JPS6369142A - Cadmium electrode for alkaline battery - Google Patents

Cadmium electrode for alkaline battery

Info

Publication number
JPS6369142A
JPS6369142A JP61213231A JP21323186A JPS6369142A JP S6369142 A JPS6369142 A JP S6369142A JP 61213231 A JP61213231 A JP 61213231A JP 21323186 A JP21323186 A JP 21323186A JP S6369142 A JPS6369142 A JP S6369142A
Authority
JP
Japan
Prior art keywords
electrode
cadmium
battery
cadmium electrode
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213231A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61213231A priority Critical patent/JPS6369142A/en
Publication of JPS6369142A publication Critical patent/JPS6369142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain good quick charge performance and discharge performance by covering a cadmium electrode with a conductive layer and water repellent layer comprising fluorine resin. CONSTITUTION:A cadmium electrolyte is manufactured, then water repellent treatment is conducted thereto with fluorine resin, and a conductive layer comprising copper, nickel, or carbon is formed thereon. Or, oppositely, the conductive layer is formed on the electrode, then water repellent treatment is conducted thereto. By jointly using two precesses, good quick charge performance and discharge performance which are impossible in individual process can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池用とくに密閉形のニッケルーカドミウム
蓄電池のカドミウム電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cadmium electrode for batteries, particularly for sealed nickel-cadmium storage batteries.

従来の技術 各種の電源のうち、二次電池としては、鉛蓄電池とアル
カリ蓄電池とが広く使われている。
BACKGROUND OF THE INVENTION Among various power sources, lead-acid batteries and alkaline batteries are widely used as secondary batteries.

後者のアルカリ蓄電池では、最も広く使われているのは
、ニッケルーカドミウム蓄電池であり、密閉形構造の採
用が実用の範囲を広げる大きな要因になった。
Among the latter alkaline storage batteries, the most widely used one is the nickel-cadmium storage battery, and the adoption of a sealed structure was a major factor in expanding the range of practical use.

また、電極として焼結式ニッケル極が開発されたことか
ら、放電特性とくに高率放電にすぐれ、また、寿命も長
い。さらに過充電や放置などによる性能の劣化も少なく
、低温でも性能がよい。このような特性の上に密閉化が
可能になり、使い易さと信頼性が向上した。
In addition, since a sintered nickel electrode was developed as an electrode, it has excellent discharge characteristics, especially high rate discharge, and has a long life. Furthermore, there is little performance deterioration due to overcharging or neglect, and performance is good even at low temperatures. In addition to these characteristics, it has become possible to seal the device, improving ease of use and reliability.

このような密閉形蓄電池を各種のポータプル機器に用い
るようになってから、まず高エネルギー密度が要求され
た。これについては、電極に関する容量密度の向上によ
って対応している。最近では、その他に急速充電への要
望が強い。
After such sealed storage batteries began to be used in various portable devices, high energy density was first required. This is being addressed by increasing the capacitance density of the electrodes. Recently, there has also been a strong demand for rapid charging.

密閉形のニッケルーカドミウム蓄電池の密閉化の原理は
、いわゆるノイマン方式として知られ、充電完了時にニ
ッケル極から発生する酸素をカドミウム極で吸収し、カ
ドミウム極を過充電状態にしないことによシ、酸素も水
素も発生させないことを基本にしている。
The principle of sealing a sealed nickel-cadmium storage battery is known as the so-called Neumann method, in which oxygen generated from the nickel electrode is absorbed by the cadmium electrode when charging is complete, and the cadmium electrode is prevented from becoming overcharged. The basic principle is that neither oxygen nor hydrogen is generated.

したがって急速充電を可能にするためには、カドミウム
極による酸素ガスの吸収をできるだけ迅速に行なわせる
ことが必要である。事実、たとえば1時間率充電を行な
い、充電完了を電圧や温度で検知して過充電状態になる
と充電電流を減少させる方式で急速充電が可能になって
いる。
Therefore, in order to enable rapid charging, it is necessary for the cadmium electrode to absorb oxygen gas as quickly as possible. In fact, rapid charging is now possible, for example, by performing charging at a one-hour rate, detecting the completion of charging based on voltage or temperature, and reducing the charging current when an overcharged state occurs.

