JPS5816467A - Manufacture of cadmium negative pole - Google Patents

Manufacture of cadmium negative pole

Info

Publication number
JPS5816467A
JPS5816467A JP56113904A JP11390481A JPS5816467A JP S5816467 A JPS5816467 A JP S5816467A JP 56113904 A JP56113904 A JP 56113904A JP 11390481 A JP11390481 A JP 11390481A JP S5816467 A JPS5816467 A JP S5816467A
Authority
JP
Japan
Prior art keywords
cadmium
paste
negative electrode
negative pole
galvanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56113904A
Other languages
Japanese (ja)
Other versions
JPH0239062B2 (en
Inventor
Hideo Kaiya
英男 海谷
Minoru Yamaga
山賀 実
Shingo Tsuda
津田 信吾
Isao Matsumoto
功 松本
Mamoru Ishitobi
石飛 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56113904A priority Critical patent/JPS5816467A/en
Publication of JPS5816467A publication Critical patent/JPS5816467A/en
Publication of JPH0239062B2 publication Critical patent/JPH0239062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture of Cd negative pole having high strength and to improve the cell characteristic, by adding the short synthetic resin fiber applied with Cd galvanization into the paste then applying said paste onto the porous core metal thereafter applying the Cd galvanization. CONSTITUTION:The synthetic resin resin short fiber applied with Cd galvanization is dispersed into the paste composed of CdO added with the binder. Then said paste is applied onto the porous core metal and dried to produce the yet- formed plate. Then said plate is applied with Cd galvanization and water washed and dried. The conductive network of metallic Cd is formed in Cd negative pole thus obtained, resulting in the improvement of the oxygen gas absorbing characteristic of the negative pole active substance, the improvement of the utilization of the negative pole active substance and the improvement of the cycle life.

Description

【発明の詳細な説明】 本発明は、アルカリ蓄電池用カドミウム負極の製造法に
関し、特にペースト中にカドミウムメッキを施した合成
樹脂繊維を添加し、さらにこのペーストを多孔性芯金に
塗着した後カドミウムメッキ処理を施こすことにより、
負極活物質の酸素ガス吸収特性の向上、負極活物質利用
率の向上、サイクル寿命の向上など電池特性の改善を図
るとともに、ペースト式負極の強度向上を図ることを目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cadmium negative electrode for alkaline storage batteries, and in particular to a method for producing a cadmium negative electrode for alkaline storage batteries, and in particular, after adding cadmium-plated synthetic resin fibers to a paste and applying the paste to a porous core metal. By applying cadmium plating treatment,
The purpose is to improve battery characteristics such as improving the oxygen gas absorption characteristics of the negative electrode active material, improving the utilization rate of the negative electrode active material, and increasing cycle life, as well as improving the strength of the paste-type negative electrode.

カドミウム負極の製造法は大別すると次の三つがある。There are three main methods for producing cadmium negative electrodes:

その第1は焼結式で、これはニッケル粉末を高温還元雰
囲気中で焼結させて多孔性基体をつくり、この基体孔隙
中に活物質を充填したものであって、高率放電特性に優
れているが、ニッケル焼結体を作製すること、および活
物質充填工程が煩雑になることなどから高価になるとい
う欠点がある。
The first is the sintering method, in which nickel powder is sintered in a high-temperature reducing atmosphere to create a porous substrate, and the pores of this substrate are filled with an active material, which has excellent high-rate discharge characteristics. However, it has the disadvantage that it is expensive because it requires the production of a nickel sintered body and the active material filling process is complicated.

第2は、プレス式で、これは活物質粉末を導電粉末など
とともにプレス成型して電極とするので、安価に製造で
きるという長所を有するが、反面高率放電性やサイクル
特性が劣るという欠点がある。
The second type is the press type, which has the advantage of being inexpensive to manufacture because it press-molds active material powder together with conductive powder to form an electrode, but has the disadvantage of poor high rate discharge performance and poor cycle characteristics. be.

