JPS6329446A - Fmanufacture of cadmium electrode for cell - Google Patents

Fmanufacture of cadmium electrode for cell

Info

Publication number
JPS6329446A
JPS6329446A JP61172002A JP17200286A JPS6329446A JP S6329446 A JPS6329446 A JP S6329446A JP 61172002 A JP61172002 A JP 61172002A JP 17200286 A JP17200286 A JP 17200286A JP S6329446 A JPS6329446 A JP S6329446A
Authority
JP
Japan
Prior art keywords
cadmium
electrode
electroless plating
battery
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61172002A
Other languages
Japanese (ja)
Other versions
JPH0724217B2 (en
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61172002A priority Critical patent/JPH0724217B2/en
Publication of JPS6329446A publication Critical patent/JPS6329446A/en
Publication of JPH0724217B2 publication Critical patent/JPH0724217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the conductivity and the utilization rate, and to realize a long service life, by soaking an electrode in a specific activator solution, and then giving a electroless plating. CONSTITUTION:After a paste type cadmium electrode is processed in a comercial synthesizer, it is soaked in an activator solution diluted eight times by methanol. After being soaked about two min, it is dried up. Then a copper plating is given in a copper electroless plating solution. As a result, a cell cadmium of an excellent conductivity, a high utilization rate, and a long service life can be produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池のカドミウム極の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in cadmium electrodes for alkaline storage batteries.

従来の技術 各種の電源として使われている蓄電池には、よく知られ
ているように鉛酸電池とアルカリ電池がある。アルカリ
電池の代表的な系は、ニッケルーカドミウム蓄電池であ
る。
BACKGROUND OF THE INVENTION As is well known, storage batteries used as various power sources include lead-acid batteries and alkaline batteries. A typical alkaline battery system is a nickel-cadmium storage battery.

このニッケルーカドミウム蓄電池は、焼結式電極の開発
により充・放電特性、寿命、低温特性などに大幅な改良
が可能になり、密閉形の採用は、取扱い性を向上させた
With the development of sintered electrodes, this nickel-cadmium storage battery has been able to significantly improve its charge/discharge characteristics, lifespan, and low-temperature characteristics, and the adoption of a sealed type has improved handling.

ところが、エネルギー密度の向上や低コスト化への努力
については、進められてはいるが十分ではない。たとえ
ばエネルギー密度の向上のためには、ニッケル極につい
ては発泡式電極の開発で対応しているが、十分な低コス
ト化は解決したとはいえない。一方、カドミウム極につ
いては、焼結式の代りにペースト式を開発、実用化した
ことにより若干のコストダウンは可能にしたが、カドミ
ウムの利用率の向上は十分でないのが現状である。
However, although efforts are being made to improve energy density and reduce costs, they are not sufficient. For example, in order to improve energy density, foamed electrodes have been developed for nickel electrodes, but it cannot be said that sufficient cost reduction has been achieved. On the other hand, with regard to cadmium electrodes, the development and commercialization of a paste type instead of a sintered type has made it possible to reduce costs to some extent, but the current situation is that the utilization rate of cadmium has not been sufficiently improved.

このようなカドミウム極の利用率の向上のための手段と
して、カドミウム活物質の表面を導電性で多孔性の層を
形成することを提案し、これを可能にした。この表面へ
の多孔層の形成には、無電解メッキが最も簡単で工業的
である。また、カドミウム活物質としては、金属カドミ
ウム、酸化カドミウム、水酸化カドミウムその他のカド
ミウム化合物があるが、経済性や電極への充てん性を考
慮すると酸化カドミウムを主とする材料構成が最も好ま
しい。
As a means to improve the utilization rate of such cadmium electrodes, we proposed and made it possible to form a conductive and porous layer on the surface of the cadmium active material. Electroless plating is the simplest and most industrial method for forming a porous layer on the surface. Further, as the cadmium active material, there are metal cadmium, cadmium oxide, cadmium hydroxide, and other cadmium compounds, but in consideration of economical efficiency and filling property into the electrode, a material composition mainly composed of cadmium oxide is most preferable.

