負極を用いた電池を示す
。本発明による負極は、充電時に金属カドミウムが極板
表面に分布しやすく、酸素ガス吸収能力が高く、従って
電池aは電池内圧が低く、高率で充電が可能である。
FIG. 1 shows the relationship between the charging rate and the peak of the battery internal pressure. A shows a battery using the negative electrode of the above example, and b shows a battery using a negative electrode of a comparative example in which the chemical conversion process of the example was performed. In the negative electrode according to the present invention, metal cadmium is easily distributed on the electrode plate surface during charging, and the oxygen gas absorption capacity is high. Therefore, battery a has a low internal pressure and can be charged at a high rate.

第2図は充放電サイクルに伴う放電時間の変化を示す。FIG. 2 shows the change in discharge time associated with charge and discharge cycles.

aは上記実施例の負極を用いた電池、bは実施例の化成
工程まで行った比較例の負極を用いた電池である。
A is a battery using the negative electrode of the above example, and b is a battery using a negative electrode of a comparative example that has been subjected to the chemical conversion step of the example.

本発明による負極を用いた電池aの充放電サイクル特性
が改良されているのは、負極に設けられた銅の導電性マ
トリクスにより、活物質の粗大化による放電特性の劣化
が抑制されたものと考えられる。
The reason why the charge/discharge cycle characteristics of battery a using the negative electrode according to the present invention is improved is that the conductive matrix of copper provided in the negative electrode suppresses the deterioration of the discharge characteristics due to coarsening of the active material. Conceivable.

発明の効果 以上のように、本発明によれば、簡単な処理で、ペース
ト式カドミウム負極の特性を大幅に改良することができ
る。
Effects of the Invention As described above, according to the present invention, the characteristics of a paste-type cadmium negative electrode can be significantly improved with simple processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二yケルーカドミウム蓄電池の充電レートと電
池内のピーク圧力との関係を示す図、第2図は充放電回
数と放電時間との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the charging rate and the peak pressure inside the battery of a 2Y Quell cadmium storage battery, and FIG. 2 is a diagram showing the relationship between the number of times of charging and discharging and the discharge time.

Claims (1)

【特許請求の範囲】[Claims] 酸化カドミウムもしくは、水酸化カドミウムを主体とす
るペーストを導電性芯材に塗着する工程と、前記塗着極
板をアルカリ電解液中で陰電解して予備充電量を付与す
る化成工程と、化成後の極板を銅イオンを含む溶液中に
浸漬して極板に銅を析出させる工程を有するペースト式
カドミウム負極の製造法。
A process of applying a paste mainly composed of cadmium oxide or cadmium hydroxide to a conductive core material, a chemical conversion process of applying a preliminary charge amount by electrolyzing the applied electrode plate in an alkaline electrolyte; A method for producing a paste-type cadmium negative electrode, which includes the step of immersing the subsequent electrode plate in a solution containing copper ions to deposit copper on the electrode plate.
JP62145555A 1987-06-11 1987-06-11 Manufacture of paste type cadmium negative electrode Pending JPS63308870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145555A JPS63308870A (en) 1987-06-11 1987-06-11 Manufacture of paste type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145555A JPS63308870A (en) 1987-06-11 1987-06-11 Manufacture of paste type cadmium negative electrode

Publications (1)

Publication Number Publication Date
JPS63308870A true JPS63308870A (en) 1988-12-16

Family

ID=15387875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145555A Pending JPS63308870A (en) 1987-06-11 1987-06-11 Manufacture of paste type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JPS63308870A (en)

Similar Documents

Publication Publication Date Title
US3642539A (en) Secondary battery with indate ion in the electrolyte
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JPH04121961A (en) Zinc alloy for zinc alkaline battery and its manufacture and zinc alkaline battery using it
JPS63308870A (en) Manufacture of paste type cadmium negative electrode
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JP2797554B2 (en) Nickel cadmium storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPS63308873A (en) Manufacture of paste type cadmium negative electrode
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS63308872A (en) Manufacture of paste type cadmium negative electrode
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPH05225971A (en) Manufacture of nickel electrode
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery