JPS63124378A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPS63124378A
JPS63124378A JP61269048A JP26904886A JPS63124378A JP S63124378 A JPS63124378 A JP S63124378A JP 61269048 A JP61269048 A JP 61269048A JP 26904886 A JP26904886 A JP 26904886A JP S63124378 A JPS63124378 A JP S63124378A
Authority
JP
Japan
Prior art keywords
negative electrode
conductive layer
positive electrode
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61269048A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61269048A priority Critical patent/JPS63124378A/en
Publication of JPS63124378A publication Critical patent/JPS63124378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To retard an increase in the internal pressure of a battery in quick charge and prevent a drop in discharge voltage by forming a conductive layer on one side of a negative electrode, and facing the conductive layer to a positive electrode, then spirally winding them. CONSTITUTION:A positive electrode 2 and a negative electrode 1 are spirally wound via a separator 3. A conductive layer is formed on one side of the negative electrode 1, and faced to the positive electrode, then they are spirally wound. By this construction, the absorption capacity of oxygen gas evolved from the positive electrode is increased. The diffusion of an electrolyte in high rate discharge at low temperature is sufficiently conducted from the side, on which no conductive layer is formed, of the negative electrode. Therefore, a drop in performance in this discharge condition can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負極に、カドミウム極や金属水素化物を用いた
密閉形アルカリ蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sealed alkaline storage battery using a cadmium electrode or a metal hydride as a negative electrode.

従来の技術 各種の電源のうち、蓄電池としては、鉛蓄電池とアルカ
リ蓄電池とが広く使われている。後者のアルカリ蓄電池
では、最も広く使われているのは、ニッケルーカドミウ
ム蓄電池であり、密閉形構造の発見が実用の範囲を大き
く広げた。
BACKGROUND OF THE INVENTION Among various power sources, lead-acid batteries and alkaline batteries are widely used as storage batteries. Among the latter alkaline storage batteries, the most widely used one is the nickel-cadmium storage battery, and the discovery of a sealed structure greatly expanded the range of practical use.

このような密閉形蓄電池は、メンテナンスフリーになっ
たことから各種のポータプル機器に用いられて久しい。
Such sealed storage batteries have long been used in various portable devices because they are maintenance-free.

この種電池に対する要望としては、信頼性や低廉化の他
に、高エネルギー密度化があり、最近では急速充電があ
げられてきた。
In addition to reliability and low cost, demands for this type of battery include higher energy density, and recently, rapid charging has been raised.

まずエネルギー密度の向上には、高容量ニッケル極の開
発で対応し、さらに負極としてより高容量密度が期待で
きる金属水素化物負極の研究がある。
First, improving energy density is being addressed by developing high-capacity nickel electrodes, and there is also research into metal hydride negative electrodes, which are expected to have even higher capacity densities.

一方の急速充電に関しては、密閉形アルカリ蓄電池の密
閉化の原理は、いわゆるノイマン方式が主流であるので
負極による酸素ガスの吸収速度の向上が最大の課題にな
る。
On the other hand, regarding rapid charging, the principle of sealing sealed alkaline storage batteries is mainly based on the so-called Neumann method, so the biggest challenge is to improve the absorption rate of oxygen gas by the negative electrode.

カドミウム負極や金属水素化物負極の酸素との反応を助
けるために、白金やパラジウム、銀などの酸素イオン化
触媒を加える試みがある。しかし、高価になるので広く
採用されるに至っていない。
Attempts have been made to add oxygen ionization catalysts such as platinum, palladium, and silver to aid the reaction of cadmium negative electrodes and metal hydride negative electrodes with oxygen. However, it has not been widely adopted because it is expensive.

その他に負極の表面にフッソ樹脂によるJ仝水性を持た
せる手段があり、一応の効果をあげている。さらに、負
極の表面に、銅、ニッケル、炭素などに導電性の層を形
成することも効果がある。
In addition, there is a method of imparting water-repellent properties to the surface of the negative electrode using fluorocarbon resin, which has been somewhat effective. Furthermore, it is also effective to form a conductive layer of copper, nickel, carbon, etc. on the surface of the negative electrode.

