JPS63170851A - Cadmium electrode for alkaline storage battery - Google Patents

Cadmium electrode for alkaline storage battery

Info

Publication number
JPS63170851A
JPS63170851A JP62002385A JP238587A JPS63170851A JP S63170851 A JPS63170851 A JP S63170851A JP 62002385 A JP62002385 A JP 62002385A JP 238587 A JP238587 A JP 238587A JP S63170851 A JPS63170851 A JP S63170851A
Authority
JP
Japan
Prior art keywords
cadmium
electrode
nickel
cadmium electrode
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002385A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62002385A priority Critical patent/JPS63170851A/en
Publication of JPS63170851A publication Critical patent/JPS63170851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the utilization factor of a negative electrode and the quick charge characteristic by processing a cadmium electrode with an activator liquid, then reducing it once, next forming a porous layer of nickel by electrolytic plating. CONSTITUTION:A cadmium electrode, particularly the cadmium electrode obtained from cadmium oxide mainly by the paste method, is first processed by an activator liquid. Next, a reducing process is applied, then a porous layer of nickel is formed by electrolytic plating. Accordingly, the utilization factor of a negative electrode and the effect on the quick charge characteristic can be stably maintained for a long time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池のカドミウム極の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in cadmium electrodes for alkaline storage batteries.

従来の技術 各種の電源として使われている蓄電池には、よく知られ
ているように鉛酸電池とアルカリ電池がある。アルカリ
電池の代表的な系はニッケルーカドミウム蓄電池である
BACKGROUND OF THE INVENTION As is well known, storage batteries used as various power sources include lead-acid batteries and alkaline batteries. A typical alkaline battery system is a nickel-cadmium storage battery.

このニッケルーカドミウム蓄電池に、焼結式電極の開発
により充・放電特性、寿命、低温特性などに大幅な改良
が可能になり、密閉形の採用は取扱い性を向上させた。
The development of a sintered electrode for this nickel-cadmium storage battery has made it possible to significantly improve charge/discharge characteristics, lifespan, low-temperature characteristics, etc., and the adoption of a sealed type has improved handling.

ところが、エネルギー密度の向上や低コスト化への努力
についてに、進められてはいるが十分ではない。たとえ
ばエネルギー密度の向上のためには、ニッケル極につい
てに発泡式電極の開発で対応しているが、十分な低コス
ト化は解決したとはいえない。一方、カドミウム極につ
いてに、焼結式の代りにペースト式を開発、実用化した
ことにより若干のコストダウンは可能にしたが、カドミ
ウムの利用率の向上は十分でないのが現状である。
However, although efforts are being made to improve energy density and reduce costs, they are not sufficient. For example, in order to improve energy density, foamed electrodes have been developed for nickel electrodes, but it cannot be said that sufficient cost reductions have been achieved. On the other hand, with regard to cadmium electrodes, the development and commercialization of a paste method instead of a sintering method has made it possible to reduce costs to some extent, but the current situation is that the utilization rate of cadmium has not been sufficiently improved.

このようなカドミウム極の利用率の向上や急速充電特注
を向上させるために、カドミウム活物質の表面を導電性
で多孔性の層を形成することが提案されている。これら
目的のだめの表面への多孔層の形成にぼ、炭素や金属に
よる層が最も一般的である。また、カドミウム活物質と
してに、金属カドミウム、酸化カドミウム、水酸化カド
ミウムその他のカドミウム化合物があるが、経済性や電
極への充てん件ヲ考慮すると酸化カドミウムを主とする
材料構成が最も好ましい。
In order to improve the utilization rate of such cadmium electrodes and to improve custom fast charging, it has been proposed to form a conductive and porous layer on the surface of the cadmium active material. When it comes to forming a porous layer on the surface of these containers, a carbon or metal layer is most commonly used. Cadmium active materials include metal cadmium, cadmium oxide, cadmium hydroxide, and other cadmium compounds, but in consideration of economic efficiency and filling requirements for the electrode, a material composition mainly composed of cadmium oxide is most preferable.