さらに、カドミウム極の酸素との反応を助けるために、
白金、パラジウムなどの酸素イオン化触媒を加える試み
があり、それなりの効果があった。
Furthermore, to help the reaction of the cadmium electrode with oxygen,
Attempts have been made to add oxygen ionization catalysts such as platinum and palladium, which had some success.

しかし、これらの添加は、加えすぎると高価になるし、
加える工程が複雑であるなどの理由で採用されていない
のが現状である。
However, these additives become expensive if added too much,
Currently, it has not been adopted due to the complicated process of adding it.

その他にカドミウム極の表面に、銅や銅の上にニッ゛ケ
ルあるいは炭素などの導電性の層を形成することも効果
があることが明らかにされている。
It has also been shown that forming a conductive layer of copper or nickel or carbon on top of copper on the surface of the cadmium electrode is also effective.

また、一方、燃料電池のガス拡散電極の技術を活用して
、カドミウム極にフッソ樹脂で撥水処理を行なうことも
、ガス吸収反応を促進する効果がある。したがって急速
充電に効果がある。しかし、この手段のみでは、やはり
不十分である。つまり、撥水処理を十分性なうとガスの
吸収には都合がよいが、放電時に電圧の低下がやや大き
くなる。撥水処理が不十分であれば、その逆になる。
On the other hand, applying water-repellent treatment to the cadmium electrode with fluorocarbon resin using technology for gas diffusion electrodes in fuel cells also has the effect of promoting gas absorption reactions. Therefore, it is effective for rapid charging. However, this means alone is still insufficient. In other words, if the water repellent treatment is sufficient, it is convenient for gas absorption, but the voltage drop during discharge becomes somewhat large. If the water repellent treatment is insufficient, the opposite will occur.

発明が解決しようとする問題点 このように、導電性層の形成にしても、撥水処理にして
も、十分性なうと急速充電には効果があるが、これらの
処理は、カドミウム極での、とくにイオン伝導性に抵抗
になるので、放電性能がやや劣化する。
Problems to be Solved by the Invention As described above, both the formation of a conductive layer and water-repellent treatment are effective for rapid charging if they are sufficient, but these treatments are difficult to achieve with cadmium electrodes. , especially since it becomes resistant to ionic conductivity, causing a slight deterioration in discharge performance.

本発明はこのような、急速充電特性と放電性能の向上を
バランスよく行なうことを目的とする。
An object of the present invention is to improve the rapid charging characteristics and the discharging performance in a well-balanced manner.

問題点を解決するための手段 本発明は急速充電を可能にし、同時に放電時での電圧低
下の少ないカドミウム極を提供するものである。
Means for Solving the Problems The present invention provides a cadmium electrode that allows rapid charging and at the same time reduces voltage drop during discharge.

すなわち、カドミウム極を製造後に、フッソ樹脂により
撥水処理を施し、ついで導電性の層を設ける。または、
逆に、導電性の層を設けて後にフッソ樹脂による撥水処
理を施したものである。
That is, after producing the cadmium electrode, it is treated with water repellent using fluorocarbon resin, and then a conductive layer is provided. or
Conversely, a conductive layer is provided and then water repellent treatment is performed using fluorocarbon resin.

作  用 このように両手段を併用することによシ、各々単独の工
程では得られなかった急速充電特性と放電特性とが得ら
れる。
Function: By using both methods in combination in this manner, rapid charging characteristics and discharging characteristics that could not be obtained by each process alone can be obtained.

なお、フッソ樹脂による処理としては、電極を製造した
後に、フッソ樹脂系のディスパージョンに浸せきし、乾
燥する工程が最も工業的に有利であるO また、導電性の層については、銅、ニッケル。
As for the treatment with fluorocarbon resin, the process of immersing the electrode in a fluorocarbon resin dispersion and drying it after manufacturing the electrode is the most industrially advantageous.

炭素などの粉末と結着剤とを塗着、金属の場合はスパッ
タリング、蒸着などの手段がある。しかし、工業的には
メッキが容易であり、電解および無電解メッキが採用で
きる。
There are methods such as applying powder such as carbon and a binder, and in the case of metal, sputtering and vapor deposition. However, plating is easy from an industrial perspective, and electrolytic and electroless plating can be employed.