発明が解決しようとする問題点 負極上に多孔性の導電層を形成する明らかに急速充電性
は向上する、しかし、これらの層は多孔性であっても充
電時にはイオンの伝導を阻害するので、とくに効率放電
時での電圧の低下が若干生ずることが問題である。また
、低温の”効率放電のように負極律則になると容量の低
下がやや大きい。
Problems to be Solved by the Invention Forming a porous conductive layer on the negative electrode obviously improves rapid charging, but even though these layers are porous, they inhibit ion conduction during charging. In particular, a problem is that the voltage slightly decreases during efficient discharge. In addition, when the negative electrode rule is applied, such as in low-temperature "efficient discharge," the capacity decreases somewhat.

すなわち、層を十分設けるとガスの吸収には効果が大き
いが放電性能がやや劣化し、逆に層が少ないと放電特性
の劣化はないがガスの吸収の効果も少ない。
That is, if a sufficient number of layers are provided, the effect on gas absorption is large, but the discharge performance is slightly degraded, and conversely, when the number of layers is small, there is no deterioration in the discharge characteristics, but the gas absorption effect is also small.

したがって、層の形成をガスの吸収、放電電圧や容量の
バランスを良好に保つことが困難である。
Therefore, it is difficult to maintain a good balance between layer formation, gas absorption, discharge voltage, and capacity.

問題点を解決するための手段 本発明は、密閉形アルカリ蓄電池が正極と負極とをセパ
レータを介してうず巻状に巻(ことに着目して、一方の
面に導電性の層を設けた負極において、この面を正極と
対面させて、うず巻状に巻いて電池を構成することを特
徴とするものである。
Means for Solving the Problems The present invention focuses on the fact that a sealed alkaline storage battery has a positive electrode and a negative electrode wound in a spiral shape with a separator in between. The battery is characterized in that it is wound in a spiral shape with this surface facing the positive electrode to form a battery.

作用 このような構成、つまり導電性の層を設けた負極面を正
極と対面させてうず巻状に巻いているので、正極から発
生する酸素ガスの吸収能力は向上し、また、と(に低温
での高放電時などでの電解脈の拡散は、導電性の層を設
けていない面から十  ′分行えるので、このような放
電条件での性能の低下がない電池を提供できる。
Function: This configuration, in which the negative electrode surface with a conductive layer faces the positive electrode and is wound in a spiral shape, improves the ability to absorb oxygen gas generated from the positive electrode. Since the electrolytic veins can be sufficiently diffused from the surface without the conductive layer during high discharge, etc., it is possible to provide a battery that does not deteriorate in performance under such discharge conditions.

実施例 一般に、この電池は、ノイマン方式によるガス吸収を利
用するので、正極よりも負極の容量を大にする。電極と
しては、正極よりも、負極の長さを長くしてうず巻状に
巻(。したがって、最も外側の電極は負極になり、負極
が電極である缶に接触した形をとる。このような構造に
なるので、負極のガス吸収能力にすぐれた面を正極に直
接対応させることは、反対の面を正極に対応させるより
も正極との対応面が多いことになる。つまり、負極の最
も外側の面は、正極と対応していないからである。簡単
化した図によって示すと、第1図が本発明の実施例であ
り、■が負極、■が正極、■をセパレータとし、■の黒
く塗った面を導電性を向上させた面とする。第2図は、
反対の面に導電層を配した場合であり、直接正極に接す
る導電帯形成面は第1図の方が多いことが明らかである
Embodiments Generally, since this battery utilizes the Neumann type gas absorption, the capacity of the negative electrode is larger than that of the positive electrode. As an electrode, the length of the negative electrode is longer than that of the positive electrode, and it is wound in a spiral shape. Therefore, the outermost electrode becomes the negative electrode, and the negative electrode is in contact with the can that is the electrode. Because of the structure, if the surface of the negative electrode with excellent gas absorption ability directly corresponds to the positive electrode, there will be more contact with the positive electrode than if the opposite surface corresponds to the positive electrode.In other words, the outermost surface of the negative electrode This is because the surface does not correspond to the positive electrode.As shown in a simplified diagram, Fig. 1 shows an embodiment of the present invention, where ■ is the negative electrode, ■ is the positive electrode, ■ is the separator, and The painted surface is the surface with improved conductivity. Figure 2 shows
This is the case where a conductive layer is disposed on the opposite surface, and it is clear that the conductive band forming surface in direct contact with the positive electrode is larger in FIG.

