JPH01146253A - Manufacture of cadmium electrode for battery - Google Patents

Manufacture of cadmium electrode for battery

Info

Publication number
JPH01146253A
JPH01146253A JP62306301A JP30630187A JPH01146253A JP H01146253 A JPH01146253 A JP H01146253A JP 62306301 A JP62306301 A JP 62306301A JP 30630187 A JP30630187 A JP 30630187A JP H01146253 A JPH01146253 A JP H01146253A
Authority
JP
Japan
Prior art keywords
cadmium
electrode
battery
aqueous solution
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62306301A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62306301A priority Critical patent/JPH01146253A/en
Publication of JPH01146253A publication Critical patent/JPH01146253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve charge-discharge performance in a sealed battery by combining a partially charging process in a caustic alkali aqueous solution and an immersing process in a caustic alkali aqueous solution for almost completely converting cadmium oxide into cadmium hydroxide. CONSTITUTION:A negative electrode mainly comprising cadmium oxide is cut, and then partially charged in a caustic alkali aqueous solution by using a nickel plate as a counter electrode. This negative electrode is immersed in a potassium hydroxide solution, washed, and dried. By this alkali treatment, redish-brown cadmium oxide is converted into yellow-brown cadmium hydroxide. Fluororesin dispersion is diluted with water, and the cadmium electrode is immersed in this dispersion at normal temperature, then dried. By this treatment, water repellency is given to the electrode. The cadmium electrode obtained is assembled in a battery. A sealed alkaline storage battery having high capacity and capable of quick charge is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池用カドミウム極の製造法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing cadmium electrodes for batteries.

従来の技術 各種電源として用いられている蓄電池には、よく知られ
ているように鉛蓄電池とアルカリ蓄電池がある。アルカ
リ蓄電池の代表的な系は、ニッケルーカドミウム蓄電池
であり、取扱いの簡便さから密閉形が広く使われている
BACKGROUND OF THE INVENTION As is well known, storage batteries used as various power sources include lead storage batteries and alkaline storage batteries. A typical type of alkaline storage battery is a nickel-cadmium storage battery, and the sealed type is widely used because of its ease of handling.

このニッケルーカドミウム蓄電池は、焼結式電極の開発
により充・放電特性、寿命、低温特性などに大幅な改良
がもたらされ、密閉形の開発は、取扱い性を向上させた
The development of a sintered electrode for this nickel-cadmium storage battery brought about significant improvements in charge/discharge characteristics, lifespan, low-temperature characteristics, etc., and the development of a sealed type improved ease of handling.

ところが、低コスト化や高エネルギー密度の点で十分で
ないので、焼結式に代えてニッケル極では、発泡式や繊
維状多孔体を用いた電極が開発された。
However, it was not sufficient in terms of cost reduction and high energy density, so instead of the sintered type, foamed type electrodes and electrodes using fibrous porous materials were developed as nickel electrodes.

一方、カドミウム極については、ペースト式が広く使わ
れるようになり、低コスト化の若干の進歩と高エネルギ
ー密度化をある程度向上させた。
On the other hand, for cadmium electrodes, the paste method has become widely used, and has made some progress in lowering costs and increasing energy density to some extent.

この場合一般に、いわゆるノイマン方式の密閉化を可能
にするためカドミウム極は放電補償用として部分充電さ
れて用いられている。
In this case, the cadmium electrode is generally used partially charged for discharge compensation in order to enable so-called Neumann type hermetic sealing.

このようなカドミウム極の部分充電は、一般に酸化カド
ミウムを主とする負極を苛性アルカリ中に浸漬し、所望
の容量を充電後、水洗と乾燥を行なう。このような方法
により、密閉化が可能になり、優れた寿命特性も得られ
た。
Such partial charging of a cadmium electrode is generally carried out by immersing a negative electrode mainly made of cadmium oxide in caustic alkali, charging it to a desired capacity, and then washing and drying it. This method enabled hermetic sealing and also provided excellent life characteristics.

発明が解決しようとする問題点 しかしながら、上記手段では、高容量化さらには急速充
電への対応については、十分でなかった。
Problems to be Solved by the Invention However, the above-mentioned means were not sufficient to cope with high capacity and even rapid charging.

そこで、急速充電特性向上のために負極表面にフッ素樹
脂層の形成が試みられ、かなりの向上が見られたが、な
お十分でないのが現状である。したがって、高容量で急
速充電が可能な密閉形アルカリ蓄電池を供給することを
目的とする。
Therefore, attempts have been made to form a fluororesin layer on the surface of the negative electrode in order to improve the rapid charging characteristics, and although considerable improvement has been seen, the current situation is that this is still not sufficient. Therefore, it is an object of the present invention to provide a sealed alkaline storage battery with high capacity and rapid charging.

