JP3495814B2 - Battery electrode and lithium secondary battery having the electrode - Google Patents

Battery electrode and lithium secondary battery having the electrode

Info

Publication number
JP3495814B2
JP3495814B2 JP12813995A JP12813995A JP3495814B2 JP 3495814 B2 JP3495814 B2 JP 3495814B2 JP 12813995 A JP12813995 A JP 12813995A JP 12813995 A JP12813995 A JP 12813995A JP 3495814 B2 JP3495814 B2 JP 3495814B2
Authority
JP
Japan
Prior art keywords
lithium
alloy
negative electrode
metal element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12813995A
Other languages
Japanese (ja)
Other versions
JPH0850922A (en
Inventor
総一郎 川上
伸也 三品
直哉 小林
昌也 浅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26454990&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3495814(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12813995A priority Critical patent/JP3495814B2/en
Publication of JPH0850922A publication Critical patent/JPH0850922A/en
Application granted granted Critical
Publication of JP3495814B2 publication Critical patent/JP3495814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを負極に用い
るリチウム二次電池に関し、特に、充放電の繰り返しに
よって発生するリチウムのデンドライト(樹脂状突起)
の発生を抑えることができ集電能の低下を抑えることが
可能なリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using lithium as a negative electrode, and particularly to lithium dendrites (resin-like protrusions) generated by repeated charging and discharging.
The present invention relates to a lithium secondary battery capable of suppressing the generation of electricity and suppressing a decrease in current collecting ability.

【0002】[0002]

【従来の技術】最近、大気中に含まれるCO2の増加に
よる温室効果で地球の温暖化が生じる可能性が指摘され
ている。火力発電所は化石燃料などを燃焼させて得られ
る熱エネルギーを電気エネルギーに変換しているが、燃
焼に伴ってCO2が排出されるため新たな火力発電所の
建設が難しくなってきている。そこで、発電機の有効利
用として余剰電力である夜間電力を一般家庭に設置した
二次電池に蓄えて負荷を平準化する、いわゆるロードレ
ベリングを行うことが提唱されつつある。また、CO
x,NOx,SOx,炭化水素などを含む大気汚染に係
わるといわれる物質を排出しない電気自動車のための軽
量で高エネルギー密度の二次電池の開発の要求、ブック
型パーソナルコンピューターやワードプロセッサーやビ
デオカメラや携帯電話などのポータブル機器の電源に使
用する、小型・軽量で高性能な二次電池の開発の要求が
ますます高まっている。
2. Description of the Related Art Recently, it has been pointed out that there is a possibility that global warming may occur due to the greenhouse effect due to an increase in CO 2 contained in the atmosphere. Thermal power stations convert thermal energy obtained by burning fossil fuels into electric energy, but CO 2 is emitted along with the combustion, which makes it difficult to construct new thermal power stations. Therefore, as effective use of the generator, it has been proposed to perform so-called load leveling, in which night power, which is surplus power, is stored in a secondary battery installed in a general household to level the load. Also, CO
Demand for the development of lightweight, high energy density secondary batteries for electric vehicles that do not emit substances such as x, NOx, SOx and hydrocarbons that are said to be related to air pollution, book type personal computers, word processors, video cameras, There is an ever-increasing demand for the development of small, lightweight, high-performance secondary batteries used as power sources for portable devices such as mobile phones.

【0003】[0003]

【発明が解決しようとする課題】上記高性能の二次電池
のひとつとして、リチウムイオンを層間化合物に導入し
たものを正極活物質に、負極活物質にカーボンを用いた
ロッキングチェアー型リチウムイオン電池の開発が進
み、一部実用化されつつある。しかし、現在手にするこ
とのできるリチウムイオン電池は、金属リチウムを負極
活物質に使用するリチウム電池本来の特徴である、高エ
ネルギー密度を十分には達成していない。高エネルギー
密度二次電池として注目度の高いリチウム金属を負極に
用いる高容量のリチウム蓄電池は充分な実用化がなされ
ているとはいえない。リチウム二次電池は充電時に負極
上に樹枝状リチウムが析出する場合がある。この現象は
短絡や自己放電の原因となる場合がある。高容量のリチ
ウム蓄電池(二次電池)の充分な実用化がなされていな
い理由のひとつは、充放電の繰り返しによって発生し、
短絡の主原因になる、リチウムのデンドライトの発生を
抑えることに成功していないためである。リチウムのデ
ンドライトが成長して、負極と正極が短絡すると電池の
持つエネルギーがその部分で短時間で消費されるため、
電池は発熱したり、電解液の溶媒が熱などにより分解し
ガスを発生し電池内の内圧が高まったりする場合があ
る。いずれにしてもデンドライトの成長は短絡による電
池の損傷や寿命低下につながり易い。
As one of the above high performance secondary batteries, a rocking chair type lithium ion battery in which lithium ion is introduced into an intercalation compound as a positive electrode active material and carbon as a negative electrode active material is used. Development is progressing and it is being put to practical use. However, lithium-ion batteries that can be obtained at present do not sufficiently achieve the high energy density, which is an original feature of lithium batteries that use metallic lithium as a negative electrode active material. It cannot be said that a high-capacity lithium storage battery using a lithium metal, which has attracted a great deal of attention as a high energy density secondary battery, as a negative electrode has been sufficiently put into practical use. In a lithium secondary battery, dendritic lithium may be deposited on the negative electrode during charging. This phenomenon may cause a short circuit or self-discharge. One of the reasons why high-capacity lithium storage batteries (secondary batteries) have not been put to practical use is that they occur due to repeated charging and discharging.
This is because we have not succeeded in suppressing the generation of lithium dendrites, which is the main cause of short circuits. When the dendrite of lithium grows and the negative electrode and the positive electrode are short-circuited, the energy of the battery is consumed in that part in a short time,
The battery may generate heat, or the solvent of the electrolytic solution may be decomposed by heat to generate gas and the internal pressure in the battery may increase. In any case, the growth of dendrites tends to damage the battery or shorten the life of the battery due to a short circuit.