その第3はペースト式といわれるもので、活物質を主体
とする粉末を結着剤とともに混合してペースト状とし、
このペーストを多孔性芯金に塗着させたもので、高率放
電特性はほぼ焼結式に近く、かつ焼結式よりも製造工程
が簡略であり、安価に製造できるという長所があるが、
活物質利用率、酸素ガス吸収特性等の面で、焼結式に劣
るところがあった〇 カドミウム負極を用いたアルカリ蓄電池、例えば密閉型
ニッケル・カドミウム電池においては、密閉化を可能に
するため、電池内部でのガス蓄積を防止している。すな
わち、ニッケル正極容量を負極容量に比べて小さくし、
充電時にニッケル正極が先に充電を完了し、過充電領域
において正極より酸素ガスが発生するようにしている。
The third type is called a paste type, in which powder mainly composed of active materials is mixed with a binder to form a paste.
This paste is applied to a porous metal core, and its high rate discharge characteristics are almost similar to those of the sintered type, and the manufacturing process is simpler and cheaper than the sintered type.
In terms of active material utilization rate, oxygen gas absorption characteristics, etc., the sintered type was inferior to the sintered type. In alkaline storage batteries using cadmium negative electrodes, such as sealed nickel-cadmium batteries, the battery Prevents gas accumulation inside. In other words, the nickel positive electrode capacity is made smaller than the negative electrode capacity,
During charging, the nickel positive electrode completes charging first, and oxygen gas is generated from the positive electrode in the overcharge region.

この発生した酸素ガスは、負極の金属カドミウムと反応
し、カドミウム負極上で消失されるとともに、負極では
充電反応が可能となる水酸化カドミウムが生成される。
This generated oxygen gas reacts with the metal cadmium of the negative electrode, is evaporated on the cadmium negative electrode, and cadmium hydroxide is generated at the negative electrode, which enables a charging reaction.

従来のカドミウム負極は、過充電時における酸素ガス消
失を円滑にするためと、放電特性を向上させるために、
化成時にあらかじめ金属カドミウム部を設けていた。
Conventional cadmium negative electrodes are used to smoothly eliminate oxygen gas during overcharging and to improve discharge characteristics.
A metal cadmium part was provided in advance during chemical formation.

上記観点から従来のペースト式カドミウム負極は、酸化
カドミウムを主体とする粉末を結着剤とともに混合して
ペースト状にし、該ペーストを多孔性芯金に塗着させて
乾燥し、これをか性カリ水溶液等のアルカリ水溶液中で
充電し、金属カドミウムを部分的に形成させていた。
From the above point of view, conventional paste-type cadmium negative electrodes are made by mixing powder mainly composed of cadmium oxide with a binder to form a paste, applying the paste to a porous core metal, drying it, and applying caustic potassium. It was charged in an alkaline aqueous solution such as an aqueous solution, and metal cadmium was partially formed.

しかしこのような方法で、負極中に形成された金属カド
ミウムは、芯金付近に偏在し、電池に構成されたときの
放電反応、酸素ガス吸収反応に寄与する度合いが低いと
いう欠点があった。
However, this method has the disadvantage that the metal cadmium formed in the negative electrode is unevenly distributed near the core metal and has a low degree of contribution to the discharge reaction and oxygen gas absorption reaction when constructed into a battery.

金属カドミウムは極板表面に密に分布し、かつ極板内に
均一なネットワークを形成するのが放電特性、酸素ガス
吸収、活物質利用率の面で望ましい。
It is desirable for the metal cadmium to be densely distributed on the electrode plate surface and to form a uniform network within the electrode plate in terms of discharge characteristics, oxygen gas absorption, and active material utilization.

そこで、負極内の電気導伝性を増し、かつ負極活物質の
利用率向上を図るために、金属繊維、例えばニッケル繊
維、鉄繊維等を負極ペースト作製時に、添加1分散させ
る方法も考案されているが、金属繊維は電極をプレスし
ても、塑性変形しにくく、電極上に針状に飛出して電池
構成時に多孔性のセパレータを介して、対向している正
極と容易に短絡してしまうという欠点がある。
Therefore, in order to increase the electrical conductivity within the negative electrode and improve the utilization rate of the negative electrode active material, a method has been devised in which metal fibers, such as nickel fibers and iron fibers, are added and dispersed during the preparation of the negative electrode paste. However, even when the electrode is pressed, metal fibers are difficult to plastically deform, and they protrude into needles on the electrode and easily short-circuit with the opposing positive electrode through the porous separator during battery construction. There is a drawback.

