JPS6334852A - Cadmium electrode for cell - Google Patents
Cadmium electrode for cellInfo
- Publication number
- JPS6334852A JPS6334852A JP61178036A JP17803686A JPS6334852A JP S6334852 A JPS6334852 A JP S6334852A JP 61178036 A JP61178036 A JP 61178036A JP 17803686 A JP17803686 A JP 17803686A JP S6334852 A JPS6334852 A JP S6334852A
- Authority
- JP
- Japan
- Prior art keywords
- cadmium
- plating
- nickel
- electrode
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052793 cadmium Inorganic materials 0.000 title claims abstract description 46
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 title claims abstract description 45
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000007747 plating Methods 0.000 claims abstract description 30
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 26
- 239000010949 copper Substances 0.000 claims abstract description 26
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 24
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 claims abstract description 10
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000007772 electroless plating Methods 0.000 claims abstract description 8
- 238000009713 electroplating Methods 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 239000011162 core material Substances 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 150000001661 cadmium Chemical class 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 238000009499 grossing Methods 0.000 abstract 1
- 238000004080 punching Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000007599 discharging Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- PLLZRTNVEXYBNA-UHFFFAOYSA-L cadmium hydroxide Chemical compound [OH-].[OH-].[Cd+2] PLLZRTNVEXYBNA-UHFFFAOYSA-L 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229940065285 cadmium compound Drugs 0.000 description 1
- 150000001662 cadmium compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/246—Cadmium electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
- H01M4/742—Meshes or woven material; Expanded metal perforated material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、アルカリ蓄電池のカドミウム極の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in cadmium electrodes for alkaline storage batteries.
従来の技術
各種の電源として使われている蓄電池には、よく知られ
ているように鉛酸電池とアルカリ電池がある。アルカリ
電池の代表的な系は、ニッケルーカドミウム蓄電池であ
る。BACKGROUND OF THE INVENTION As is well known, storage batteries used as various power sources include lead-acid batteries and alkaline batteries. A typical alkaline battery system is a nickel-cadmium storage battery.
このニッケルーカドミウム蓄電池は、焼結式電極の開発
によシ充・放電特性、寿命、低温特性などの大幅な改良
が可能になシ、密閉形の採用は、取扱い性を向上させた
。The development of sintered electrodes made it possible to significantly improve the charging/discharging characteristics, lifespan, and low-temperature characteristics of this nickel-cadmium storage battery, and the use of a sealed type improved handling.
ところが、エネルギー密度の向上や低コスト化への努力
については、進められてはいるが未だ十分ではない。た
とえばエネルギー密度の向上のためには、ニッケル極に
ついては発泡式電極の開発で対応しているが、十分な低
コスト化は解決したとはいえない。一方、カドミウム極
については、焼結式の代りにペースト式を開発、実用化
したことにより若干のコストダウンは可能になったが、
カドミウムの利用率の向上は十分でないのが現状である
。However, although efforts are being made to improve energy density and reduce costs, they are still not sufficient. For example, in order to improve energy density, foamed electrodes have been developed for nickel electrodes, but it cannot be said that sufficient cost reduction has been achieved. On the other hand, with regard to cadmium electrodes, the development and commercialization of a paste method instead of a sintering method has made it possible to reduce costs slightly;
At present, the improvement in the utilization rate of cadmium is not sufficient.
このようなカドミウム極の利用率の向上のための手段と
して、カドミウム活物質の表面に導電性で多孔性の層を
形成することが提案され、これを可能にした。この表面
への多孔層の形成には、無電解メッキが最も簡単で工業
的である。カドミウム活物質としては、金属カドミウム
、酸化カドミウム、水酸化カドミウムその他のカドミウ
ム化合物があるが、経済性や電極への充てん性を考慮す
ると酸化カドミウムを主とする材料構成が最も好ましい
。As a means to improve the utilization rate of such cadmium electrodes, it has been proposed and made possible to form a conductive and porous layer on the surface of the cadmium active material. Electroless plating is the simplest and most industrial method for forming a porous layer on the surface. Examples of the cadmium active material include metal cadmium, cadmium oxide, cadmium hydroxide, and other cadmium compounds; however, in consideration of economical efficiency and ability to fill electrodes, a material composition mainly composed of cadmium oxide is most preferable.