なお、導電帯層の形成法としては、金属の場合は、メッ
キ、蒸着、スパッタリングなどがあるが、メッキが最も
容易である。また、炭素の場合は、接着剤とともに塗布
すればよい。
Note that, in the case of metal, methods for forming the conductive band layer include plating, vapor deposition, sputtering, etc., but plating is the easiest. Furthermore, in the case of carbon, it may be applied together with an adhesive.

メッキの金属としては、耐アルカリ性があればとくに制
限はない。一般的には、無電解メッキが容易な銅、ニッ
ケルなどがよく、ニッケルの場合1は、カドミウム極に
直接液すると自己放電が増すので、銅メツキ上にほどこ
すことが好ましい。酸化カドミウムを出発材料にしたカ
ドミウム極では、ニッケルの無電解メッキはやや困難で
あるので、多孔性の銅メッキ層を設けた後に、ニッケル
の電解メッキを行うのがよい。
There are no particular restrictions on the metal for plating as long as it has alkali resistance. In general, copper, nickel, etc., which can be easily plated electrolessly, are preferred. In the case of nickel, self-discharge increases if the solution is applied directly to the cadmium electrode, so it is preferable to apply it on copper plating. With a cadmium electrode made from cadmium oxide as a starting material, electroless plating of nickel is somewhat difficult, so electrolytic plating of nickel is preferably performed after providing a porous copper plating layer.

以下酸化カドミウムを主とした材料として用いるペース
ト式カドミウム極に銅の無電解メッキによる層を設けた
場合を例として詳述する。
Hereinafter, a case in which a layer formed by electroless plating of copper is provided on a paste-type cadmium electrode using cadmium oxide as the main material will be described in detail as an example.

市販の酸化カドミウムをポリビニルアルコールの3%(
重量)のエチレングリコール溶液、重量比で5%のポリ
エチレン、微粉末、同じ<0.6%の塩化ビニル−アク
リロニトリル短繊維などを加えてペーストをつくる。こ
れを厚さ0.15膿、孔径1.8mm、開孔度50%の
鉄製でニッケルメッキを施したパンチングメルク板に塗
着する。スリットを通して平滑化し、厚さ0.6mmに
調整する。その後、120℃で2時間乾燥してペースト
式カドミウム極を得る。
Commercially available cadmium oxide was mixed with 3% polyvinyl alcohol (
(by weight) of ethylene glycol solution, 5% by weight of polyethylene, fine powder, the same <0.6% of vinyl chloride-acrylonitrile short fibers, etc. are added to make a paste. This was applied to a punched Merck plate made of iron and nickel plated with a thickness of 0.15 mm, a pore diameter of 1.8 mm, and a porosity of 50%. Smooth it through the slit and adjust the thickness to 0.6 mm. Thereafter, it is dried at 120° C. for 2 hours to obtain a paste-type cadmium electrode.

ついで、この極を140mA/cn?の電流密度、時間
10分、電解浴、比重1.15の苛性カリ水溶液、温度
25℃の条件で対極にニッケル板を用いて充電する。こ
の充電量は、計算の上では、全体のカドミウム理論容量
の約35〜40%に相当するが、充電効率化が低いので
、実際には約20%が充電されたとみてよい。
Next, connect this pole to 140mA/cn? Charging was carried out using a nickel plate as a counter electrode at a current density of 10 minutes, an electrolytic bath, a caustic potassium aqueous solution with a specific gravity of 1.15, and a temperature of 25°C. This charge amount corresponds to about 35 to 40% of the total theoretical cadmium capacity, but since the charging efficiency is low, it can be assumed that about 20% was actually charged.