発明が解決しようとする問題点 アルカリ電池用カドミウム極のとくに利用率や急速充電
の向上に対してカドミウム活物質の表面に導電性で多孔
性の層を形成することにより効来が大きいことを明らか
にし、カドミウム活物質の材料としてに、酸化カドミウ
ムが有力であり、また表面の層の形成に炭素層や金属と
してに無電解メッキにより、銅やニッケル層を形成する
ことが好ましいことを明らかにしてきた。
Problems to be Solved by the Invention It has been revealed that forming a conductive and porous layer on the surface of the cadmium active material is highly effective in improving the utilization rate and rapid charging of cadmium electrodes for alkaline batteries. We have shown that cadmium oxide is a promising material for cadmium active materials, and that it is preferable to form a carbon layer or a copper or nickel layer as a metal layer by electroless plating. Ta.

これらのうち、炭素層の形成に、たとえば黒鉛の微粉末
と結着剤による層を塗布により形成したのみでも、どく
に急速充電時での酸素ガス吸収能の向上に大きな効果が
あることが明らかになっている。ところが炭素の層でに
通常の充放電のくり返し、苛酷な過充放電、長期放置、
高温での使用などの苛酷な条件になると、炭素の酸化や
脱落が生じ、初期の優れた効果が失なわれてくることが
ある。
Among these, it is clear that simply forming a carbon layer by coating a layer of fine graphite powder and a binder has a significant effect on improving oxygen gas absorption ability during rapid charging. It has become. However, the carbon layer is subject to repeated normal charging and discharging, severe overcharging and discharging, long-term storage,
Under harsh conditions such as use at high temperatures, carbon may oxidize or fall off, causing the initial excellent effects to be lost.

一方、ニッケルにこのような点で最もすぐれた材料であ
るが、酸化カドミウムを主とするペースト式電極の場合
に、無電解、電解のいずれのメッキに上っても良好な層
を形成しない。たとえば、無電解メッキの場合に、セン
シタイザ−→アクチペータ→無電解メブキの工程で行な
うが、銅メッキと異なり、酸化カドミウムを主とする場
合には、通常のメッキ条件でに、均一なメッキ層が得ら
れない。センシタイザ−やアクチペータを多量に用いれ
ば、一応にメッキができるが、それでは不純物の混入や
コストアンプがさけられない。電解メッキも同様で、酸
化カドミウム上に直接メッキが不可能で1、アクテペー
タ処理を行なっても困難である。
On the other hand, although nickel is the most superior material in this respect, in the case of a paste-type electrode mainly made of cadmium oxide, it does not form a good layer no matter whether it is electroless or electrolytically plated. For example, in the case of electroless plating, the process is sensitizer → activator → electroless plating, but unlike copper plating, when cadmium oxide is used as the main material, a uniform plating layer cannot be formed under normal plating conditions. I can't get it. If a large amount of sensitizers and actuators are used, plating can be done to some extent, but this does not avoid contamination with impurities and increases costs. The same is true for electrolytic plating, as it is impossible to directly plate on cadmium oxide1, and it is difficult to perform actepator treatment.

問題点を解決するための手段 そこで本発明では、まずカドミウム極をアクチベータ処
理を行ない、これを−たん還元して後にニッケルの電解
メッキを行なうものである。還元の方法とじてに、水素
中での高温処理もあるが、できるだけカドミウム極の組
成を変えないようにするために、常温、希アルカリ中で
のヒドラジンやホルムアルデヒドによる還元がよい。
Means for Solving the Problems According to the present invention, the cadmium electrode is first subjected to an activator treatment, then the cadmium electrode is phosphoreduced, and then nickel is electrolytically plated. Although high-temperature treatment in hydrogen is another method of reduction, in order to avoid changing the composition of the cadmium electrode as much as possible, reduction with hydrazine or formaldehyde in a dilute alkali at room temperature is preferable.

このように電解メッキでにあるが、無電解メッキと同様
にアクチベータ処理を行ない、しかも、無電解メッキで
は、その後そのま\メッキ工程に入るが、本願でぼ、−
たん還元工程を入れてから電解メッキを行なう。この方
法により、従来にない均一性にすぐれたニッケルの多孔
性メッキが可能になることがわかった。
As described above, in electrolytic plating, an activator treatment is performed in the same way as in electroless plating, and furthermore, in electroless plating, the plating process is directly started, but in this application, -
Electrolytic plating is performed after the phosphorus reduction process. It was found that this method enables porous nickel plating with unprecedented uniformity.