問題点を解決するための手段 カドミウム極として、最も量産性に優れた酸化カドミウ
ムを主とする電極、特にペースト式電極を用いた場合の
優れた急速充電特性と放電性能を得るために苛性アルカ
リ水溶液中での部分充電工程と未充電の酸化カドミウム
をほぼ完全に水酸化カドミウムに転化するための同じく
苛性アルカリ水溶液中への浸漬工程を併用する。
Means to solve the problem As a cadmium electrode, we use a caustic alkaline aqueous solution to obtain excellent rapid charging characteristics and discharge performance when using an electrode mainly made of cadmium oxide, which is most easily mass-produced, and especially a paste type electrode. The partial charging process in the wafer is combined with the same immersion process in a caustic aqueous solution to almost completely convert uncharged cadmium oxide to cadmium hydroxide.

なお、アルカリ水溶液中での部分充電は、カドミウム極
容量の5〜20%程度とする。この場合酸化カドミウム
の収態の負極の方が、水酸化カドミウムに転化した後よ
り充電効率が高いようであるので、まず部分充電し、そ
れからアルカリ浸漬が好ましい。なお、その浸漬条件と
しては、室温であれば、3〜10時間程度、これより温
度を上げた場合には、より短時間で良い。たとえば、5
0℃では、0.5〜3時間時間子ある。
Note that the partial charge in the alkaline aqueous solution is approximately 5 to 20% of the cadmium electrode capacity. In this case, the negative electrode in the form of cadmium oxide appears to have a higher charging efficiency than after conversion to cadmium hydroxide, so partial charging first and then alkaline immersion is preferred. The immersion conditions may be about 3 to 10 hours at room temperature, and a shorter time at higher temperatures. For example, 5
At 0°C, it lasts for 0.5 to 3 hours.

本発明は、上記問題点に鑑み、急速充電特性を向上させ
るためのカドミウム極へのフッソ樹脂添加の併用は、こ
の密閉形電池の充放電特性の改良をはかることを目的と
する。
In view of the above-mentioned problems, the present invention aims to improve the charging and discharging characteristics of this sealed battery by adding fluorine resin to the cadmium electrode in order to improve the rapid charging characteristics.

作  用 水酸化カドミウムに転化させるための併用が急速充電特
性の向上に効果が大きいことについての理由は、明らか
でない。しかし、その結果から判断して、従来のように
部分充電後酸化カドミウムが、かなり多量に残存した8
態で電池を構成し、電解液を加えると、酸化カドミウム
が水酸化カドミラも電池内の電解液濃度の不均一が、生
ずると考えられる。これが第1回目の充電時に負極のガ
ス吸収特性に悪影響を与え、その後の充放電の繰り返し
により電解液濃度の均一化が進んでも、悪影響がそのま
ま残るものと推察される。これに対して、本発明では、
アルカリ浸漬により、電池構成前に部分充電によるカド
ミウムとアルカリ浸漬による水酸化カドミウムへの転化
が進んでいるので、少なくとも放電収態では、水の移動
はなく、したがって電解液濃度の不均一化は生じない。
The reason why the combined use of cadmium for conversion to cadmium hydroxide is so effective in improving rapid charging characteristics is not clear. However, judging from the results, it seems that a considerable amount of cadmium oxide remained after partial charging as in the conventional method.
If a battery is constructed in this manner and an electrolyte is added, it is thought that non-uniformity in the electrolyte concentration within the battery will occur, whether cadmium oxide or cadmium hydroxide. It is presumed that this adversely affects the gas absorption characteristics of the negative electrode during the first charging, and that the adverse effect remains even if the electrolyte concentration becomes more uniform through repeated charging and discharging thereafter. In contrast, in the present invention,
Due to alkaline immersion, the conversion of cadmium to cadmium due to partial charging and cadmium hydroxide due to alkaline immersion is progressing before battery construction, so at least in the discharge phase, there is no movement of water, and therefore non-uniformity of electrolyte concentration occurs. do not have.

このことが、優れたガス吸収特性を持つ理由と考えられ
る。
This is considered to be the reason why it has excellent gas absorption properties.

なお、フッ素樹脂添加は、負極表面の撥水性の付与をも
たらし、これが−居のガス吸収特性の向上に寄与する。
Note that the addition of a fluororesin imparts water repellency to the surface of the negative electrode, which contributes to improving the gas absorption characteristics of the negative electrode.

実施例 市販の酸化カドミウムをポリビニルアルコールの3%(
重ff1)のエチレングリコール溶液9重量比で5%の
ポリエチレン微粉末、同じく0.6%の塩化ビニル−ア
クリロニトリル短繊維などを加えてペーストをつくる。
Example Commercially available cadmium oxide was mixed with 3% polyvinyl alcohol (
A paste is prepared by adding 5% polyethylene fine powder, 0.6% vinyl chloride-acrylonitrile short fibers, etc. in a 9% weight ratio of ethylene glycol solution of 1).