発明が解決しようとする問題点
アルカリ電池用カドミウム極の、とくに利用率や寿命の
向上に対してカドミウム活物質の表面に導電性で多孔性
の層を形成することによシ効果が大きいことを明らかに
し、カドミウム活物質の材料としては、酸化カドミウム
が有力であり、また表面の層の形成は、無電解メッキに
より銅やニッケル層を形成することが好ましいことが判
明した。Problems to be Solved by the Invention It has been found that forming a conductive and porous layer on the surface of a cadmium active material has a great effect on improving the utilization rate and life of cadmium electrodes for alkaline batteries. It was found that cadmium oxide is a promising material for the cadmium active material, and that it is preferable to form a copper or nickel layer by electroless plating to form the surface layer.
とぐにこのような金属によるメッキを行なうことにより
、カドミウムの利用率の向上や、充放電のくり返しによ
るカドミウム極の性能の低下の抑制、つまり長寿命など
に効果があることが明らかになった。It has now become clear that plating with such metals is effective in improving the utilization rate of cadmium and suppressing the deterioration of cadmium electrode performance due to repeated charging and discharging, in other words, extending the life of the electrode.
ところが、金属として銅を用いた場合には、実用時に充
放電のサイクルよりもむしろ長期間放置を含む使用条件
、あるいは高温での充放電、過放電を含む使用条件など
通常の使用よりも苛酷な条件になると銅の腐食や溶解を
生じてその形成効果が失なわれてくることがある。However, when copper is used as a metal, it is difficult to use it under harsher conditions than normal use, such as long-term storage rather than charge-discharge cycles, high-temperature charging/discharging, and over-discharging. Under certain conditions, copper may corrode or dissolve, causing the formation effect to be lost.
一方、それに対してニッケルを用いると、そのような間
層はほとんどないが、ニッケルが直接カドミウムに接触
しているとカドミウムの自己放電をやや促進する問題が
ある。これは、水素過電圧の差によりニッケルに接した
カドミウムが電解液と反応して水素を発生しつつ、カド
ミウムが酸化することによる。On the other hand, when nickel is used, there is almost no such interlayer, but if nickel is in direct contact with cadmium, there is a problem that self-discharge of cadmium is somewhat accelerated. This is because cadmium in contact with nickel reacts with the electrolyte due to the difference in hydrogen overvoltage, generating hydrogen and oxidizing the cadmium.
問題点を解決するための手段
そこで、本発明では、カドミウム極のカドミウム表面に
まず銅メッキを施し、その上にニッケルメッキを施すこ
とを提案するものである。Means for Solving the Problems Therefore, the present invention proposes that the cadmium surface of the cadmium electrode is first plated with copper, and then plated with nickel.
なお、銅メッキ、ニッケルメッキとも無電解。Both copper plating and nickel plating are electroless.
電解の両方式があるが、銅は無電解メッキが容易である
ことから、前者の方式を採用し、ニッケルば、電解の方
が均一性の点ですぐれているので後者の方式を採用する
のが一つの有効な手段である。There are both electrolytic plating methods, but the former method is used for copper because electroless plating is easier, and the latter method is used for nickel because electrolytic plating is superior in terms of uniformity. is one effective means.
したがって、銅メッキは、カドミウム極のたとえば酸化
カドミウム粉末にメッキを行なっても、また、カドミウ
ム極を製造後に行なってもよいが、二17ケルメッキは
電極の形で行なう方がよい。なお、酸化カドミウムを出
発物質として用いる場合に、水酸化カドミウムへの転化
をできるだけ抑制するために、メッキの工程中に各メッ
キのための浴中に水に相溶性の溶媒であるメタノール、
エタノール、アセトン、エチレングリコールなどを添加
することは有効な方法である。Therefore, copper plating may be performed by plating the cadmium electrode, for example, cadmium oxide powder, or after the cadmium electrode is manufactured, but it is better to perform the 217 Kel plating in the form of an electrode. In addition, when using cadmium oxide as a starting material, in order to suppress the conversion to cadmium hydroxide as much as possible, methanol, which is a water-compatible solvent, is added to the bath for each plating during the plating process.
Adding ethanol, acetone, ethylene glycol, etc. is an effective method.
作 用
このようにカドミウム極をまず多孔性の銅で被覆し、つ
いで多孔性のニッケルで被覆することにより、銅自身の
耐久性は向上し、ニッケルはもともと耐久性にすぐれて
いるので長寿命が可能であり、カドミウムの利用率の向
上も可能となり、加えてカドミウムがニッケルに直接触
れることによる自己放電の問題も大きく解決できるので
ある。Function: By first coating the cadmium electrode with porous copper and then coating it with porous nickel, the durability of the copper itself is improved, and since nickel is inherently durable, it has a long life. This makes it possible to improve the utilization rate of cadmium, and also greatly solves the problem of self-discharge caused by cadmium coming into direct contact with nickel.