作用 このように、まず、カドミウム極とくに酸化カドミウム
を主としてペースト法により得られたカドミウム極をま
ず市販のアクチベータ液により処理し、ついで還元工程
を加えてからニッケルの電解メッキによる層を形成する
ことにより、負極の利用率や急速充電特性への効果を長
期にわたって安定して維持できるのである。
In this way, first, a cadmium electrode, especially a cadmium electrode obtained by a paste method using mainly cadmium oxide, is first treated with a commercially available activator solution, then a reduction step is added, and then a layer is formed by electrolytic plating of nickel. , the effect on the utilization rate of the negative electrode and the rapid charging characteristics can be maintained stably over a long period of time.

実施例 本発明の最も効果的な酸化カドミウムt↓とするペース
ト式カドミウム極を例にして詳述する。
EXAMPLE A paste-type cadmium electrode using cadmium oxide t↓, which is the most effective of the present invention, will be explained in detail as an example.

まず、市販の酸化カドミウムをポリビニルアルコールの
3チのエチレングリコール溶液、重量比で6チのポリエ
チレン微粉末、0.6%重量比での塩化ビニル−アクリ
ロニトリル短繊維などを加えてペーストをつくる。これ
を厚さ0.161NIII、孔径1.51ff、開孔度
50%の鉄のニッケルメッキバンチング板を芯材として
その両面に塗着し、スリットを通して平滑化し、厚さ0
.6朋に調整する。そのil 20℃で2時間乾燥して
ペースト式カドミウム極を得る。
First, a paste is prepared by adding commercially available cadmium oxide to a 3-part ethylene glycol solution of polyvinyl alcohol, a 6-part polyethylene fine powder by weight, and vinyl chloride-acrylonitrile short fibers at a 0.6% weight ratio. A nickel-plated bunching plate made of iron with a thickness of 0.161NIII, a pore diameter of 1.51ff, and a porosity of 50% is coated on both sides of the plate as a core material, smoothed through a slit, and the thickness is 0.
.. Adjust to 6. The paste was dried at 20° C. for 2 hours to obtain a paste-type cadmium electrode.

ついで、市販の無電解ニッケルメッキ用のアクチベータ
液を6倍に水で希釈し、これをカドミウム極に含浸させ
る。80℃で20分間乾燥後に、比重1・10のカセイ
カリ水溶液に15%(容積)の市販のホルマリンを含む
溶液中に20’Cで5分間浸せ する。この処理により
、パラジウム金主とする貴金属のブラックに変化するの
で、カドミウム極は薄黒色に変化する。
Next, a commercially available activator solution for electroless nickel plating is diluted six times with water, and the cadmium electrode is impregnated with this. After drying at 80°C for 20 minutes, it is immersed for 5 minutes at 20°C in a solution containing 15% (volume) commercially available formalin in an aqueous caustic potash solution with a specific gravity of 1.10. Through this treatment, the cadmium pole changes to a pale black color as it changes to black, which is a noble metal mainly made of palladium.

ついで公知のニッケルワット浴を用い、46°C1電流
密度somA/Cm、時間3分間の条件で電解ニッケル
メッキを行なった。風乾し、ついで8o′Cで1.5時
間乾燥した。メッキによる重量増加は約2グ/dであっ
た。
Next, electrolytic nickel plating was performed using a known nickel Watt bath at a current density of 46° C., somA/Cm, and a time of 3 minutes. It was air dried and then dried at 8o'C for 1.5 hours. The weight increase due to plating was approximately 2 g/d.