【0004】また、リチウムの反応性を抑えデンドライ
トの発生を抑えるために負極にリチウム−アルミニウム
などのリチウム合金を使用する方法も試されている。し
かしながら、デンドライトの発生を抑制できても高エネ
ルギー密度でかつサイクル寿命が充分に長いものは実用
化に至っていないのが現状である。
A method of using a lithium alloy such as lithium-aluminum for the negative electrode has also been tried in order to suppress the reactivity of lithium and suppress the generation of dendrites. However, under the present circumstances, those having a high energy density and a sufficiently long cycle life have not been put into practical use even though the generation of dendrites can be suppressed.

【0005】負極にリチウム合金を使用する例として
は、たとえば特開昭63−13264号公報、特開平5
−47381号公報、特開平5−190171号公報な
どに示されている。しかしながら、負極にリチウム合金
を使用しても充放電をくり返すうちに負極が膨張,収縮
をくり返し、負極にクラックなどが生じ充分な集電性を
維持できなくなる場合があった。
Examples of using a lithium alloy for the negative electrode include, for example, Japanese Patent Laid-Open Nos. 63-13264 and 5
-47381, Japanese Patent Laid-Open No. 5-190171, and the like. However, even if a lithium alloy is used for the negative electrode, the negative electrode repeatedly expands and contracts during repeated charging and discharging, and the negative electrode may be cracked and maintain sufficient current collecting ability.

【0006】また、特開昭63−114057号公報に
は繊維状アルミニウムと、リチウムと合金化しない金属
繊維との混合焼結体を基体とした負極が示されている。
しかしながら、この場合は、充放電にともなう繊維状ア
ルミニウムの膨張,収縮によりリチウムと合金化しない
金属繊維との結合力の低下やそれとの界面でのクラック
の発生が生じ、充分な集電性を維持できなくなる場合が
あった。
Further, Japanese Patent Laid-Open No. 63-114057 discloses a negative electrode based on a mixed sintered body of fibrous aluminum and a metal fiber which is not alloyed with lithium.
However, in this case, due to the expansion and contraction of the fibrous aluminum due to charge and discharge, the binding force between the metal fiber that does not alloy with lithium decreases and cracks occur at the interface with it, maintaining sufficient current collection performance. There were times when you couldn't.

【0007】更に、特開平5−234585号公報には
リチウム金属からなる基材の表面に、リチウム金属との
金属間化合物を生成しにくい金属粉末を一様に付着させ
デンドライトの析出が少なくし、充電効率を高く、サイ
クル寿命を向上させる電池が示されている。しかしなが
ら、やはり基材であるリチウム金属は充放電により膨
張,収縮をくり返し、付着させた粉末の脱落や基材のク
ラックを生じる結果、上述したように負極の充分な集電
性の維持やデンドライトの析出の抑制が充分にできなく
なる場合がある。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 5-234585, a metal powder that hardly forms an intermetallic compound with lithium metal is uniformly attached to the surface of a base material made of lithium metal to reduce dendrite precipitation. Batteries with high charging efficiency and improved cycle life have been shown. However, the lithium metal, which is also the base material, repeatedly expands and contracts due to charge and discharge, resulting in the falling of the adhered powder and the cracking of the base material. As a result, as described above, maintenance of sufficient current collecting ability of the negative electrode and dendrite In some cases, precipitation cannot be sufficiently suppressed.

【0008】また、JOURNAL OF APPLI
ED ELECTROCHEMISTRY 22 ,
620−627, (1992)には、表面をエッチン
グ処理したアルミニウム箔を負極に用いたリチウム二次
電池の報告がされている。しかし、充放電サイクルを実
用域まで繰り返すと充放電の繰り返しでアルミニウム箔
が膨張収縮を繰り返す結果、アルミニウム箔に亀裂が入
り、集電性の低下とともにデンドライトの成長が起こ
る。したがってこの場合も実用レベルでの長サイクル寿
命の電池は得られていない。このように、エネルギー密
度が高く、サイクル寿命の長い負極及びリチウム二次電
池の出現が待ち望まれているのに対して、現実には未だ
解決すべき問題点を有しているのが実情である。
In addition, JOURNAL OF APPLI
ED ELECTROCHEMISTRY 22,
620-627, (1992), there is a report of a lithium secondary battery using an aluminum foil whose surface is subjected to etching treatment as a negative electrode. However, when the charging / discharging cycle is repeated up to a practical range, the aluminum foil repeatedly expands and contracts due to repeated charging / discharging, and as a result, the aluminum foil is cracked and the dendrite grows with a decrease in current collecting property. Therefore, in this case as well, a battery having a long cycle life at a practical level has not been obtained. Thus, while the advent of a negative electrode and a lithium secondary battery having a high energy density and a long cycle life has been long awaited, in reality, there are still problems to be solved. .