実施例
本発明が最も大きな効果を発揮する1つの例であるペー
スト式カドミウム極へのメッキを例として詳述する。な
お、メッキは電極作成後に行なう場合を実施例とした0
まず、市販の酸化カドミウムをポリビニルアルコールの
3 w t%のエチレングリコール溶液1重量比で6%
のポリエチレン微粉末、同じく0.6チの塩化ビニル−
アクリロニトリル共重合短繊維などを加えてペーストを
つくる0これを厚さ0.15mm 。EXAMPLE The present invention will be described in detail by taking as an example one example in which the present invention exhibits the greatest effect, which is the plating of paste-type cadmium electrodes. In this example, plating is performed after electrode creation. First, commercially available cadmium oxide was mixed with polyvinyl alcohol at a 6% by weight ratio of 3 wt% ethylene glycol solution.
of polyethylene fine powder, also 0.6 inch of vinyl chloride.
Make a paste by adding acrylonitrile copolymer short fibers to a thickness of 0.15 mm.
孔径1.8m、開孔度50%の鉄のニッケルメッキバン
チング板を芯材としてその両面に塗着し、スリットを通
して平滑化し、厚さ0.6順に調整する。A nickel-plated bunching board made of iron with a hole diameter of 1.8 m and a porosity of 50% is applied as a core material to both sides, smoothed through a slit, and adjusted to a thickness of 0.6.
その後120℃で2時間乾燥してペースト式カドミウム
極を得た。Thereafter, it was dried at 120° C. for 2 hours to obtain a paste-type cadmium electrode.
その後、このペースト式カドミウム極に銅の無電解メッ
キを行なった0まず市販のシンセタイザー処理を行な;
た後に、アクチベータ液をメタノールにより6倍に希釈
した浴中に浸せきした。2分間浸せき後これを60℃で
15分間乾燥し、ついで、市販の銅無電解メッキ浴にて
銅メッキを行なった。この際、電極としては、単2サイ
ズ10枚相当の大きさを用い、アクチベータ液は8CC
を用いこれにメタノール40cc加えた。この浴中に電
極を浸せきした。銅メッキ浴としては、市販のメッキ浴
を70cc用い、これを水400ccで希釈して用いた
。メッキは40℃で16分間行なった。その後に常温の
流水で10分間水洗し、アセトンで置換した後に80℃
で乾燥した。この処理による重量増は、酸化カドミウム
に対して0.5%増であった。After that, this paste-type cadmium electrode was electrolessly plated with copper. First, a commercially available synthesizer treatment was performed;
After that, the activator solution was immersed in a bath in which the activator solution was diluted 6 times with methanol. After immersion for 2 minutes, this was dried at 60° C. for 15 minutes, and then copper plating was performed using a commercially available copper electroless plating bath. At this time, the electrodes used are equivalent to 10 AA size electrodes, and the activator liquid was 8CC.
40 cc of methanol was added to this. The electrodes were immersed in this bath. As the copper plating bath, 70 cc of a commercially available plating bath was used, which was diluted with 400 cc of water. Plating was carried out at 40°C for 16 minutes. Afterwards, rinse with running water at room temperature for 10 minutes, replace with acetone, and then use at 80°C.
It was dried. The weight increase due to this treatment was 0.5% compared to cadmium oxide.
ついで公知の二”ケルワット浴を用い、40℃。Then, using a known 2" Kelwatt bath at 40°C.
電流密度20 rnA/M *時間20分の条件でニッ
ケルの電解メッキを行なった0その後同様に常温の流水
で20分間水洗し、アセトンで置換した後に8c℃で乾
燥した。この処理による重量増は酸化カドミウムに対し
て約1.6チであった。Electrolytic plating of nickel was carried out under the conditions of current density 20 rnA/M * time 20 minutes. Thereafter, it was similarly washed with running water at room temperature for 20 minutes, replaced with acetone, and then dried at 8 °C. The weight increase due to this treatment was about 1.6 inches relative to cadmium oxide.
電池としては、単2形の密閉式ニッケルーカドミウム蓄
電池を例にした。したがって、このようにして得られた
カドミウム極を幅39m、長さ261閣に裁断し、リー
ド板を所定の2ケ所にスポット溶接により取りつけた。As an example of a battery, a AA sealed nickel-cadmium storage battery was used. Therefore, the cadmium electrode thus obtained was cut to a width of 39 m and a length of 261 m, and lead plates were attached to two predetermined locations by spot welding.