電池としては、単2形の密閉式ニッケルーカドミウム蓄
電池を例にした。したがって、このようにして得られた
カドミウム極を幅39ffll長さ261瓢に裁断し、
リード板を所定の2ケ所にスポット溶接により取りつけ
た。これをあらかじめ1oムの電流、比重1.16のカ
セイカリ水溶液の条件で9分間部分充電し、水洗、乾燥
した。相手極として、公知の高容量形の焼結式ニッケル
極をえらび、同じく幅39醪とし、長さは220mとし
て用いた。この場合もリード板を2ケ所取り付けた。
As an example of a battery, a AA sealed nickel-cadmium storage battery was used. Therefore, the cadmium electrode obtained in this way was cut into 39ffll width and 261mm length.
The lead plates were attached to two predetermined locations by spot welding. This was partially charged in advance for 9 minutes under the conditions of a current of 1 ohm and an aqueous caustic potash solution with a specific gravity of 1.16, washed with water, and dried. As a counterpart electrode, a known high capacity sintered nickel electrode was selected, also having a width of 39 m and a length of 220 m. In this case as well, lead plates were attached at two locations.

セパレータとしては、ポリアミド不織布、電解液として
は、比重1.18のかせいカリ水溶液に水酸化リチウム
を26ダ/l溶解して用いた。この電池をムとする。公
称容量ii 2.45 Ah である。
A polyamide nonwoven fabric was used as the separator, and lithium hydroxide was dissolved at 26 da/l in a caustic potassium aqueous solution with a specific gravity of 1.18 as the electrolyte. Let's call this battery Mu. The nominal capacity ii is 2.45 Ah.

つぎに比較のために、アクテペータ処理後にいきなり電
解メッキの工程を加えて得られたカドミウム極を用いた
電池を加えてBとし、まったく処理していないカドミウ
ム極を用いた電池fOとして加えた。
Next, for comparison, a battery using a cadmium electrode obtained by adding an electrolytic plating process immediately after the actepator treatment was added as B, and a battery fO using a cadmium electrode that was not treated at all was added.

まず、これら電池A−Cに用いるカドミウム極自体の利
用率を調べたところ、充電に25℃で0、I C、16
時間、放電も同じ26℃で0.30、カドミウム極律則
のニッケルーカドミウム試験電池の端子電圧O,S V
までの条件とした。その結果、電池人のカドミウム極に
、他よシやや利用率の点ですぐれ、387 mAh/y
  を示した。なおりに363 mAh/I 、 Ci
d 359 mAh/yであった。
First, when we investigated the utilization rate of the cadmium electrode itself used in these batteries A-C, we found that 0, I C, 16 at 25°C for charging.
Terminal voltage O, S V of nickel-cadmium test battery with cadmium pole rule, 0.30 at 26°C for the same time and discharge.
The conditions were set up to. As a result, the battery's cadmium electrode has a superior utilization rate compared to others, with a power consumption of 387 mAh/y.
showed that. 363 mAh/I, Ci
d 359 mAh/y.

つぎに、電池A−Cについて、急速充電特性を調べた。Next, the rapid charging characteristics of batteries A to C were investigated.

−3℃での1C充電を行なって、各電池の最高内圧を調
べた。その結果、電池人で(4o、ekg/d、電池B
でに2.3 kg/ cyA 、電池Cでに3・1に9
/dであった。また同じく一3℃で1.50充電を行な
った際の最高圧は、電池人でtrxl−1kti/ct
l。
The maximum internal pressure of each battery was investigated by performing 1C charging at -3°C. As a result, battery B (4o, ekg/d, battery B
2.3 kg/cyA, 3.1 to 9 for battery C
/d. Also, the maximum pressure when charging at 1.50℃ at -3℃ is trxl-1kti/ct.
l.

電池Bでに3.takq/c東電池Cでに6−8 k(
1/ ctAであった。
3. With battery B. takq/c East Battery C 6-8k (
It was 1/ctA.

このように、本発明のカドミウム極は、利用率は若干向
上するとともに、用いた電池の急速充電特性に大幅に向
上することがわかる。これに対して、アクチベータ処理
後、単にメッキを行なった場合にに、カドミウム極の芯
材付近でメッキが進むと考えられるので、未処理よりは
効果がちるが、本発明にばおよばない。
Thus, it can be seen that the cadmium electrode of the present invention not only slightly improves the utilization rate but also significantly improves the rapid charging characteristics of the battery used. On the other hand, if plating is simply performed after the activator treatment, it is thought that the plating will proceed near the core material of the cadmium electrode, so the effect will be better than untreated, but it will not be as good as the present invention.