【0009】(発明の目的)本発明は、上述の問題点を
解決し得、長サイクル寿命で高エネルギー密度のリチウ
ム二次電池を提供することを目的とする。
(Object of the Invention) It is an object of the present invention to provide a lithium secondary battery having a long cycle life and a high energy density, which can solve the above problems.

【0010】又本発明は充放電時のリチウムの析出溶解
による微粉化及び亀裂の発生による集電能の低下を抑え
ることのできる負極構造を有する電池用電極及び該電極
を有するリチウム二次電池を提供することを目的とす
る。
The present invention also provides a battery electrode having a negative electrode structure and a lithium secondary battery having the electrode, which can suppress deterioration of current collecting ability due to pulverization and cracking due to precipitation and dissolution of lithium during charge and discharge. The purpose is to do.

【0011】[0011]

【課題を解決するための手段及び作用】上記問題点を解
決し、上記目的を達成する本発明の電池用電極は、少な
くとも充電時にリチウムと合金を作る金属元素と充電時
にリチウムと合金を作らない金属元素を構成要素として
有し、充電時にリチウムと合金を作らない金属部分から
出力端子が引き出され、前記電解液と接し正極と対向す
る負極表面の導電体部の粗さの(最大山から最深谷まで
の)最大高さRmaxの1/2と中心線平均粗さRaと
の差が、負極表面正極表面間の距離の1/10以下であ
り、前記負極表面の導電体部の粗さに関して、測定長を
L、測定長L当たりの山の数をnとする時、1+(4n
Ra/L)が1.05以上であることを特徴とする。
The battery electrode of the present invention, which solves the above problems and achieves the above objects, has at least a metal element that forms an alloy with lithium during charging and does not form an alloy with lithium during charging. The output terminal is drawn out from a metal part that has a metal element as a constituent element and does not form an alloy with lithium during charging, and the roughness of the conductor part on the surface of the negative electrode that is in contact with the electrolyte and faces the positive electrode (from maximum peak to maximum The difference between 1/2 of the maximum height Rmax (up to Fukaya) and the centerline average roughness Ra is 1/10 or less of the distance between the negative electrode surface and the positive electrode surface, and with respect to the roughness of the conductor portion on the negative electrode surface. , L is the measurement length, and n is the number of peaks per measurement length L, 1+ (4n
Ra / L) is 1.05 or more.

【0012】また、本発明のリチウム二次電池は、負
極、セパレーター、正極、電解質あるいは電解液を少な
くとも有するリチウム二次電池において、負極が少なく
とも充電時にリチウムと合金を作る金属元素と充電時に
リチウムと合金を作らない金属元素を構成要素として有
しされ、充電時にリチウムと合金を作らない金属部分か
ら負極側の出力端子が引き出され、前記電解液と接し正
極と対向する負極表面の導電体部の粗さの(最大山から
最深谷までの)最大高さRmaxの1/2と中心線平均
粗さRaとの差が、負極表面正極表面間の距離の1/1
0以下であり、前記負極表面の導電体部の粗さに関し
て、測定長をL、測定長L当たりの山の数をnとする
時、1+(4nRa/L)が1.05以上であることを
特徴とする。
Further, the lithium secondary battery of the present invention, a negative electrode, a separator, a positive electrode, at least a lithium secondary battery electrolyte or electrolytic solution, and lithium upon charging and metal element anode make an alloy with lithium at least during charging Having a metal element that does not form an alloy as a constituent element, the output terminal on the negative electrode side is pulled out from the metal part that does not form an alloy with lithium during charging, and is in contact with the electrolytic solution and the conductor part of the negative electrode surface facing the positive electrode. The difference between 1/2 of the maximum height Rmax (from the maximum peak to the deepest valley) of the roughness and the centerline average roughness Ra is 1/1 of the distance between the negative electrode surface and the positive electrode surface.
When the measurement length is L and the number of peaks per measurement length L is n, 1+ (4nRa / L) is 1.05 or more with respect to the roughness of the conductor portion on the negative electrode surface. Is characterized by.

【0013】本発明者は、上記問題点を解決すべく、鋭
意研究を重ねた結果、リチウムと合金化する金属とリチ
ウムと合金化しない金属の複合化した負極を適切に使用
することによって、リチウムのデンドライトの発生が抑
え、長寿命のリチウム二次電池が得られることを見いだ
したことに基づいている。
The present inventor has conducted extensive studies in order to solve the above-mentioned problems, and as a result, by appropriately using a composite negative electrode of a metal that alloys with lithium and a metal that does not alloy with lithium, lithium It is based on the finding that a long-life lithium secondary battery can be obtained by suppressing the generation of dendrites.