発明が解決しようとする問題点 アルカリ電池用カドミウム極のとくに利用率や寿命の向
上に対してカドミウム活物質の表面に導電性で多孔性の
層を形成することにより効果が大きいことを明らかにし
、カドミウム活物質の材料としては、酸化カドミウムが
有力であり、また表面の層の形成は、無電解メッキによ
り銅やニアケル層を形成することが好ましいとした。し
かしながら、従来公知の方法で酸化カドミウムに無電解
メッキをほどこすとこの工程中に酸化カドミウムの一部
が水酸化カドミウムに変化する。それでも、無電解メッ
キは可能であるが、ペースト式カドミウム極をつくる際
には、充てん量を増すためにも見掛比重の大きい酸化カ
ドミウムが多い方が好ましい。また、メッキ工程中に母
体である酸化カドミウムが水酸化カドミウムに変化する
とメ、ツキの付着強度も弱いようである。しだがって、
酸化カドミウムが無電解メッキの工程中でできるだけ水
酸化カドミウムに変化させない方がよい。
Problems to be Solved by the Invention It has been revealed that forming a conductive and porous layer on the surface of a cadmium active material is highly effective in improving the utilization rate and lifespan of cadmium electrodes for alkaline batteries. Cadmium oxide is a promising material for the cadmium active material, and the surface layer is preferably formed by electroless plating to form a copper or Niacel layer. However, when electroless plating is applied to cadmium oxide by a conventionally known method, part of the cadmium oxide is converted to cadmium hydroxide during this process. Still, electroless plating is possible, but when making a paste-type cadmium electrode, it is preferable to use a large amount of cadmium oxide, which has a large apparent specific gravity, in order to increase the filling amount. Furthermore, when the base material, cadmium oxide, changes to cadmium hydroxide during the plating process, the adhesion strength of the plate appears to be weak. Therefore,
It is better to prevent cadmium oxide from converting into cadmium hydroxide during the electroless plating process as much as possible.

また、電極を製造後に無電解メッキを行なう際に、電極
として最も量産性にすぐれた結着剤を用いたいわゆるペ
ースト式電極を用いると、電極に撥水性を有しているの
で、従来の水溶液を用いた゛無電解メッキでは、均一な
メッキが困難であった。
In addition, when performing electroless plating after electrode manufacturing, if a so-called paste-type electrode is used, which uses a binder that is most suitable for mass production, the electrode has water repellency, so it is better to use a conventional aqueous solution. It was difficult to achieve uniform plating with electroless plating using .

問題点を解決するだめの手段 一般に無電解メッキの工程は、■シンセタイザー液浸せ
き−(水洗)−アクチベータ液浸せき−(水洗)−無電
解メツキ液浸せき一水洗一乾燥による。また、場合によ
ってはシンセタイザー液浸せきは省略することもちる。
Means to Solve the Problem Generally, the electroless plating process is as follows: (1) Synthetizer liquid immersion - (Water washing) - Activator liquid immersion - (Water washing) - Electroless plating liquid immersion - Washing - Drying. Also, depending on the case, the synthesizer liquid immersion may be omitted.

本発明では、これらの工程中、アクテベータ液として、
従来の水溶液に水と相溶性のある溶媒、たとえば、メタ
ノール、エタノール、アセトン。
In the present invention, during these steps, as an activator liquid,
Water-compatible solvents, such as methanol, ethanol, acetone, in conventional aqueous solutions.

エチレングリコール、フロピレンゲリコールなどを加え
る。このことにより、メッキ工程中に生ずる酸化カドミ
ウムから水酸化カドミウムへの変化を抑制しつつ、後の
無電解メッキを行なう。さらに、これら溶媒中では、メ
タノールやアセトンのように水溶液の表面張力を減少さ
せる溶媒がとくにすぐれた溶媒であり、これらの添加に
より、ペースト式電極のぬれをよくしてアクチベータ処
理の均一化を可能にするものである。
Add ethylene glycol, fluoropylene gelylcol, etc. This allows the subsequent electroless plating to be performed while suppressing the change from cadmium oxide to cadmium hydroxide that occurs during the plating process. Furthermore, among these solvents, solvents that reduce the surface tension of aqueous solutions, such as methanol and acetone, are particularly effective, and their addition makes it possible to improve wetting of the paste-type electrode and make the activator treatment uniform. It is something to do.