発明の効果 カドミウム極とくに酸化カドミウムを主とするペースト
式カドミウム極に、まずアクチベータ処理を行ない、つ
いで還元工程を加えた後にニッケル電解メッキを行なう
ことにより、とくに急速充電の大幅な向上が可能になる
Effects of the invention By first applying activator treatment to cadmium electrodes, especially paste-type cadmium electrodes that are mainly made of cadmium oxide, and then applying nickel electrolytic plating after adding a reduction process, it becomes possible to significantly improve rapid charging. .

Claims (2)

【特許請求の範囲】[Claims] (1)アクチベータ処理後、還元工程を加え、ついで電
解メッキによりニッケルの多孔層を形成したことを特徴
とするアルカリ蓄電池用カドミウム極。
(1) A cadmium electrode for an alkaline storage battery characterized by adding a reduction step after activator treatment and then forming a porous layer of nickel by electrolytic plating.
(2)カドミウム極が、酸化カドミウムを出発材料とす
るペースト式であって、アクチベータ処理後の還元が、
カセイアルカリ中でのホルムアルデヒドやヒドラジンな
どの還元剤による特許請求の範囲第1項に記載のアルカ
リ蓄電池用カドミウム極。
(2) The cadmium electrode is of a paste type using cadmium oxide as a starting material, and the reduction after activator treatment is
The cadmium electrode for an alkaline storage battery according to claim 1, prepared by using a reducing agent such as formaldehyde or hydrazine in caustic alkali.
JP62002385A 1987-01-08 1987-01-08 Cadmium electrode for alkaline storage battery Pending JPS63170851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002385A JPS63170851A (en) 1987-01-08 1987-01-08 Cadmium electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002385A JPS63170851A (en) 1987-01-08 1987-01-08 Cadmium electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS63170851A true JPS63170851A (en) 1988-07-14

Family

ID=11527765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002385A Pending JPS63170851A (en) 1987-01-08 1987-01-08 Cadmium electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63170851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351728A (en) * 1992-02-03 1994-10-04 Canon Kabushiki Kaisha Developer cartridge
US5475479A (en) * 1991-11-08 1995-12-12 Canon Kabushiki Kaisha Developer cartridge having an automatic lid closing mechanism
US5513679A (en) * 1991-05-14 1996-05-07 Canon Kabushiki Kaisha Developer replenishing cartridge and developer receiving apparatus within which such cartridge is mounted

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513679A (en) * 1991-05-14 1996-05-07 Canon Kabushiki Kaisha Developer replenishing cartridge and developer receiving apparatus within which such cartridge is mounted
US5520229A (en) * 1991-05-14 1996-05-28 Canon Kabushiki Kaisha Developer replenishing cartridge and developer receiving apparatus within which such cartridge is mounted
US5475479A (en) * 1991-11-08 1995-12-12 Canon Kabushiki Kaisha Developer cartridge having an automatic lid closing mechanism
US5351728A (en) * 1992-02-03 1994-10-04 Canon Kabushiki Kaisha Developer cartridge

Similar Documents

Publication Publication Date Title
JP2684707B2 (en) Paste type cadmium negative electrode
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP3086525B2 (en) Sealed alkaline storage battery and method for manufacturing the same
JP2937165B2 (en) Manufacturing method of paste-type cadmium negative electrode
EP0331599B1 (en) Process for obtaining electrodes with a non-woven support of nickel or nickel alloy fibres
JP2589750B2 (en) Nickel cadmium storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPH0234434B2 (en)
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPH01248465A (en) Manufacture of cadmium electrode for battery
JPS6329446A (en) Fmanufacture of cadmium electrode for cell
JPH0775163B2 (en) Manufacturing method of cadmium electrode for battery
JPH0410181B2 (en)
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS6334852A (en) Cadmium electrode for cell
JPH01209660A (en) Manufacture of cadmium electrode for battery
JPH08203515A (en) Manufacture of nickel electrode
JPH0422065A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JPS61190861A (en) Cadmium anode for alkaline storage battery
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS63308870A (en) Manufacture of paste type cadmium negative electrode
JPS61206164A (en) Paste type cadmium anode for alkaline strorage battery
JPS63170852A (en) Cadmium electrode for alkaline storage battery
JPS632250A (en) Manufacture of cadmium electrode for battery