【0014】即ち、上記問題点は、負極、セパレータ
ー、正極、電解質あるいは電解液、電池ケースを少なく
とも有する二次電池において、負極が少なくともリチウ
ムと合金を作る金属元素とリチウムと合金を作らない金
属元素から構成され、リチウムと合金を作らない金属か
ら負極側の出力端子が引き出されているリチウム二次電
池により解決できる。このように負極集電部にリチウム
と合金を作らない金属を配置することによって、充放電
時のリチウムの析出溶解による微粉化及び亀裂の発生で
の、集電能の低下を抑えることができる。
That is, the above-mentioned problem is that in a secondary battery having at least a negative electrode, a separator, a positive electrode, an electrolyte or an electrolytic solution, and a battery case, the negative electrode is a metal element which forms an alloy with lithium and a metal element which does not form an alloy with lithium. And a lithium secondary battery in which the output terminal on the negative electrode side is drawn from a metal that does not form an alloy with lithium. By disposing a metal that does not form an alloy with lithium in the negative electrode current collecting portion in this manner, it is possible to suppress a decrease in current collecting ability due to pulverization and cracking due to precipitation and dissolution of lithium during charge and discharge.

【0015】さらに、本発明の負極は、電解液と接し正
極と対向する表面、及び出力端子につながる集電部で、
リチウムと合金を作らない金属元素の含有率を高くする
ことは好ましい。
Further, the negative electrode of the present invention is a current collector which is in contact with the electrolyte and faces the positive electrode, and a current collector connected to the output terminal.
Increasing the content of metallic elements that do not alloy with lithium is preferred.

【0016】リチウムと合金を作る元素からなる負極で
は、充電時にリチウムが析出し合金化し膨張し、放電時
にリチウムが電解液中に放出され収縮し、微粉化が起こ
る。この微粉化は、反応性の高い、リチウムと合金を作
る元素の存在する負極表面で最も活発に起こる。微粉化
が起きた箇所では導電性が低下し集電能が著しく低下す
ることになる。したがって、負極の電解液と接し正極と
対向する導電部表面でリチウムと合金を作らない金属元
素の含有率を高めることによって、微粉化時にもリチウ
ムと合金を作らない金属を介して導電性が保たれるので
集電能の低下をより抑制することができる。
In a negative electrode composed of an element that forms an alloy with lithium, lithium is deposited and alloyed and expands during charging, and lithium is discharged into the electrolytic solution and contracts during discharging, resulting in pulverization. This pulverization occurs most actively on the surface of the negative electrode in which a highly reactive element that forms an alloy with lithium is present. At the place where pulverization occurs, the conductivity is reduced and the current collecting ability is significantly reduced. Therefore, by increasing the content of the metal element that does not form an alloy with lithium on the surface of the conductive part that is in contact with the negative electrode electrolyte and faces the positive electrode, the conductivity is maintained through the metal that does not form an alloy with lithium even when pulverized. Since it sags, it is possible to further suppress the decrease in current collecting ability.

【0017】また、本発明の負極を、リチウムと合金を
作る金属元素を含有する粉体状の部材を、結着剤で、リ
チウムと合金を作らない金属の集電部材に結着させて形
成、あるいはその後焼成して形成してもよい。
The negative electrode of the present invention is formed by binding a powdery member containing a metal element that forms an alloy with lithium to a metal current collecting member that does not form an alloy with lithium with a binder. Alternatively, it may be formed by baking thereafter.

【0018】このような負極とすることで充電時のリチ
ウムとの合金化による膨張と放電時のリチウムの溶出に
よる収縮の繰り返しから起きる疲労破壊が抑制できる。
また、粉体を採用することによって、負極の比表面積を
高めることができ、電解液との接触面積が増え、負極へ
のリチウムイオンの拡散を容易にすることができる。更
にエッチングなどの処理を施すことによってさらに比表
面積を増大することができ、リチウムのデンドライト成
長を抑え、充電及び放電の効率を上げることができる。
さらに、負極の厚み、負極中のリチウムと合金を作る金
属元素及びリチウムと合金を作らない金属元素の濃度の
制御が容易になる。
By using such a negative electrode, fatigue fracture caused by repeated expansion and contraction due to alloying with lithium during charging and contraction due to elution of lithium during discharging can be suppressed.
Further, by adopting the powder, the specific surface area of the negative electrode can be increased, the contact area with the electrolytic solution can be increased, and the diffusion of lithium ions into the negative electrode can be facilitated. Further, by performing a treatment such as etching, the specific surface area can be further increased, the dendrite growth of lithium can be suppressed, and the charging and discharging efficiency can be increased.
Further, it becomes easy to control the thickness of the negative electrode, the concentration of the metal element that forms an alloy with lithium and the concentration of the metal element that does not form an alloy with lithium in the negative electrode.