これをあらかじめ10Aの電流、比重1.15のか性か
り水溶液の条件で9分間部分充電し、水洗、乾燥した。This was partially charged in advance for 9 minutes under the conditions of a current of 10 A and a caustic aqueous solution with a specific gravity of 1.15, washed with water, and dried.
相手極として、公知の高容量形の焼結式二ソケル極をえ
らび、同じく幅39頽とし、長さは220馴として用い
た。この場合もリード板を2ケ所取り付けた0
セパレータとしては、ポリアミド不織布、電解液として
は、比重1.18のか性カリ水溶液に水酸化リチウムを
2tsq/l)溶解して用いた。この電池をAとする。As a mating electrode, a known high-capacity sintered two-sokel electrode was selected, also having a width of 39 mm and a length of 220 mm. In this case as well, a polyamide nonwoven fabric was used as the 0 separator with lead plates attached at two places, and as the electrolytic solution, 2 tsq/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.18. This battery is called A.
その公称容量は2.45 A hである。Its nominal capacity is 2.45 Ah.
つぎに比較のために、無電解メッキで銅のみを被覆させ
て得られたカドミウム極を用いた電池をBとして加えた
。この場合に銅による重量増加を2.0%になるように
した。1だ、A、Bと同じカドミウム極を充電によりカ
ドミウムとし、これにニッケルの電解メッキを施したカ
ドミウム極を用いた電池をCとして加えた。この場合も
メッキによる重量増は2.0%とした。Next, for comparison, a battery using a cadmium electrode obtained by coating only copper by electroless plating was added as B. In this case, the weight increase due to copper was set to 2.0%. 1. The same cadmium electrode as A and B was charged to cadmium, and a battery using a cadmium electrode electrolytically plated with nickel was added as C. In this case as well, the weight increase due to plating was 2.0%.
まず、これら電池A−Cに用いるカドミウム極自体の利
用率を調べたところ、充電は26℃で0.1C、14時
間、放電も同じ25℃で0.30とし、カドミウム極律
則のニッケルーカドミウム試験電池の端子電圧O,SV
までの条件とした。充電後ただちに行なった放電での容
量密度は、いずれも380rn A h /CIであっ
た。しかし、0.I Cで充電後25日間放置した後に
同様にO,aCで放電したところ、Aは5.5%、Bは
3.2チの利用率の低下であったのにCでは約10%の
容量低下があった。すなわち、自己放電に関しては、カ
ドミウム極にニッケルメッキを直接性なったCが劣って
いた0
また、同様に、充電は25℃で0.IC,14時間とし
、放電は26℃で0.30と同じであるが、端子電圧を
一〇、2Vまでとして行なった。その結果、2Qサイク
ルで、Aは356mAh、Cは349 mAl1であっ
たのに対してBでは315 mAhにまで低下し、銅メ
ッキの酸化や部分的な剥離が観察された。つまり、この
ような苛酷な使用条件のもとでは、単なる銅メッキより
もその上にニッケルメッキを施すことが性能の低下に対
して抑制効果が大きい。First, we investigated the utilization rate of the cadmium electrode itself used in these batteries A-C, and found that charging was at 26°C and 0.1C for 14 hours, and discharging was also at 25°C and 0.30%, and the cadmium pole rule of nickel Terminal voltage O, SV of cadmium test battery
The conditions were set up to. The capacity density when discharging immediately after charging was 380 rnA h /CI. However, 0. When I charged it with IC and left it for 25 days and then discharged it with O and AC in the same way, the capacity decreased by 5.5% for A and 3.2ch for B, but about 10% for C. There was a decline. In other words, in terms of self-discharge, C, which had nickel plating directly on the cadmium electrode, was inferior. Similarly, charging at 25°C was 0. The IC was used for 14 hours, and the discharge was carried out at 26° C., the same as 0.30V, but with the terminal voltage up to 10.2V. As a result, in the 2Q cycle, while A was 356 mAh and C was 349 mAl1, it decreased to 315 mAh in B, and oxidation and partial peeling of the copper plating were observed. In other words, under such severe usage conditions, applying nickel plating on top of copper plating has a greater effect on suppressing performance deterioration than simple copper plating.