メッキの金属としては、耐アルカリ性があればとくに制
限はない。一般的には、無電解メッキが容易な銅、ニッ
ケルなどがよく、ニッケルの場合は、カドミウム極に直
接液すると自己放電が増すので、銅メツキ上にほどこす
ことが好ましい。酸化カドミウムを出発材料にしたカド
ミウム極では、ニッケルの無電解メッキはや\困難であ
るので、多孔性の銅メッキ層を設けた後に、ニッケルの
電解メッキを行なうのがよい。
There are no particular restrictions on the metal for plating as long as it has alkali resistance. In general, copper, nickel, etc., which can be easily plated electrolessly, are preferred. In the case of nickel, self-discharge will increase if it is applied directly to the cadmium electrode, so it is preferable to apply it on copper plating. Since electroless plating of nickel is somewhat difficult with a cadmium electrode made from cadmium oxide as a starting material, it is preferable to electrolytically plate nickel after providing a porous copper plating layer.

以下酸化カドミウムを出発材料として用いたペースト式
カドミウム極を例にして実施例として詳述する。
A paste-type cadmium electrode using cadmium oxide as a starting material will be described below in detail as an example.

実施例 市販の酸化カドミウムをポリビニルアルコールtv3s
<x量>のエチレングリコール溶液9重量比で5%のポ
リエチレン微粉末、同じ(o、es%の塩化ビニル−ア
クリロントリル短繊維などを加えてペーストをつくる。
Example Commercially available cadmium oxide was mixed with polyvinyl alcohol tv3s
A paste is made by adding 5% polyethylene fine powder, the same (o, es%) vinyl chloride-acrylontrile short fibers, etc. to <x amount> of 9% ethylene glycol solution by weight.

これを厚さQ、15 arm 、孔径1.8■、開孔度
50%の鉄製でニッケルメッキを施したパンチングメタ
ル板に塗着する。スリットを通して平滑化し、厚さを0
.6mgに調製する。その後、120℃で2時間乾燥し
てペースト式カドミウム極を得る。
This was applied to a nickel-plated punched metal plate made of iron and having a thickness of Q, 15 arm, a hole diameter of 1.8 cm, and a porosity of 50%. Smooth through the slit and reduce the thickness to 0
.. Adjust to 6 mg. Thereafter, it is dried at 120° C. for 2 hours to obtain a paste-type cadmium electrode.

ついでこの極を140mA/−の電流密度9時間10分
、電解浴、比重1.16の苛性カリ水溶液。
This electrode was then heated in an electrolytic bath at a current density of 140 mA/- for 9 hours and 10 minutes, and a caustic potassium aqueous solution with a specific gravity of 1.16.

温度26℃の条件で対極にニッケル板を用いて充電する
。この充電量は、計算の上では、全体のカドミウム理論
容量の約36〜40チに相当するが、充電効率が低いの
で、実際には約20%が充電されたとみてよい。
Charging is performed using a nickel plate as a counter electrode at a temperature of 26°C. This amount of charge corresponds to about 36 to 40 cm of the entire theoretical cadmium capacity, but since the charging efficiency is low, it can be assumed that about 20% was actually charged.

ついで、このようにして得られたカドミウム極に、銅の
無電解メッキを行なった。
Next, the cadmium electrode thus obtained was electrolessly plated with copper.

まず、市販のアクチベータ液を5倍に希釈した水溶液中
に、2分間浸せきした。乾燥後に、同じく市販の無電解
銅メッキ浴を用い、これを6倍に希釈して、45℃20
分間浸せきした。なお、この処理による重量増加は、約
1俤であった。
First, it was immersed for 2 minutes in an aqueous solution in which a commercially available activator solution was diluted 5 times. After drying, use the same commercially available electroless copper plating bath, dilute it 6 times, and heat it at 45℃20.
Soaked for a minute. Note that the weight increase due to this treatment was approximately 1 yen.