【0019】負極に、リチウムと合金を作る金属元素を
含有する部材を、結着剤で成形し、燒結しない場合に
は、炭素粉や金属粉の導電補助剤を1〜25wt%程度
混合し、リチウムと合金を作り易い金属元素を含有する
部材の粉体同士の集電性を高める必要がある。上記導電
補助剤としては、嵩密度の小さいものの方が電解液を保
持し易いので電極のインピーダンスを下げ易い。より好
ましい導電補助材の嵩密度は、0.1以下である。
A member containing a metal element that forms an alloy with lithium is molded into the negative electrode with a binder, and when it is not sintered, a conductive additive such as carbon powder or metal powder is mixed in an amount of about 1 to 25 wt%. It is necessary to improve the current collecting property between powders of a member containing a metal element that easily forms an alloy with lithium. As the conductive auxiliary agent, one having a smaller bulk density is more likely to hold the electrolytic solution, and thus the impedance of the electrode can be easily lowered. The more preferable bulk density of the conductive auxiliary material is 0.1 or less.

【0020】また、導電補助材の粒径は、細かければ細
かい方が良いが、パッキング密度を高めて集電性を高め
る為に、球状、針状、フレーク状(葉片状)などの形状
の導電補助剤を組み合わせるのが良い。
Further, the particle size of the conductive auxiliary material is preferably as small as possible, but in order to increase the packing density and the current collecting property, a spherical shape, a needle shape, a flake shape (leaf shape) or the like is used. It is preferable to combine the conductive auxiliary agent.

【0021】燒結させる場合には、結着剤に用いる材料
としては、高温下でハロゲンなどの極力腐食性ガスを放
出しない無機材料か有機材料で、有機材料の場合には炭
素化し易い高分子が好ましい。燒結雰囲気は、減圧下、
あるいは、不活性ガス下か、還元ガス下が好ましい。
In the case of sintering, the material used for the binder is an inorganic material or an organic material which does not release corrosive gas such as halogen as much as possible at a high temperature, and in the case of an organic material, a polymer which is easily carbonized. preferable. Sintered atmosphere is under reduced pressure,
Alternatively, it is preferably under an inert gas or a reducing gas.

【0022】さらにまた、本発明の負極は、更に少なく
ともリチウムと合金を作る金属と、リチウムと合金を作
らない金属の、合金を用いてもよい。これによって、負
極内部まで、集電能を上げることができ、充放電サイク
ル寿命を更に伸ばすことが可能になる。
Furthermore, the negative electrode of the present invention may further use an alloy of at least a metal that forms an alloy with lithium and a metal that does not form an alloy with lithium. As a result, the current collecting ability can be increased even inside the negative electrode, and the charge / discharge cycle life can be further extended.

【0023】また、負極の、リチウムと合金を作る金属
元素を含有する部材を、エッチング速度が異なり、選択
的にエッチング可能な二種以上の金属の合金から成るも
のとしてもよい。この負極にエッチング処理を更に施す
ことによって、負極の比表面積を飛躍的に増大すること
ができる。
Further, the member of the negative electrode containing a metal element that forms an alloy with lithium may be made of an alloy of two or more kinds of metals which have different etching rates and which can be selectively etched. By further subjecting this negative electrode to etching treatment, the specific surface area of the negative electrode can be dramatically increased.

【0024】本発明の負極中の、リチウムと合金を作る
金属元素、あるいはリチウムと合金を作らない金属元素
を選択的にエッチングして負極の比表面積を高めること
も好ましい。負極の比表面積を高めることによって、負
極表面の反応性を高め実質の電流密度を下げ、充放電反
応を円滑にし、その結果サイクル寿命を伸ばすことがで
きる。
It is also preferable to selectively etch a metal element that forms an alloy with lithium or a metal element that does not form an alloy with lithium in the negative electrode of the present invention to increase the specific surface area of the negative electrode. By increasing the specific surface area of the negative electrode, the reactivity of the surface of the negative electrode is increased, the actual current density is lowered, the charge / discharge reaction is smoothed, and as a result, the cycle life can be extended.

【0025】凹凸形状を設け比表面積を高めた負極表面
に突起部が存在する時、突起部では充電時に電界が集中
し、電流密度が増大する為、リチウムのデンドライト成
長が起こりやすく、短絡原因に成り易い。
When protrusions are present on the surface of the negative electrode having an uneven surface and an increased specific surface area, the electric field is concentrated on the protrusions during charging and the current density increases, so that dendrite growth of lithium is likely to occur, causing a short circuit. Easy to do.

【0026】そこで、電解液と接し正極と対向する負極
表面の導電体部の粗さの(最大山から最深谷までの)最
大高さRmaxの1/2と中心線平均粗さとの差を、負
極表面と正極表面間の距離の1/10以下とすることは
望ましい。
Therefore, the difference between 1/2 of the maximum height Rmax (from the maximum peak to the deepest valley) of the conductor portion on the surface of the negative electrode which is in contact with the electrolytic solution and faces the positive electrode and the center line average roughness is It is desirable that the distance is 1/10 or less of the distance between the negative electrode surface and the positive electrode surface.