また、ペースト負極表面にカドミウムメッキを施し、活
物質の利用率向上を図る方法も考案されているが、この
ような方法では確かに活物質の利用率向上は見られるが
、寿命特性、放電特性等の向上は見られない。
In addition, a method has been devised in which the surface of the paste negative electrode is plated with cadmium to improve the utilization rate of the active material, but although this method does improve the utilization rate of the active material, it does not improve the life characteristics and discharge characteristics. No improvement has been seen.

本発明では、極板補強用の合成樹脂製短繊維にカドミウ
ムメッキを施したものを用いるとともに、極板表面にカ
ドミウムメッキを施すことによシ、極板内の導電率を向
上させるとともに、極板中のカドミウム分布を理想的な
形(極板内にほぼ均一にカドミウムが分布し、しかも極
板表面に密に分布するという形)とし、負極内に金属カ
ドミウムの電導ネットワークを形成させることによシ、
活物質の利用率の向上、酸素ガス吸収能の向上、放電特
性(寿命特性)の向上を図ったものでめる0以下に実施
例をもって本発明を詳述する。
In the present invention, by using short synthetic resin fibers plated with cadmium for reinforcing the electrode plate, and by applying cadmium plating to the surface of the electrode plate, the conductivity inside the electrode plate is improved and the electrode plate is plated with cadmium. By making the cadmium distribution in the plate into an ideal shape (cadmium is distributed almost uniformly within the plate and densely distributed on the plate surface), we created a conductive network of metallic cadmium within the negative electrode. Yosi,
The present invention will be described in detail with reference to Examples below, which aim to improve the utilization rate of active materials, improve oxygen gas absorption ability, and improve discharge characteristics (life characteristics).

酸化カドミウム100重量部に導電材としてカーボニル
ニッケル粉末10重量部を加えて混合粉末を作り、次い
で表面がカドミウムメッキされた繊維長さ311Bのポ
リ塩化ビニル樹脂製の短繊維を加えて更に混合し、これ
に1重量部のポリビニルアルコールを溶解した30CG
のエチレングリコール溶液を加え、全体を混練してペー
ストとする0このペーストを厚さ0.86のニッケルメ
ッキしたパンチングメタルからなる芯金の両面に塗着し
、次いで乾燥してエチレングリコールを飛散させたのち
、プレスを行って多孔度40%の未化成極板とする。
A mixed powder was prepared by adding 10 parts by weight of carbonyl nickel powder as a conductive material to 100 parts by weight of cadmium oxide, and then short fibers made of polyvinyl chloride resin having a fiber length of 311B and whose surface was plated with cadmium were added and further mixed. 30CG with 1 part by weight of polyvinyl alcohol dissolved in this
Add ethylene glycol solution and knead the whole thing to make a paste.Apply this paste to both sides of a core made of nickel-plated punching metal with a thickness of 0.86, and then dry it to scatter the ethylene glycol. Afterwards, it is pressed to obtain an unformed electrode plate with a porosity of 40%.

次に上記未化成板にカドミウムメッキを施す0カドミウ
ムメツキには一般にシアン化カドミウム浴、フッ化カド
ミウム浴、硫酸カドミウム浴等か用いられる。本発明に
おいては、硫酸カドミウム100f/l、硫酸ソーダ1
00 f / l 、硫酸309 / lからなる混合
水溶液を用い、金属カドミウム板を対極として、未化成
板上にカドミウムメッキを行った。
Next, for cadmium plating, in which the unformed plate is plated with cadmium, a cadmium cyanide bath, a cadmium fluoride bath, a cadmium sulfate bath, or the like is generally used. In the present invention, cadmium sulfate 100 f/l, sodium sulfate 1
Using a mixed aqueous solution consisting of 00 f/l and 309 f/l of sulfuric acid, cadmium plating was performed on the unformed plate using a metal cadmium plate as a counter electrode.

なお、通電は10 mA/csllの電流密度で、30
分間の陰電解処理とした。
Note that the current was applied at a current density of 10 mA/csll, and at a current density of 30 mA/csll.
This was a negative electrolytic treatment for 1 minute.