なお、これらの溶媒の添加量については、たとえば、市
販のアクチベータ液を一般には、水により数倍に希釈し
て用いるので、これを水と相溶性の溶媒にすればよい。
Regarding the amount of these solvents to be added, for example, commercially available activator liquids are generally used after being diluted several times with water, so it is sufficient to use a solvent that is compatible with water.

作   用 酸化カドミウム粉末あるいは酸化カドミウムを主とする
カドミウム極に無電解で銅あるいはニッケルなどをメッ
キする際に、メッキ工程に用いるアクチベータ液中に、
水と相溶性の溶媒を加える。
Function: When electrolessly plating copper or nickel on cadmium oxide powder or a cadmium electrode mainly made of cadmium oxide, the activator liquid used in the plating process contains
Add a solvent compatible with water.

このことによって得られたカドミウム極は、単に水溶液
によって活性化し、その後無電解メッキを行なった場合
に比べて電池用カドミウム極として単位当りの容素は大
きく、寿命も向上するなどの効果が犬である。
The cadmium electrode obtained by this method has a larger capacitance per unit as a cadmium electrode for batteries than that obtained by simply activating it with an aqueous solution and then electroless plating, and has a longer lifespan. be.

また、電極を製作してから、無電解メッキを行なう場合
にも、アクチベータが電極内部まで均一に含浸され、し
たがって後の無電解メッキも表面のみでなく、内部まで
均一に行なわれる。しだがって、カドミウムの利用率の
向上や寿命の向上などに効果が大きい。
Further, even when performing electroless plating after manufacturing the electrode, the activator is uniformly impregnated into the electrode, so that subsequent electroless plating is performed not only on the surface but also inside the electrode. Therefore, it is highly effective in improving the utilization rate of cadmium and extending its life.

実施例 本発明が最も大きな効果を発揮する1つの例であるペー
スト式カドミウム極へのメッキを例として詳述する。な
お、メッキは、電極作成後に行なう場合を実施例とした
EXAMPLE The present invention will be described in detail by taking as an example one example in which the present invention exhibits the greatest effect, which is the plating of paste-type cadmium electrodes. In this example, the plating was performed after the electrode was created.

壕ず、市販の酸化カドミウムをポリビニルアルコールの
3%のエチレングリコール溶液2重量比で5係のポリエ
チレン微粉末2重量比で0.6チの塩化ビニル−アクリ
ロニトリル短繊維などを加、tてペーストをつくる。こ
れを厚さ0.15Cm、孔径1.8mR1開孔度5o%
の鉄のニッケルメッキパンチング板を芯材としてその両
面に塗着し、スリットを通して平滑化し、厚さ0.6鴎
に調整する。その後120℃で2時間乾燥してペースト
式カドミウム極を得た。
Without any problem, mix commercially available cadmium oxide with 3% polyvinyl alcohol and 2% ethylene glycol solution, 2% polyethylene fine powder of 5% by weight, and 0.6% vinyl chloride-acrylonitrile short fibers, etc., and make a paste. to make. This has a thickness of 0.15 cm, a hole diameter of 1.8 mR1, an opening degree of 50%
A nickel-plated punched iron plate is applied to both sides as a core material, smoothed through slits, and adjusted to a thickness of 0.6 mm. Thereafter, it was dried at 120° C. for 2 hours to obtain a paste-type cadmium electrode.