【0027】また、負極表面の突起部の導電率に対する
谷部の導電率の比が10以下とするのが好ましい。すな
わち、負極表面の突起部の高さRmaxの1/2と中心
線平均粗さとの差が、負極表面正極表面間の距離の1/
10より大きい場合でも、突起部の電気抵抗が平坦部の
電気抵抗より大きい場合には、突起部に電気力線は集中
せず電界強度は大きくならないので、充電時に突起部に
リチウムがデンドライト成長するようなことはない。
Further, it is preferable that the ratio of the conductivity of the valley portion to the conductivity of the protruding portion on the surface of the negative electrode is 10 or less. That is, the difference between the height Rmax of the protrusions on the negative electrode surface and the center line average roughness is 1 / the distance between the negative electrode surface and the positive electrode surface.
Even if it is larger than 10, if the electric resistance of the protrusion is larger than the electric resistance of the flat portion, the lines of electric force are not concentrated on the protrusion and the electric field strength does not increase, so that lithium is dendrite-grown on the protrusion during charging. There is no such thing.

【0028】又、負極表面の導電体部の導電率が均一も
しくは実質的に均一な場合に、触針法で電池を組み立て
る前の負極表面を図6に示されるように最大高さRma
xと中心線平均粗さRaとを計測し、その後該負極を用
いて電池を形成し充電電圧を高めたリチウムのデンドラ
イト成長が起こり易い条件で各種負極のサイクル寿命を
計測し、相関を取った。その結果、図7に示されるよう
に正極と対向する負極表面の導電体部の粗さ(最大山か
ら最深谷までの)最大高さRmaxの1/2と中心線平
均粗さRaとの差と、負極のサイクル寿命との間に、あ
る程度の相関が取れた。つまり負極表面の導電体部の粗
さの最大高さから最小高さを引いたものの1/2と中心
線平均粗さとの差が、負極表面と正極表面間の距離の1
/10以下とした場合とサイクル寿命がより長くなるこ
とが判明した。
When the electric conductivity of the conductor portion on the surface of the negative electrode is uniform or substantially uniform, the negative electrode surface before assembling the battery by the stylus method has a maximum height Rma as shown in FIG.
x and center line average roughness Ra were measured, and then the cycle life of each negative electrode was measured under conditions where lithium dendrite growth in which a battery was formed by using the negative electrode and the charging voltage was increased was likely to occur, and correlation was obtained. . As a result, as shown in FIG. 7, the difference between 1/2 of the maximum height Rmax (from the maximum peak to the deepest valley) of the conductor portion on the surface of the negative electrode facing the positive electrode and the average roughness Ra of the center line. There was some correlation between the negative electrode cycle life and the cycle life of the negative electrode. That is, the difference between 1/2 of the maximum height of the roughness of the conductor portion on the negative electrode surface minus the minimum height and the center line average roughness is 1 of the distance between the negative electrode surface and the positive electrode surface.
It was found that the cycle life becomes longer when the ratio is / 10 or less.

【0029】また、本発明の負極表面の導電体部の粗さ
に関して、中心線平均粗さをRa、測定長をL、測定長
L当たりの山の数をnとする時、1+(4nRa/L)
が1.05以上とすることは好ましい。
Regarding the roughness of the conductor portion on the surface of the negative electrode of the present invention, when the center line average roughness is Ra, the measurement length is L, and the number of peaks per measurement length L is n, 1+ (4nRa / L)
Is preferably 1.05 or more.

【0030】更に鋭意検討の結果、負極表面をエッチン
グ処理などで荒らすことによって、表面の反応性を高め
かつ比表面積が増し、実質的な電流密度が下がり、充放
電サイクル寿命を延ばせることができることがわかっ
た。充放電前の負極の表面粗さとサイクル寿命の相関を
取ると、図8のようなデータが得られ、中心線平均粗さ
をRa、測定長をL、測定長L当たりの山の数をnとす
る時、1+(4nRa/L)が1.05以上、好ましく
は1.1以上、より好ましくは1.2以上にすることに
よって、サイクル寿命が2倍以上に伸びることがわかっ
た。なお、図8では本発明の負極のリチウムと合金を作
る元素にアルミニウムを用い、各種エッチング処理にて
表面を荒らした後、正極活物質にリチウム−ニッケル酸
化物を、電解液にはエチレンカーボネート−ジメチルカ
ーボネート(EC−DMC)あるいはプロピレンカーボ
ネート−ジエチルカーボネート(PC−DEC)混合溶
媒にホウフッ化リチウムを溶解した電解液を用い、電池
を組み立てて充放電サイクル寿命を計測した結果であ
る。
As a result of further intensive studies, it is possible to increase the reactivity of the surface and increase the specific surface area by roughening the surface of the negative electrode by etching or the like, thereby reducing the substantial current density and extending the charge / discharge cycle life. all right. When the correlation between the surface roughness of the negative electrode before charge and discharge and the cycle life is taken, the data as shown in FIG. 8 is obtained. The center line average roughness is Ra, the measurement length is L, and the number of peaks per measurement length L is n. Then, it was found that the cycle life was extended twice or more by setting 1+ (4nRa / L) to 1.05 or more, preferably 1.1 or more, and more preferably 1.2 or more. In FIG. 8, aluminum is used as an element for forming an alloy with lithium of the negative electrode of the present invention, and after roughening the surface by various etching treatments, lithium-nickel oxide is used as the positive electrode active material and ethylene carbonate- is used as the electrolytic solution. It is the result of measuring the charge / discharge cycle life by assembling a battery using an electrolytic solution prepared by dissolving lithium borofluoride in a mixed solvent of dimethyl carbonate (EC-DMC) or propylene carbonate-diethyl carbonate (PC-DEC).