次に、上記カドミウム極板を水洗、乾燥したのち、o、
aosiの厚みにプレスし、所定の寸法に切断して電池
構成用カドミウム単位極板とした。
Next, after washing and drying the cadmium electrode plate, o.
It was pressed to a thickness of AOSI and cut into predetermined dimensions to obtain a cadmium unit electrode plate for battery construction.

上述した本発明に係る単位極板を用いて、焼結式正極、
ポリアミド樹脂製不織布からなるセパレータと組み合せ
、公称容量500 mAh  を有する密閉形ニッケル
・カドミウム蓄電池を作製した。
Using the above-described unit electrode plate according to the present invention, a sintered positive electrode,
A sealed nickel-cadmium storage battery having a nominal capacity of 500 mAh was fabricated by combining it with a separator made of a nonwoven fabric made of polyamide resin.

この電池(A)と、従来の電池(Blとについて高率放
電特性、サイクル寿命特性、ガス吸収能力特性について
調べた。なお電池(A 、 (B)における相違は負極
の“製造法が異なるのみで、他の条件は全く同一とした
We investigated the high rate discharge characteristics, cycle life characteristics, and gas absorption capacity characteristics of this battery (A) and the conventional battery (Bl).The only difference between the batteries (A) and (B) is the manufacturing method of the negative electrode. All other conditions were the same.

第1図は高率放電特性を示し、完全充電された電池を各
放電率で放電した時の放電容量である。
FIG. 1 shows high rate discharge characteristics, and shows the discharge capacity when a fully charged battery is discharged at various discharge rates.

図から明らかなように、30 (1,5A)放電以上に
なると、本発明品(8の特性が優れていることが判る。
As is clear from the figure, when the discharge exceeds 30 (1.5 A), it can be seen that the characteristics of the product of the present invention (8) are excellent.

第2図はサイクル寿命特性を示し、20℃において充電
を’A c (26o mA)で3時間、放電を1 c
 (500mA)  で行ったときの結果である。
Figure 2 shows the cycle life characteristics, charging at 'A c (26o mA) for 3 hours and discharging at 1 c at 20°C.
(500mA).

従来品(B)は10oOサイクル付近から容量劣化が見
られるのに対し、本発明品(3)は容量劣化が見られず
、サイクル寿命の点でも本発明品(八が優れていること
が判る。
While conventional product (B) shows capacity deterioration from around 10 oO cycles, inventive product (3) shows no capacity deterioration, indicating that inventive product (8) is superior in terms of cycle life. .

密閉形ニッケル・カドミウム蓄電池では、先にも述べた
通り過充電時に正極から発生する酸素ガスを負極上で吸
収消失することにより密閉化を可能にしているが、この
負極の酸素吸収能力の大小は、電池の大電流による短時
間充電時に重要となる。
As mentioned earlier, in sealed nickel-cadmium storage batteries, the oxygen gas generated from the positive electrode during overcharging is absorbed and dissipated on the negative electrode, making it possible to seal the battery, but the size of the oxygen absorption capacity of this negative electrode is , which is important when charging a battery for a short time with a large current.

すなわち、負極での酸素吸収能力が低い場合に、大電流
で短時間充電を行なおうとすれば、過充電時に正極から
の酸素発生量が負極の酸素吸収量を上まわるため、電池
内圧が極端に上昇してしまい、電池外へのガスの流出、
電解液の流出が起こシ、電池特性の劣化や電池使用機器
への悪影響を引き起こす。
In other words, if you try to charge with a large current for a short time when the negative electrode has low oxygen absorption capacity, the amount of oxygen generated from the positive electrode will exceed the amount of oxygen absorbed by the negative electrode during overcharging, causing the battery internal pressure to become extremely high. gas leaks out of the battery,
The electrolyte may leak out, causing deterioration of battery characteristics and adverse effects on equipment using batteries.

第3図は、負極の酸素ガス吸収能力を示し、電池の過充
電時の内圧特性でsb、0℃において各充電率で充電し
たときの内圧値である。
FIG. 3 shows the oxygen gas absorption capacity of the negative electrode, and shows the internal pressure characteristics when the battery is overcharged, sb, and the internal pressure values when charged at various charging rates at 0°C.

本発明凸円は従来品(′@にくらべて電池内圧が低く、
負極のガス吸収能力が向上していることが判る。
The convex circle of the present invention has a lower battery internal pressure than the conventional product ('@),
It can be seen that the gas absorption ability of the negative electrode is improved.