水洗、乾燥後に、市販のフッソ樹脂ディスパージョンを
2チ水溶液に希釈し、この溶液中に、前記カドミウム極
を常温で2分間浸せきし、ついで120℃で1.5時間
乾燥した。この処理によシミ極面は撥水性が生じた。な
お、この撥水性処理は、導電性の層を設ける前に行なっ
てもよい。このようにして得られたカドミウム極を用い
て電池に組込んだ。
After washing with water and drying, a commercially available fluororesin dispersion was diluted to a 2-h water solution, the cadmium electrode was immersed in this solution for 2 minutes at room temperature, and then dried at 120° C. for 1.5 hours. This treatment made the stain electrode surface water repellent. Note that this water repellent treatment may be performed before providing the conductive layer. The cadmium electrode thus obtained was incorporated into a battery.

電池としては、単2形の密閉形ニッケルーカドミウム蓄
電池を例にした。したがって、このようにして得られた
カドミウム極を幅3.9m、長さ26側に裁断し、リー
ド板を所定の2ケ所にスポット溶接によシ取シ付けた。
As an example of a battery, a AA sealed nickel-cadmium storage battery was used. Therefore, the cadmium electrode thus obtained was cut into pieces with a width of 3.9 m and a length of 26, and lead plates were attached at two predetermined locations by spot welding.

相手極としては、公知の焼結式ニッケル極をえらび、同
じく幅3−9Cm を長さ22ffiとして用いた。こ
の場合もリード板を2ケ所取シ付けた。
As the counter electrode, a known sintered nickel electrode was selected, with a width of 3-9 cm and a length of 22ffi. In this case as well, lead plates were attached at two locations.

セパレータとしては、ポリアミド不織布、電解液として
は、比重1.20の苛性カリ水溶液に水酸化リチウムを
201/l溶解して用いた。公称容量は2.32Ahで
ある。この電池をAとする。
A polyamide nonwoven fabric was used as the separator, and 201/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution having a specific gravity of 1.20 as the electrolyte. The nominal capacity is 2.32Ah. This battery is called A.

つぎに比較のために、フッソ樹脂による処理を行なわず
に、カドミウム極全面にAと同じ量の銅メッキを施した
電池をB1.同じく2倍のメッキを施した電池をB2と
して加えた。またAと同じ2%のフッソ樹脂のみの処理
を行なった電池を01゜また、4チで処理した電極を用
いた電池を02として加えた。
Next, for comparison, a battery B1 was prepared in which the same amount of copper plating as in A was applied to the entire surface of the cadmium electrode without treatment with fluorocarbon resin. A battery with the same double plating was added as B2. In addition, a battery treated with only 2% fluorocarbon resin as in A was added as 01°, and a battery using electrodes treated with 4-chi was added as 02.

これら電池の通常の充放電たとえば、0.20充電−0
,20放電では、いずれも2.30〜2,32A)1の
範囲であり、放電特性に差はなかった。
Normal charging and discharging of these batteries, e.g. 0.20 charge-0
, 20 discharge, all ranged from 2.30 to 2.32A)1, and there was no difference in discharge characteristics.

そこで、各電池の急速充電特性を調べた。周囲温度を0
″Cとし、各充電率で充電した際の電池内の圧力の変化
を測定した。なお、充電量は、放電量の1.3倍とした
。また、内圧は最高値で示した。
Therefore, we investigated the quick charging characteristics of each battery. ambient temperature to 0
"C", and the change in pressure inside the battery was measured when charging at each charging rate.The amount of charge was 1.3 times the amount of discharge.In addition, the internal pressure was shown as the highest value.

その結果を表1に示す。The results are shown in Table 1.

表1.各充電率で充電した際の電池内圧(単位はKJd
)この結果から、Aは、B2とはソ等しく、その他の電
池は、かなり劣る。
Table 1. Battery internal pressure when charged at each charging rate (unit: KJd)
) From this result, A is equivalent to B2, and the other batteries are considerably inferior.