ついでこのようにして得られたカドミウム極の一方の面
に銅の無電解メッキを行った。
Next, one side of the cadmium electrode thus obtained was electrolessly plated with copper.

まず、市販のアクチベータ液5倍に希釈した水溶液を、
電極の一方面に塗布する。60℃で15分間乾燥し、つ
いで市販の無電解鋼メッキ浴中に浸せきする。この場合
、メッキ浴は3倍に希釈し、45℃、20分間浸せきし
た。これにより、カドミウム電極の一方に多孔性の銅メ
ッキが施され、他の面には、メッキはほとんど行われな
かった。メッキによる重量増加は、電極全体に対して約
1%であった。
First, an aqueous solution diluted five times with a commercially available activator solution,
Apply to one side of the electrode. Dry at 60°C for 15 minutes and then immerse in a commercially available electroless steel plating bath. In this case, the plating bath was diluted 3 times and immersed at 45° C. for 20 minutes. As a result, porous copper plating was applied to one side of the cadmium electrode, and almost no plating was applied to the other side. The weight increase due to plating was about 1% based on the entire electrode.

電池としては、単2形の密閉形ニッケルーカドミウム蓄
電池を例にした。したがって、このようにして得られた
カドミウム極を幅3.9cm、長さ26cmに裁断し、
リード板を所定の2ケ所にスポット溶接により取り付け
た。相手径としては、公知の焼結式ニッケル極をえらび
、同じ(幅3゜9 am 、長さ22cmとして用いた
。この場合もリード板を2ケ所取り付けた。この組立て
に際して、導電性の層を設けた負極面をこのニッケル極
に対応させ、セパレータを介してうず巻状に巻いて電槽
に挿入した。なお、セパレータとして、ボリアミド不織
布、電解液としては、比重1.20の苛性カリ水溶液に
水酸化リチウムを20g/e溶解して用いた。公称容量
は2.34Ahである。この電池を(A)とする。
As an example of a battery, a AA sealed nickel-cadmium storage battery was used. Therefore, the cadmium electrode obtained in this way was cut into pieces of 3.9 cm in width and 26 cm in length.
Lead plates were attached to two predetermined locations by spot welding. As for the mating diameter, a known sintered nickel electrode was selected and used with the same width (width: 3°9 am, length: 22 cm).In this case, lead plates were also attached at two locations.During this assembly, a conductive layer was The provided negative electrode surface was made to correspond to this nickel electrode, and it was wound into a spiral shape through a separator and inserted into a battery case.The separator was a polyamide nonwoven fabric, and the electrolyte was a caustic potassium aqueous solution with a specific gravity of 1.20. 20g/e of lithium oxide was dissolved and used.The nominal capacity is 2.34Ah.This battery is referred to as (A).

つぎに比較のためにカドミウム極全面に電池(A)と同
じ量の銅メッキを施した電池を(B)、電池(A)とは
逆に、導電性の層を正極と反対側に配した電池を(C)
として加えた。
Next, for comparison, we created a battery (B) in which the entire surface of the cadmium electrode was plated with the same amount of copper as in battery (A), and in contrast to battery (A), a conductive layer was placed on the opposite side of the positive electrode. Battery (C)
Added as.

これら電池の通常の充放電での放電特性はほぼ同じであ
った。たとえば0.2C充電−0,2C放電では、いず
れも2.34Ahを示し、放電電圧の差もほとんどなか
った。
The discharge characteristics of these batteries during normal charging and discharging were almost the same. For example, in 0.2C charge-0.2C discharge, both showed 2.34Ah, and there was almost no difference in discharge voltage.

そこでつぎに各電池の急速充電特性を調べた。Next, we investigated the quick charging characteristics of each battery.