これら電池の緒特性の向上は、以下の点に起因するもの
であると思われる。
These improvements in battery characteristics are believed to be due to the following points.

すなわち、先にも述べた通り、従来カドミウム負極中の
金属カドミウムが芯金付会に個有しているのに対し、本
発明による金属カドミウムの分布は、短繊維のカドミウ
ムメッキにより極板内に均一に分布し、かつ未化成板へ
のカドミウムメッキにより酸素ガス吸収反応が起とシや
すい電極表面部分にはカドミウムが密に分布しており、
酸素ガスの吸収消失特性が優れているものと思われる。
In other words, as mentioned above, while the metal cadmium in the conventional cadmium negative electrode is contained individually in the core plate, the metal cadmium according to the present invention is distributed within the electrode plate by cadmium plating of short fibers. Cadmium is uniformly distributed and densely distributed on the electrode surface where oxygen gas absorption reactions are likely to occur due to cadmium plating on an unformed plate.
It seems that the absorption and disappearance characteristics of oxygen gas are excellent.

また、樹脂短繊維上に、メッキされた金属カドミウムが
極板内で導電ネットワークを形成して放電特性の向上に
寄与し、かつ寿命特性の向上につながっているものと思
われるO また、このような導電ネットワークは負極の活物質の利
用率の向上にもづながるものと思われる0そこで、負極
の利用率について調べたところ次のようになった。
In addition, it is thought that the metal cadmium plated on the short resin fibers forms a conductive network within the electrode plate, contributing to the improvement of the discharge characteristics and leading to the improvement of the life characteristics. It is thought that a conductive network leads to an improvement in the utilization rate of the active material of the negative electrode. Therefore, when we investigated the utilization rate of the negative electrode, we found the following.

前記電池(4、(B)で使用したと同様のカドミウム負
極(A’) 、 (B’)を濃度30%のか性カリ水溶
液中にて、ニッケル板を相手極として各放電率での利用
率を測定したところ次表のような結果であった。
Utilization rate at each discharge rate using cadmium negative electrodes (A') and (B') similar to those used in the above battery (4, (B)) in a caustic potassium aqueous solution with a concentration of 30% and using a nickel plate as the other electrode. The results were as shown in the table below.

上表のような負極活物質利用率の向上は、前記電池緒特
性の向上に寄与しているものと思われる。
It is thought that the improvement in the utilization rate of the negative electrode active material as shown in the above table contributes to the improvement in the battery characteristics.

なお、合成樹脂繊維上へのカドミウムメッキの方法とし
ては、無電解メッキ単独も考えられるが、本実施例にお
いては、まず繊維上に無電解メッキを施したのち、電解
メッキを行った。
Although electroless plating alone may be considered as a method for plating cadmium onto synthetic resin fibers, in this example, electroless plating was first applied to the fibers, and then electrolytic plating was performed.

また、このカドミウムメッキを行なわずに、単にニッケ
ルメッキだけを行なう方法が考えられるが、カドミウム
メッキに比べてニッケルメッキのみでは水素過電圧が小
さく、低温で大きな充電率で充電した時の充電効率が悪
くなるので、不十分である。
Another possibility is to simply perform nickel plating without cadmium plating, but compared to cadmium plating, nickel plating alone has a lower hydrogen overvoltage and poor charging efficiency when charging at low temperatures and high charging rates. Therefore, it is insufficient.

カドミウムメッキの短繊維への着量については限である
と思われる。父上限としては2重量部よりも多量になる
と、繊維量が多すぎて分散が悪くなるので不都合である
There seems to be a limit to the amount of cadmium plating applied to short fibers. If the upper limit is more than 2 parts by weight, the fiber content will be too large and dispersion will be poor, which is disadvantageous.

したがって、0.1〜2重量部か適切である。Therefore, 0.1 to 2 parts by weight is appropriate.