これを厚さ0.15mm。This is 0.15mm thick.

孔径1.8mm、開孔度50%の鉄製でニッケルメッキ
を施したパンチングメタル板に塗着する。
It is applied to a nickel-plated punched metal plate made of iron with a hole diameter of 1.8 mm and a porosity of 50%.

スリットを通して平滑化し、その後120℃で2時間乾
燥してペースト式カドミウム極を得る。厚さは、0.5
5mmであった。
It is smoothed through a slit and then dried at 120° C. for 2 hours to obtain a paste-type cadmium electrode. The thickness is 0.5
It was 5 mm.

ついで、このようにして得られた酸化カドミウムを主と
する負極を5ubC用、すなわち、幅34 m m 、
長さ200 m mに裁断した。この負極を用いて、比
重1.2の苛性カリ水溶液中で、対極にニッケル板を用
い150 mAh/cm2で8分間部分充電を行なった
。この状態では、部分的に金属カドミウムの灰色を呈し
ているだけで、他の部分は赤褐色の酸化カドミウムの色
を示している。
Next, the negative electrode mainly composed of cadmium oxide obtained in this way was used for 5ubC, that is, the width was 34 mm,
It was cut into a length of 200 mm. Using this negative electrode, partial charging was performed for 8 minutes at 150 mAh/cm2 in a caustic potassium aqueous solution with a specific gravity of 1.2 using a nickel plate as a counter electrode. In this state, only some parts show the gray color of metallic cadmium, while other parts show the reddish-brown color of cadmium oxide.

ついで、比重1.3の苛性カリ水溶液中に45℃で4時
間浸漬し、水洗、乾燥した。このアルカリ処理により、
酸化カドミウムの赤褐色は、水酸化カドミウムの形成に
より、黄褐色に変化した。
Then, it was immersed in a caustic potassium aqueous solution with a specific gravity of 1.3 at 45° C. for 4 hours, washed with water, and dried. With this alkali treatment,
The reddish brown color of cadmium oxide changed to yellowish brown due to the formation of cadmium hydroxide.

ついで、市販のフッソ樹脂ディスバージョンを2%水溶
液に希釈し、この溶液中に、前記カドミウム極を常温で
2分間浸せきし、その後、120℃で1.5時間乾燥し
た。この処理により電極面は撥水性が生じた。このよう
にして得られたカドミウム極を用いて電池に組み込んだ
Next, a commercially available fluororesin dispersion was diluted to a 2% aqueous solution, and the cadmium electrode was immersed in this solution for 2 minutes at room temperature, and then dried at 120° C. for 1.5 hours. This treatment made the electrode surface water repellent. The cadmium electrode obtained in this way was incorporated into a battery.

なお、正極としては、発泡式ニッケル極を用いた。多孔
度96%、平均孔径130μm、厚さ1.2mmの発泡
式ニッケルを基板に用い、これに水酸化ニッケル85部
、カーボニルニッケル8部、金属コバルト7部(重量比
)を含むカルボキシメチルセルローズ水溶液によるペー
ストを充填し、半乾燥の状態で加圧して厚さを0.57
mmに調整した。その後に2%のフッソ樹脂ディスバー
ジョンを含浸し、90℃、2時間乾燥して用いた。
Note that a foamed nickel electrode was used as the positive electrode. Foamed nickel with a porosity of 96%, an average pore diameter of 130 μm, and a thickness of 1.2 mm was used as a substrate, and a carboxymethyl cellulose aqueous solution containing 85 parts of nickel hydroxide, 8 parts of carbonyl nickel, and 7 parts of metal cobalt (by weight) was added to the substrate. filled with paste and pressurized in a semi-dry state to a thickness of 0.57
Adjusted to mm. Thereafter, it was impregnated with 2% fluorine resin dispersion, dried at 90° C. for 2 hours, and used.

電池としては、既に述べたように5ubC形の密閉形ニ
ッケルーカドミウム蓄電池を例にした。
As the battery, a 5ubC type sealed nickel-cadmium storage battery was used as an example, as described above.

セパレータとしては、ポリアミド不織布、電解液として
は、比重1,20の苛性カリ水溶液に水酸化リチウムを
20 g / L溶解して用いた。公称容量は2.0A
hである。
A polyamide nonwoven fabric was used as the separator, and 20 g/L of lithium hydroxide was dissolved in a caustic potassium aqueous solution having a specific gravity of 1.20 as the electrolyte. Nominal capacity is 2.0A
It is h.

この電池をAとし、比較のために従来のように放電補償
用のカドミウムを部分充電で形成するのみで、水洗乾燥
し、フッ素樹脂を添加して得られた負極を用いた電池を
Bとして加えた。
This battery was designated as A, and for comparison, a battery using a negative electrode obtained by forming cadmium for discharge compensation only by partial charging, washing with water, and adding fluororesin as in the past was added as B. Ta.