周囲温度0℃とし、各充電率で充電した際の電池の内圧
を測定した。なお、充電は、放電容量の1゜1倍まで各
充電率で行い、その後は、0.2Cに減少させて全体で
放電容量の1.4倍充電した。
The internal pressure of the battery was measured when the battery was charged at each charging rate at an ambient temperature of 0°C. Note that charging was performed at each charging rate up to 1.1 times the discharge capacity, and then the charging rate was decreased to 0.2C, and the battery was charged to a total of 1.4 times the discharge capacity.

まず、IC充電(2,3A)時での各電池の最高内圧は
、電池(A)テは0.4−Kg/ffl、電池(B)テ
0゜3Kg10n?、電池(C)では、l、QKg/c
n?であった。つぎに1.5 C(3,45A)にする
と電池(A)で1.8K g / on?、(B)で1
.6Kg/cn?、(C)で2.7Kg/cnf、最後
に2C(4,6A)では、(A)が5.0Kg/cn?
(B)は、4、7Kg/cut(C)は、6.9Kg/
c−であった。
First, the maximum internal pressure of each battery during IC charging (2, 3A) is 0.4-Kg/ffl for battery (A) and 0°3Kg/ffl for battery (B). , for battery (C), l, QKg/c
n? Met. Next, if you set it to 1.5 C (3,45 A), the battery (A) will be 1.8 K g/on? , (B) is 1
.. 6Kg/cn? , (C) is 2.7Kg/cnf, and finally in 2C (4,6A), (A) is 5.0Kg/cn?
(B) is 4.7Kg/cut (C) is 6.9Kg/cut
It was c-.

つまり、電池(A)と(B)に比べて電池(B)ではガ
スの吸収の点で劣ったのは、ガス吸収に有筋な、導電性
の層をもつ負極の面が、正極に対して(A>よりも離れ
ていることが原因であったと思われる。
In other words, the reason why battery (B) was inferior in terms of gas absorption compared to batteries (A) and (B) is that the negative electrode surface, which has a conductive layer that is good for gas absorption, is opposed to the positive electrode. This seems to be due to the fact that it is further away than (A>).

つぎに、放電電圧とくに大電流放電での電圧を比較した
。周囲温度10℃で50の放電を行った。その結果電池
(A)の平坦電圧は、1.11Vであり、メッキを両面
に施した電池(B)では、ガス吸収には効果が大きいが
、放電電圧は低下した。
Next, we compared the discharge voltage, especially the voltage during large current discharge. Fifty discharges were performed at an ambient temperature of 10°C. As a result, the flat voltage of the battery (A) was 1.11 V, and the battery (B) in which both sides were plated had a large effect on gas absorption, but the discharge voltage decreased.

なお、上記実施例は、カドミウム極について述べたが、
同じ密閉形アルカリ蓄電池用の負極として注目されてい
る金属水素化物電極および、カドミウムと金属水素化物
の混合電極についても全(同じ様に急速充電を可能にし
、放電時の電圧低下を制御できる。
In addition, although the above example described a cadmium pole,
Metal hydride electrodes, which are attracting attention as negative electrodes for sealed alkaline storage batteries, and mixed electrodes of cadmium and metal hydride also enable rapid charging and control voltage drop during discharge.

発明の効果 カドミウム極などの一方の面に導電性の層を設け、この
層をもつ面を正極と対応させて、うず巻状に巻いた密閉
形アルカリ蓄電池は、急速充電時での電池内圧の上昇を
抑えるとともに、放電電圧の低下も制御できる効果を有
する。
Effects of the Invention Sealed alkaline storage batteries that are spirally wound with a conductive layer provided on one side of the cadmium electrode, etc., with the surface with this layer corresponding to the positive electrode, reduce the internal pressure of the battery during rapid charging. This has the effect of suppressing the increase in discharge voltage and also controlling the decrease in discharge voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の異なる実施例の密閉形ア
ルカリ蓄電池の要部構成図である。 1・・・・負極、2・・・・正極、3・・・・セパレー
タ。
1 and 2 are main part configuration diagrams of sealed alkaline storage batteries according to different embodiments of the present invention. 1...Negative electrode, 2...Positive electrode, 3...Separator.