【0031】又、本発明では負極の集電部に、室温での
伸び率がリチウムと合金を作る金属より高い導電体層を
設けてもよい。負極にリチウムーアルミニウム合金箔あ
るいはアルミニウム箔を使用した場合には、充放電の繰
り返しによって、負極表面で微粉化が起き、亀裂が生
じ、最終的には集電が不能になることがある。これは充
放電時の負極の膨張収縮が主原因であると推察される。
しかしながら集電部に室温での伸び率の高い導電体層を
設けることによって、更に負極の膨張収縮による集電部
の亀裂を抑え、集電能の確保が可能になる。
In the present invention, the current collector of the negative electrode may be provided with a conductor layer having a higher elongation at room temperature than that of a metal forming an alloy with lithium. When a lithium-aluminum alloy foil or an aluminum foil is used for the negative electrode, repeated charging and discharging may cause pulverization on the surface of the negative electrode, cracks may occur, and eventually current collection may become impossible. It is speculated that this is mainly due to the expansion and contraction of the negative electrode during charge and discharge.
However, by providing the current collector with a conductor layer having a high elongation at room temperature, cracks in the current collector due to expansion and contraction of the negative electrode can be further suppressed, and the current collecting ability can be secured.

【0032】又、正極を構成する正極活物質にリチウム
元素を含有させてもよい。これによって、充電時のリチ
ウムの析出で初めて、負極中のリチウムと合金を作る元
素との合金化が行われる。電池の組立時から、予めリチ
ウムの合金を作製し準備することがないため、製造工程
が簡略化される。また、充放電には予め正極内に存在し
たリチウムを放出挿入するので、放電充電時に伴う正極
の膨張収縮が少なく、集電体からの正極活物質の脱落が
生じないのでサイクル寿命が伸びることになる。
The positive electrode active material forming the positive electrode may contain lithium element. As a result, alloying of the element in the negative electrode with lithium in the negative electrode is not performed until the lithium is deposited during charging. Since the lithium alloy is not prepared and prepared in advance from the time of assembling the battery, the manufacturing process is simplified. In addition, since lithium existing in the positive electrode is discharged and inserted in advance for charge and discharge, expansion and contraction of the positive electrode due to discharge charging is small, and the positive electrode active material does not fall off from the current collector, so cycle life is extended. Become.

【0033】またさらに、負極表面を、リチウムイオン
を透過できるが、充電時に析出したリチウム金属は透過
しない、絶縁体膜または半導体膜で被覆してもよい。こ
れによって、充電時に析出するリチウムが直接電解液と
接触しにくくなり、活性なリチウムが反応して放電に寄
与できなくなる反応物が生成されるのを防ぎ、充放電サ
イクル寿命を延ばすことが可能になる。ついで、負極が
粉体から形成されている場合には、負極の表面被覆は粉
体の脱落も抑える効果もある。
Further, the surface of the negative electrode may be covered with an insulating film or a semiconductor film which is permeable to lithium ions but impermeable to lithium metal deposited during charging. This makes it difficult for the lithium deposited during charging to come into direct contact with the electrolytic solution, and prevents the active lithium from reacting with it to form a reactant that cannot contribute to discharging, and it is possible to extend the charge / discharge cycle life. Become. Then, when the negative electrode is made of powder, the surface coating of the negative electrode also has an effect of suppressing the falling of the powder.

【0034】以下、図面を参照しながら、本発明のリチ
ウム二次電池について説明する。
The lithium secondary battery of the present invention will be described below with reference to the drawings.

【0035】図2及び図3に、夫々、本発明のリチウム
二次電池に好適に使用し得る負極の例の断面模式図を示
した。なお、図示していないが、実際に電池を構成する
場合は図2及び図3において図面上負極の上部にセパレ
ータ及び正極が対向して設けられる。なお、図3(e)
及び(g)に示す負極は、参考例である。
2 and 3 are schematic cross-sectional views of examples of negative electrodes that can be preferably used in the lithium secondary battery of the present invention. Although not shown, in the case of actually constructing a battery, a separator and a positive electrode are provided facing each other above the negative electrode in FIGS. 2 and 3. Note that FIG. 3 (e)
The negative electrodes shown in (g) and (g) are reference examples.