各電池を構成後、20℃で0.IC充電−0゜20放電
を3回繰り返した後に、ICで充電を行なった。放電は
、この場合0.5Cで行なった。
After constructing each battery, 0. After repeating IC charge-0°20 discharge three times, the IC was charged. Discharge was carried out at 0.5C in this case.

その結果、電池AとBは、いずれも2.1Ahの容量を
示し、平均電圧も1,20Vを示した。
As a result, both batteries A and B exhibited a capacity of 2.1 Ah and an average voltage of 1.20V.

ところが、充電時での電池内の最高内圧が、電池Aでは
、3.2Kg/Cm2(5セルノ平均)テアツタのに対
して、電池Bでは、同じ< 4 、7Kg/cm2(5
セルの平均)であった。
However, the maximum internal pressure inside the battery during charging was 3.2Kg/cm2 (average of 5 cells) for battery A, while it was the same for battery B, 7Kg/cm2 (5 cells).
cell average).

さらに、1.50充電を行なったところ、その差は更に
広がり、電池Aでは、5 、9 Kg/cm2.電池B
では、9 、 1 Kg/Cm2であった。
Furthermore, when 1.50 kg/cm2. Battery B
In this case, it was 9.1 Kg/Cm2.

部分充電とアルカリ水溶液浸漬の併用することにより、
従来の部分充電のみの場合に比べて優れた放電特性を保
ちつつ、急速充電可能な密閉形アルカリ蓄電池を提供で
きる。
By using a combination of partial charging and immersion in alkaline aqueous solution,
It is possible to provide a sealed alkaline storage battery that can be rapidly charged while maintaining superior discharge characteristics compared to conventional partial charging only cases.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化カドミウムを主とする負極を、アルカリ水溶
液中での部分充電工程の他にアルカリ水溶液浸漬工程を
加えて得られた負極を用いて、電池を構成することを特
徴とする電池用カドミウム極の製造法。
(1) A cadmium battery for a battery, characterized in that the battery is constructed using a negative electrode mainly made of cadmium oxide, which is obtained by adding a step of immersion in an alkaline aqueous solution in addition to a partial charging step in an alkaline aqueous solution. How to make poles.
(2)部分充電とアルカリ水溶液に浸漬の他にフッ素樹
脂を添加して得られた負極を用いた特許請求の範囲第1
項記載の電池用カドミウム極の製造法。
(2) Claim 1 using a negative electrode obtained by adding fluororesin in addition to partial charging and immersion in an alkaline aqueous solution
A method for producing a cadmium electrode for batteries as described in Section 1.
JP62306301A 1987-12-03 1987-12-03 Manufacture of cadmium electrode for battery Pending JPH01146253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306301A JPH01146253A (en) 1987-12-03 1987-12-03 Manufacture of cadmium electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306301A JPH01146253A (en) 1987-12-03 1987-12-03 Manufacture of cadmium electrode for battery

Publications (1)

Publication Number Publication Date
JPH01146253A true JPH01146253A (en) 1989-06-08

Family

ID=17955454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306301A Pending JPH01146253A (en) 1987-12-03 1987-12-03 Manufacture of cadmium electrode for battery

Country Status (1)

Country Link
JP (1) JPH01146253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133057A (en) * 1989-10-18 1991-06-06 Matsushita Electric Ind Co Ltd Manufacture of phase type cadmium negative electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133057A (en) * 1989-10-18 1991-06-06 Matsushita Electric Ind Co Ltd Manufacture of phase type cadmium negative electrode

Similar Documents

Publication Publication Date Title
JPH01146253A (en) Manufacture of cadmium electrode for battery
JP2584280B2 (en) Alkaline storage battery and method of manufacturing the same
JP3895984B2 (en) Nickel / hydrogen storage battery
US6803148B2 (en) Nickel positive electrode plate and akaline storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2926732B2 (en) Alkaline secondary battery
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPS62285360A (en) Negative electrode for alkaline storage battery
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JPH0410181B2 (en)
JPS63126163A (en) Alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP2553902B2 (en) Alkaline secondary battery
JPH01154461A (en) Manufacture of cadmium electrode for battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2000058047A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPS62180969A (en) Hermetically-sealed nickel-cadmium storage battery
JPS612268A (en) Manufacture of sealed nickel-cadmium battery
JPH0828237B2 (en) Manufacturing method of sealed alkaline storage battery
JPS6329446A (en) Fmanufacture of cadmium electrode for cell
JPS5816467A (en) Manufacture of cadmium negative pole
JP2001325955A (en) Nickel positive electrode plate and alkaline storage cell
JPS6168861A (en) Manufacture of sintered positive plate for alkaline battery