Claims (3)

【特許請求の範囲】[Claims] (1)一方の面に導電性の層を被覆した負極と、セパレ
ータと、正極を具備し、前記導電性の層を形成した面を
前記セパレータを介して正極と対向させ、うず巻状に構
成したことを特徴とする密閉形アルカリ蓄電池。
(1) A negative electrode whose one surface is coated with a conductive layer, a separator, and a positive electrode are provided, and the surface on which the conductive layer is formed faces the positive electrode through the separator, and is configured in a spiral shape. A sealed alkaline storage battery characterized by:
(2)導電性の層が、銅、ニッケル、炭素から成ること
を特徴とする特許請求の範囲第1項記載の密閉形アルカ
リ蓄電池。
(2) The sealed alkaline storage battery according to claim 1, wherein the conductive layer is made of copper, nickel, and carbon.
(3)負極の活物質が、カドミウムもしくは金属水素化
物またはそれらの活物質のいずれかである特許請求の範
囲第1項記載の密閉形アルカリ蓄電池。
(3) The sealed alkaline storage battery according to claim 1, wherein the active material of the negative electrode is cadmium, a metal hydride, or any of these active materials.
JP61269048A 1986-11-12 1986-11-12 Sealed alkaline storage battery Pending JPS63124378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269048A JPS63124378A (en) 1986-11-12 1986-11-12 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269048A JPS63124378A (en) 1986-11-12 1986-11-12 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS63124378A true JPS63124378A (en) 1988-05-27

Family

ID=17466948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269048A Pending JPS63124378A (en) 1986-11-12 1986-11-12 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63124378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528896B1 (en) * 1999-01-22 2005-11-16 삼성에스디아이 주식회사 Electrode of secondary battery
US10547046B2 (en) 2011-11-30 2020-01-28 Lawrence Livermore National Security, Llc High energy/power density nickel oxide/hydroxide materials and nickel cobalt oxide/hydroxide materials and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528896B1 (en) * 1999-01-22 2005-11-16 삼성에스디아이 주식회사 Electrode of secondary battery
US10547046B2 (en) 2011-11-30 2020-01-28 Lawrence Livermore National Security, Llc High energy/power density nickel oxide/hydroxide materials and nickel cobalt oxide/hydroxide materials and production thereof

Similar Documents

Publication Publication Date Title
JPH07282862A (en) Battery with gas diffusion electrode and charging and discharging method thereof
JP2001068094A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH05303978A (en) Sealed nickel-zinc battery
JPS63124378A (en) Sealed alkaline storage battery
JPH0787102B2 (en) Sealed nickel-zinc battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JP3006371B2 (en) Battery
JPS6369143A (en) Cadmium electrode for battery
JP3429684B2 (en) Hydrogen storage electrode
JP2001068095A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3010992B2 (en) Battery electrode
JPS63266769A (en) Manufacture of cadmium electrode for battery
JP2000348715A (en) Manufacture of lead-acid battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS6351049A (en) Cadmim electrode for cell
JPS6369142A (en) Cadmium electrode for alkaline battery
JPH0234434B2 (en)
CN116666907A (en) Lithium battery diaphragm, preparation method thereof, lithium battery comprising lithium battery diaphragm and application of lithium battery diaphragm
JP3136688B2 (en) Nickel-hydrogen storage battery
JPS63170852A (en) Cadmium electrode for alkaline storage battery
JP3370111B2 (en) Hydrogen storage alloy electrode
JPH0775163B2 (en) Manufacturing method of cadmium electrode for battery
JPS6334852A (en) Cadmium electrode for cell
JPH01166464A (en) Manufacture of cadmium for battery
JPH01248465A (en) Manufacture of cadmium electrode for battery