以上のように、本発明では負極ペースト中の補強剤とし
ての合成樹脂製短繊維を改良するとともに、負極表面に
カドミウムメッキを行なうことにより、負極の特性を大
幅に向上させるものであり、カドミウム負極を用いる電
池、とくに密閉形カドミウム負極使用電池において価値
の大なるものである。
As described above, the present invention significantly improves the characteristics of the negative electrode by improving the short synthetic resin fibers used as a reinforcing agent in the negative electrode paste and plating the negative electrode surface with cadmium. It is of great value in batteries that use a cadmium negative electrode, especially in batteries that use a sealed cadmium negative electrode.

内圧特性を示す図である。FIG. 3 is a diagram showing internal pressure characteristics.

A 、 A’・・・・・・本発明品、B 、 B/・・
・・・・従来品。
A, A'...Invention product, B, B/...
...Conventional product.

罐  伽−(くベンCan (Kuben)

Claims (2)

【特許請求の範囲】[Claims] (1)酸化カドミウムに結着剤を加えてなるペースト状
物中にカドミウムメッキを施した合成樹脂短繊維を添加
分散させ、このペーストを多孔性芯金に塗着した後カド
ミウムメッキ処理することを特徴とするカドミウム負極
の製造法。
(1) Cadmium-plated short synthetic resin fibers are added and dispersed in a paste made by adding a binder to cadmium oxide, and this paste is applied to a porous metal core, followed by cadmium plating. Characteristic manufacturing method of cadmium negative electrode.
(2)  前記カドミウムメッキを施した合成樹脂短繊
維が、酸化カドミウム100重量部当り0.1〜2重量
部ペースト中に添加されている特許請求の範囲第1項記
載のカドミウム負極の製造法。
(2) The method for producing a cadmium negative electrode according to claim 1, wherein the cadmium-plated short synthetic resin fibers are added to the paste in an amount of 0.1 to 2 parts by weight per 100 parts by weight of cadmium oxide.
JP56113904A 1981-07-20 1981-07-20 Manufacture of cadmium negative pole Granted JPS5816467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113904A JPS5816467A (en) 1981-07-20 1981-07-20 Manufacture of cadmium negative pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113904A JPS5816467A (en) 1981-07-20 1981-07-20 Manufacture of cadmium negative pole

Publications (2)

Publication Number Publication Date
JPS5816467A true JPS5816467A (en) 1983-01-31
JPH0239062B2 JPH0239062B2 (en) 1990-09-04

Family

ID=14624074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113904A Granted JPS5816467A (en) 1981-07-20 1981-07-20 Manufacture of cadmium negative pole

Country Status (1)

Country Link
JP (1) JPS5816467A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106829A (en) * 1978-02-09 1979-08-22 Furukawa Battery Co Ltd Method of producing cadmium cathode for alkaline cell
JPS5684876A (en) * 1979-12-12 1981-07-10 Sanyo Electric Co Ltd Positive electrode plate for alkaline storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106829A (en) * 1978-02-09 1979-08-22 Furukawa Battery Co Ltd Method of producing cadmium cathode for alkaline cell
JPS5684876A (en) * 1979-12-12 1981-07-10 Sanyo Electric Co Ltd Positive electrode plate for alkaline storage battery

Also Published As

Publication number Publication date
JPH0239062B2 (en) 1990-09-04

Similar Documents

Publication Publication Date Title
JPS5816467A (en) Manufacture of cadmium negative pole
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0217910B2 (en)
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPH11273669A (en) Manufacture of sintered cadmium negative electrode
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH01146253A (en) Manufacture of cadmium electrode for battery
JPH0119619B2 (en)
JPS6290861A (en) Cadmium anode for alkaline storage battery
JPS63158748A (en) Manufacture of paste type cadmium negative electrode
JPH1140151A (en) Nickel-metal hydride secondary battery
JPS63310561A (en) Manufacture of paste type cadmium negative electrode
JPS63126162A (en) Alkali zinc storage battery
JPH03222260A (en) Paste-type nickel positive electrode
JPS5916268A (en) Manufacture of battery using nickel electrode
JPS5960966A (en) Manufacture of nickel electrode for battery
JPS6220258A (en) Sealed nickel-cadmium storage battery
JPH01107452A (en) Manufacture of paste type cadmium negative electrode
JPS5951463A (en) Production method of cell with nickel electrode
JPH01102854A (en) Manufacture of paste type cadmium negative electrode
JPS6329446A (en) Fmanufacture of cadmium electrode for cell