その後でこのペースト式カドミウム極に銅の無電解メッ
キを行なった。まず市販のシンセタイザー処理を行なっ
た後に、アクチベータ液をメタノールにより8倍に希釈
した液中に浸せきした。2分間浸せき後これを60℃で
16分間乾燥し、ついで、市販の銅無電解メッキ液にて
銅メッキを行なった。この際、電極としては、単2サイ
ズ10枚相当の大きさを用い、アクチベータ液は、10
CCを用い、これにメタノール70CC加えた。この液
中に電極を浸せきした。銅メッキ液としては、市販のメ
ッキ液を100CC用い、これを水500ccで希釈し
て用いた。メッキは40℃で15分間行なった。その後
に常温の流水で20分間水洗し、アセトンで置換した後
に80℃で乾燥した。この処理による重量増は、酸化カ
ドミウムに対してo、ss%増であった。このようにし
て得られたカドミウム極を用いた電池をAとした。
Thereafter, this paste-type cadmium electrode was electrolessly plated with copper. First, after performing a commercially available synthesizer treatment, the activator solution was immersed in a solution diluted 8 times with methanol. After immersion for 2 minutes, this was dried at 60° C. for 16 minutes, and then copper plating was performed using a commercially available copper electroless plating solution. At this time, the size of the electrodes is equivalent to 10 AA size sheets, and the activator liquid is 10
Using CC, 70 CC of methanol was added to this. The electrode was immersed in this solution. As the copper plating solution, 100 cc of a commercially available plating solution was used, which was diluted with 500 cc of water. Plating was carried out at 40°C for 15 minutes. Thereafter, it was washed with running water at room temperature for 20 minutes, replaced with acetone, and then dried at 80°C. The weight increase due to this treatment was 0.ss% compared to cadmium oxide. A battery using the cadmium electrode thus obtained was designated as A.

つぎに比較のために、ペースト式カドミウム極の無電解
銅メッキの前のアクチベータ液に水のみを用い、以下電
池Aと同じ工程で得られたカドミウム極を用いた電池を
Bとして加えた。
Next, for comparison, a battery using a cadmium electrode obtained in the same process as battery A was added as battery B using only water as the activator solution before electroless copper plating of a paste-type cadmium electrode.

まず、電池AとBの特性を比較する前に、電池AとBに
用いたカドミウム極の利用率を求めた。
First, before comparing the characteristics of batteries A and B, the utilization rates of the cadmium electrodes used in batteries A and B were determined.

つまり、十分容量の大きいニッケル極を用い、カドミウ
ム極律則になるように試験電池を構成しも電池A、Bと
同し組成の電解液を十分用い、開放形で調べた。充電は
25℃、0.IC14時間、放電も25℃、0.2C1
端子電圧0.8Vまでの条件を用いた。
In other words, a test battery was constructed using a nickel electrode with a sufficiently large capacity to comply with the cadmium pole rule, but an electrolytic solution having the same composition as batteries A and B was sufficiently used, and the test was conducted in an open type. Charge at 25℃, 0. IC 14 hours, discharge 25℃, 0.2C1
Conditions were used where the terminal voltage was up to 0.8V.

その結果、1サイクルでの放電では、電池Aのカドミウ
ム極は、酸化カドミウム1g当υに換算して385 m
Ah、 Bでは373 nnAh、七ズメソキを行なっ
ていない酸化カドミウムを追加して調べたところ325
 mAh  であった。また、念のためにこのような条
件で充放電をくり返し、20サイクル後を調べたところ
、Aでは370 mAh、 Bでは359 mAhそれ
にメッキなしでは251 mAhであった。つまり、本
発明のAは、利用率や寿命が最も優れていることがわか
る。
As a result, in one cycle of discharge, the cadmium electrode of battery A has a capacity of 385 m equivalent to 1 g of cadmium oxide.
Ah, 373 nnAh in B, 325 after adding cadmium oxide that has not been subjected to 7-day sowing.
It was mAh. Also, just to be sure, charging and discharging were repeated under these conditions, and after 20 cycles, the results were 370 mAh for A, 359 mAh for B, and 251 mAh without plating. In other words, it can be seen that A of the present invention has the best utilization rate and life.

つぎに電池AとBの特性を比較した。Next, the characteristics of batteries A and B were compared.

電池としては、単2形の密閉式ニッケルーカドミウム蓄
電池を例にした。したがって、このようにして得られた
カドミウム極を幅39鴫、長さ261個に裁断し、リー
ド板を所定の2ケ所にスポット溶液により取りつけた。
As an example of a battery, a AA sealed nickel-cadmium storage battery was used. Therefore, the cadmium electrode thus obtained was cut into 39 pieces in width and 261 pieces in length, and lead plates were attached to two predetermined locations using a spot solution.