つぎに放電電圧を比較した。周囲温度を10°Cとし、
6Cの放電を行なった。その結果、電池への平坦電圧は
1,1oV、電池B1は1.11v、電池B2は1.o
sV、電池C1は1.12V 、電池C2は1.09V
であった・ すなわち、電池Aでは、急速充電での内圧の上昇が少な
く、また、高率放電での電圧の低下も少ない。このよう
な電池は、比較のなかには無く、内圧の点ですぐれてい
たB2はかなり大きく電圧が低下した。
Next, we compared the discharge voltages. The ambient temperature is 10°C,
A discharge of 6C was performed. As a result, the flat voltage to the battery is 1.1oV, battery B1 is 1.11v, battery B2 is 1.1oV. o
sV, battery C1 is 1.12V, battery C2 is 1.09V
In other words, in battery A, the increase in internal pressure during rapid charging was small, and the voltage drop during high rate discharging was also small. There was no such battery in the comparison, and B2, which was superior in terms of internal pressure, had a considerably large voltage drop.

すなわち、フッソ樹脂による撥水層の形成と導電性の層
の形成によシ、各々単独では得られない急速充電特性と
放電特性が得られた。
That is, by forming the water-repellent layer and the conductive layer using fluorocarbon resin, rapid charging characteristics and discharging characteristics that could not be obtained by each alone were obtained.

発明の効果 このようにアルカリ電池用カドミウム極に、導電性の層
と撥水層を設けることにより、急速充電を一層可能にし
、同時に放電時の放電電圧を良好に保つ効果を発揮する
Effects of the Invention As described above, by providing a conductive layer and a water-repellent layer on a cadmium electrode for an alkaline battery, rapid charging is further enabled, and at the same time, the effect of maintaining a good discharge voltage during discharging is exhibited.

Claims (2)

【特許請求の範囲】[Claims] (1)カドミウム極が、導電性の層とフッソ樹脂による
撥水層で被覆されていることを特徴とするアルカリ電池
用カドミウム電極。
(1) A cadmium electrode for an alkaline battery, characterized in that the cadmium electrode is covered with a conductive layer and a water-repellent layer made of fluorocarbon resin.
(2)導電性の層が、銅、ニッケル、炭素のいずれかで
ある特許請求の範囲第1項記載のアルカリ電池用カドミ
ウム電極。
(2) The cadmium electrode for an alkaline battery according to claim 1, wherein the conductive layer is made of copper, nickel, or carbon.
JP61213231A 1986-09-10 1986-09-10 Cadmium electrode for alkaline battery Pending JPS6369142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213231A JPS6369142A (en) 1986-09-10 1986-09-10 Cadmium electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213231A JPS6369142A (en) 1986-09-10 1986-09-10 Cadmium electrode for alkaline battery

Publications (1)

Publication Number Publication Date
JPS6369142A true JPS6369142A (en) 1988-03-29

Family

ID=16635702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213231A Pending JPS6369142A (en) 1986-09-10 1986-09-10 Cadmium electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPS6369142A (en)

Similar Documents

Publication Publication Date Title
JP3495814B2 (en) Battery electrode and lithium secondary battery having the electrode
JPS60167280A (en) Electrochemical device capable of recharging
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JPS6369142A (en) Cadmium electrode for alkaline battery
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JPS6369143A (en) Cadmium electrode for battery
JP2926732B2 (en) Alkaline secondary battery
JPS63124378A (en) Sealed alkaline storage battery
JPS63105464A (en) Manufacture of cadmium electrode for battery
JPH01166464A (en) Manufacture of cadmium for battery
JP2734523B2 (en) Battery separator
JPS62180969A (en) Hermetically-sealed nickel-cadmium storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPH01209660A (en) Manufacture of cadmium electrode for battery
JPH07134979A (en) Battery
JPH01112660A (en) Manufacture of cadmium pole for battery
JPS6351049A (en) Cadmim electrode for cell
JPS63266769A (en) Manufacture of cadmium electrode for battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPH01248465A (en) Manufacture of cadmium electrode for battery
JPS6334853A (en) Manufacture of paste type cadmium electrode for cell
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP3287215B2 (en) Manufacturing method of nickel positive plate for alkaline storage battery
JPH01154460A (en) Manufacture of cadmium electrode for battery
JP3043108B2 (en) Method for producing non-sintered cadmium electrode plate for alkaline storage battery