このような評価を行なった後に電池AとBの特性を調べ
た。すなわち、通常の充放電のくり返しでは、放電性能
や寿命については、本発明はもとより比較例でも問題が
なかった。After performing such evaluation, the characteristics of batteries A and B were investigated. That is, during normal repeated charging and discharging, there were no problems in discharge performance or lifespan, not only in the present invention but also in the comparative example.
ところが、40℃でo、1c、14時間充電後に、45
℃で3か月間放置し、その後40℃で0.20で放電の
ような条件で充放電を行なったところ、とくに放電終止
電圧をOVとした条件では銅被覆層の酸化溶解が認めら
れた。However, after charging for 14 hours at 40℃ at 1C, 45
When the battery was left for 3 months at 40°C and then charged and discharged at 40°C and 0.20°C, oxidation and dissolution of the copper coating layer was observed, especially under conditions where the final discharge voltage was OV.
発明の効果
このようにカドミウム極上に銅メッキを施し、サラにニ
ッケルメッキをカドミウム活物質粉末かあるいは電極形
成後に行なうことにより、寿命が長くて利用率が大きく
、また自己放電の少ない電池用カドミウム極が提供でき
る。Effects of the Invention By applying copper plating on top of cadmium and then nickel plating on top of cadmium with cadmium active material powder or after electrode formation, we have created a cadmium electrode for batteries that has a long life, high utilization rate, and low self-discharge. can be provided.
Claims (3)
を特徴とする電池用カドミウム極。(1) A cadmium electrode for batteries characterized by further applying nickel plating on top of copper plating.
が電解メッキによりそれぞれ形成されている特許請求の
範囲第1項記載の電池用カドミウム極。(2) The cadmium electrode for a battery according to claim 1, wherein the copper plating is formed by electroless plating and the nickel plating is formed by electrolytic plating.
に無電解メッキにより銅の多孔層が形成され、その上に
電解メッキによりニッケルの多孔層が形成されている特
許請求の範囲第1項記載の電池用カドミウム極。(3) Claim 1, in which a porous layer of copper is formed by electroless plating on a cadmium electrode mainly consisting of cadmium oxide and a binder, and a porous layer of nickel is formed thereon by electrolytic plating. Cadmium poles for the batteries listed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61178036A JPS6334852A (en) | 1986-07-29 | 1986-07-29 | Cadmium electrode for cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61178036A JPS6334852A (en) | 1986-07-29 | 1986-07-29 | Cadmium electrode for cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6334852A true JPS6334852A (en) | 1988-02-15 |
Family
ID=16041463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61178036A Pending JPS6334852A (en) | 1986-07-29 | 1986-07-29 | Cadmium electrode for cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6334852A (en) |
-
1986
- 1986-07-29 JP JP61178036A patent/JPS6334852A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6334852A (en) | Cadmium electrode for cell | |
JPS63170851A (en) | Cadmium electrode for alkaline storage battery | |
JP3094618B2 (en) | Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery | |
WO2001075993A1 (en) | Nickel positive electrode plate and alkaline storage battery | |
JPH09199119A (en) | Alkaline storage battery | |
JP2506777B2 (en) | Method for producing paste type cadmium negative electrode | |
JPS6329446A (en) | Fmanufacture of cadmium electrode for cell | |
JPS62180969A (en) | Hermetically-sealed nickel-cadmium storage battery | |
JPS63124378A (en) | Sealed alkaline storage battery | |
JP2589750B2 (en) | Nickel cadmium storage battery | |
JPS6369143A (en) | Cadmium electrode for battery | |
JPS63170852A (en) | Cadmium electrode for alkaline storage battery | |
JPS6334853A (en) | Manufacture of paste type cadmium electrode for cell | |
JPH01146253A (en) | Manufacture of cadmium electrode for battery | |
JPS6351051A (en) | Hydrogen absorption alloy negative electrode for alkaline cell | |
JPH07107844B2 (en) | Manufacturing method of cadmium electrode for battery | |
JPS63266780A (en) | Manufacture of enclosed alkaline storage battery | |
JPH01248465A (en) | Manufacture of cadmium electrode for battery | |
JPS6290861A (en) | Cadmium anode for alkaline storage battery | |
JPS5971265A (en) | Alkali zinc lead storage battery | |
JPH01209660A (en) | Manufacture of cadmium electrode for battery | |
JPH01112660A (en) | Manufacture of cadmium pole for battery | |
JPH0775163B2 (en) | Manufacturing method of cadmium electrode for battery | |
JPH01166464A (en) | Manufacture of cadmium for battery | |
JPH01154461A (en) | Manufacture of cadmium electrode for battery |