これをあらかじめ1oAの電流、比重1.16のカセイ
カリ水溶液の条件で9分間部分充電し、水洗、乾燥した
。相手極として、公知の高容量形の焼結式ニッケル極を
えらび、同じく幅39聾とし、長さは220順として用
いた。この場合もリード板を2ケ所取り付けた。
This was partially charged in advance for 9 minutes under the conditions of a current of 1oA and an aqueous caustic potash solution with a specific gravity of 1.16, washed with water, and dried. As a counterpart electrode, a known high capacity sintered nickel electrode was selected, with a width of 39 mm and a length of 220 mm. In this case as well, lead plates were attached at two locations.

セパレータとしては、ポリアミド不織布、電解液として
は、比重1.18のか性カリ水溶液に水酸化リチウムを
25 i / l溶解して用いた。この電池をAとする
。公称容量は2.4sAhである。
A polyamide nonwoven fabric was used as the separator, and 25 i/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.18 as the electrolyte. This battery is called A. The nominal capacity is 2.4 sAh.

まず、各電池を0.10で14時間充電し、0.20放
電で標準の容量を求めた。いずれも前記のように容量は
2.46Ahであり、ニッケル正極で放電が終了してい
る。したがってこのような通常の充放電では、それほど
の差はないと思われる。
First, each battery was charged at 0.10 for 14 hours, and the standard capacity was determined at 0.20 discharge. In both cases, the capacity is 2.46 Ah as described above, and the discharge ends at the nickel positive electrode. Therefore, it seems that there is not much difference in such normal charging and discharging.

ところが、つぎに、急速充電特性を調べた。0℃で10
充電を1.5時間行なって電池内圧を求めたところ、電
池Aでは最大3.1に9/−1電池Bでは3.sK9/
fflで若干Aがすぐれていた。これはAがBよりも充
放電効率がよく、充電時に必要な余分のカドミウムを若
干Aの方がBより多いことによると思われる。つぎに、
12Cの放電を行なったところ、35℃ではいずれも2
.C)1Ahを示しだ。ただし電池がAの方が0.02
V平均高い値となり、これもカドミウムへの銅メッキが
強固であるのでそれだけ若干でも導電性にすぐれている
のが理由であろう。
However, next we investigated the rapid charging characteristics. 10 at 0℃
When charging was performed for 1.5 hours and the internal pressure of the battery was determined, battery A had a maximum of 3.1 and 9/-1 battery B had a maximum of 3.1. sK9/
ffl had a slightly better A. This seems to be because A has a better charging/discharging efficiency than B, and A has slightly more cadmium required during charging than B. next,
When a 12C discharge was performed, at 35℃, both
.. C) Shows 1Ah. However, battery A is 0.02
The average value of V is high, and this is probably because the copper plating on the cadmium is strong, so the conductivity is even slightly better.

また、寿命試験としてカドミウム負極には苛酷な条件と
して、0℃で10時間率の充電−26℃で50の放電を
えらびサイクルをくり返したところ、この条件、とくに
充電の条件はニッケル極の充電効率が大きくなるので、
サイクルとともにカドミウム律則となる。Aでは、15
0サイクル後でもニッケル極律則であったが、Bでは1
15サイクルでカドミウム極律則になった。したがって
Bでカドミウム極律則にならないためには、負極の容量
を増す必要があり、それだけ電池の放電容量は減少する
ことになる。このような現象も、電池Aのカドミウム極
が電池Bよりも充放電効率の点ですぐれていることによ
る。
In addition, as a life test, we selected harsh conditions for cadmium negative electrodes, including charging at a rate of 10 hours at 0°C and discharging at 26°C for 50 cycles. becomes larger, so
Along with the cycle, it becomes the cadmium law. In A, 15
Even after 0 cycles, the nickel polar law was observed, but in B, 1
The cadmium extreme law was reached after 15 cycles. Therefore, in order to avoid the cadmium polarity rule in B, it is necessary to increase the capacity of the negative electrode, and the discharge capacity of the battery will decrease accordingly. This phenomenon is also due to the fact that the cadmium electrode of battery A is superior to battery B in terms of charging and discharging efficiency.

発明の効果 水と相溶性のある溶媒を含むアクチベータ液に電極を浸
せき後メッキを行なったカドミウム電極を用いることに
より、導電性にすぐれ、利用率も高く長寿命の電池用カ
ドミウムを提供することができる。
Effects of the Invention By using a cadmium electrode that is plated after immersing the electrode in an activator solution containing a solvent that is compatible with water, it is possible to provide cadmium for batteries with excellent conductivity, high utilization rate, and long life. can.

Claims (4)

【特許請求の範囲】[Claims] (1)電極を、水と相溶性がある溶媒を含むアクチベー
タ液中に浸せきし、ついで無電解メッキを行なうことを
特徴とする電池用カドミウム極の製造法。
(1) A method for producing a cadmium electrode for a battery, which comprises immersing the electrode in an activator solution containing a solvent that is compatible with water, and then performing electroless plating.
(2)酸化カドミウム粉末を用い、水と相溶性がある溶
媒を含むアクチベータ液中に浸せきし、ついで無電解メ
ッキを行ない、その後電極を構成することを特徴とする
特許請求の範囲第1項記載の電池用カドミウム極の製造
法。
(2) According to claim 1, the electrode is formed by using cadmium oxide powder, immersing it in an activator solution containing a solvent that is compatible with water, and then performing electroless plating. A method for manufacturing cadmium electrodes for batteries.
(3)酸化カドミウムと結着剤を主とするカドミウム極
を水と相溶性がある溶媒を含むアクチベータ液中に浸せ
きし、ついで無電解メッキを行なうことを特徴とする特
許請求の範囲第1項記載の電池用カドミウム極の製造法
(3) Claim 1, characterized in that a cadmium electrode containing mainly cadmium oxide and a binder is immersed in an activator solution containing a solvent that is compatible with water, and then electroless plating is performed. The method for manufacturing the described cadmium electrode for batteries.
(4)無電解メッキが銅あるいはニッケルである特許請
求の範囲第1項から第3項のいずれかに記載の電池用カ
ドミウム極の製造法。
(4) The method for producing a cadmium electrode for a battery according to any one of claims 1 to 3, wherein the electroless plating is copper or nickel.
JP61172002A 1986-07-22 1986-07-22 Manufacturing method of cadmium electrode for battery Expired - Lifetime JPH0724217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172002A JPH0724217B2 (en) 1986-07-22 1986-07-22 Manufacturing method of cadmium electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172002A JPH0724217B2 (en) 1986-07-22 1986-07-22 Manufacturing method of cadmium electrode for battery

Publications (2)

Publication Number Publication Date
JPS6329446A true JPS6329446A (en) 1988-02-08
JPH0724217B2 JPH0724217B2 (en) 1995-03-15

Family

ID=15933698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172002A Expired - Lifetime JPH0724217B2 (en) 1986-07-22 1986-07-22 Manufacturing method of cadmium electrode for battery

Country Status (1)

Country Link
JP (1) JPH0724217B2 (en)

Also Published As

Publication number Publication date
JPH0724217B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JPS6329446A (en) Fmanufacture of cadmium electrode for cell
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS62285360A (en) Negative electrode for alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JPS632250A (en) Manufacture of cadmium electrode for battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2506777B2 (en) Method for producing paste type cadmium negative electrode
JPS6334852A (en) Cadmium electrode for cell
JPS5923467A (en) Manufacture of sealed type nickel cadmium storage battery anode plate
JPH01146253A (en) Manufacture of cadmium electrode for battery
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JPH08236094A (en) Separator for alkaline storage battery
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JP3287215B2 (en) Manufacturing method of nickel positive plate for alkaline storage battery
JPS63266780A (en) Manufacture of enclosed alkaline storage battery
JPH04126358A (en) Manufacture of hydrogen absorbing alloy electrode for alkaline battery
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JPH01248466A (en) Manufacture of cadmium electrode for battery
JPH0775163B2 (en) Manufacturing method of cadmium electrode for battery
JPH01154461A (en) Manufacture of cadmium electrode for battery
JPS6351051A (en) Hydrogen absorption alloy negative electrode for alkaline cell
JPS6369144A (en) Manufacture of nickel electrode for alkaline battery
JPH01248465A (en) Manufacture of cadmium electrode for battery
JPH01166464A (en) Manufacture of cadmium for battery