【0036】図2(a)に示される負極は、リチウムと
合金を作る金属元素を含有する部材102とリチウムと
合金を作らない金属元素から成る集電部101から構成
された負極の場合である。図2(a)に示される負極
は、充電時には電解液中のリチウムイオンが、リチウム
と合金を作る金属元素を含有する部材102と合金化し
て析出し、膨張する。ついで放電では、リチウムと合金
を作る金属元素を含有する部材102からリチウムイオ
ンが電解液中に放出され、収縮する。この充放電による
膨張収縮によって、リチウムと合金を作る金属元素を含
有する部材102の微粉化及び亀裂が発生するが、集電
部にリチウムと合金を作らない金属元素の層101が設
けてあるので、集電能の低下が小さく、微粉化し亀裂が
入ったリチウムと合金を作る金属元素を含有する部材1
02の電解液中への脱落が抑えられることになる。
The negative electrode shown in FIG. 2 (a) is a negative electrode composed of a member 102 containing a metal element that forms an alloy with lithium and a current collector 101 made of a metal element that does not form an alloy with lithium. . In the negative electrode shown in FIG. 2A, during charging, lithium ions in the electrolytic solution are alloyed with the member 102 containing a metal element forming an alloy with lithium to be deposited and expanded. Then, in the discharge, lithium ions are released from the member 102 containing a metal element that forms an alloy with lithium into the electrolytic solution and contract. Due to the expansion and contraction due to the charge and discharge, the member 102 containing a metal element that forms an alloy with lithium is pulverized and cracked. However, since the metal element layer 101 that does not form an alloy with lithium is provided in the current collecting portion. A member 1 containing a metal element that forms an alloy with lithium that is finely powdered and cracked, with a small decrease in current collecting ability
The drop of 02 into the electrolytic solution can be suppressed.

【0037】図2(b)に示される負極は、図2(a)
の構成の負極の表面にリチウムと合金を作らない金属元
素106を配置した場合である。この場合、図2(a)
に示される構成の負極の場合より更に負極表面に配置し
たリチウムと合金を作らない金属元素106によって、
最も微粉化が起き易い負極表面で、面方向の集電能の低
下を抑え、微粉化の助長を抑えることができる。
The negative electrode shown in FIG. 2 (b) corresponds to that shown in FIG. 2 (a).
This is a case where the metal element 106 that does not form an alloy with lithium is arranged on the surface of the negative electrode having the above constitution. In this case, FIG. 2 (a)
By the metal element 106 which does not form an alloy with lithium, which is arranged on the surface of the negative electrode, more
On the surface of the negative electrode where pulverization is most likely to occur, it is possible to suppress the reduction of the current collecting ability in the surface direction and suppress the promotion of pulverization.

【0038】図2(c)に示される負極は、リチウムと
合金を作る金属元素を含有する粉体状部材103に導電
補助剤104を混合して結着剤105でリチウムと合金
を作らない金属元素から成る集電部材101に結着させ
活性層を形成している。リチウムと合金を作る金属元素
を含有する部材に塊状のものを用いるのでなく、最初か
ら粉体を用いることによって、充放電時に発生する膨張
収縮に伴う応力を緩和し疲労破壊を防ぎ、充放電サイク
ル寿命を更に延ばすことができる。また、電解液との接
触面積を増やし、充放電時の反応をより均一に円滑に行
うことができる。
The negative electrode shown in FIG. 2C is a metal which does not form an alloy with lithium by the binder 105 by mixing the conductive auxiliary agent 104 with the powdery member 103 containing a metal element which forms an alloy with lithium. An active layer is formed by binding the current collecting member 101 made of an element. By using a powder from the beginning, instead of using a lump-shaped member containing a metal element that forms an alloy with lithium, stress due to expansion and contraction that occurs during charge and discharge is relaxed and fatigue fracture is prevented, and charge and discharge cycle The life can be further extended. Further, the contact area with the electrolytic solution can be increased, and the reaction during charge / discharge can be carried out more uniformly and smoothly.

【0039】図2(c’)に示される負極は、リチウム
と合金を作らない金属元素から成る集電部材101の両
面に、図2(c)に示される負極と同様な活性層を形成
したものであり、この場合には上下部に対向してセパレ
ータと正極が配置されてもよい。集電部を共通にして両
面に活性層を設ける図2(c’)に示される負極の電極
構成は、スパイラル状円筒形セルや積層型電極形成の角
形セルに特に、製造工程及び材料の削減、単位体積当た
りの電気容量の増加の面でより有効である。
In the negative electrode shown in FIG. 2 (c '), active layers similar to those of the negative electrode shown in FIG. 2 (c) are formed on both surfaces of a current collecting member 101 made of a metal element which does not form an alloy with lithium. In this case, the separator and the positive electrode may be arranged to face the upper and lower parts. The electrode configuration of the negative electrode shown in FIG. 2 (c ') in which the current collector is shared and the active layers are provided on both sides is particularly suitable for a spiral cylindrical cell or a rectangular cell with a laminated electrode formation, and the number of manufacturing steps and materials are reduced. , More effective in terms of increasing the electric capacity per unit volume.

【0040】図3(d)に示される負極は、図1(a)
の構成の負極のリチウムと合金を作る金属元素を含有す
る部材102とリチウムと合金を作らない金属元素から
成る集電部101の間に伸び率の高い導電体層107を
設けた負極である。リチウムと合金を作る金属元素を含
有する部材102が充放電サイクルでの膨張収縮で亀裂
が発生した場合にも、膨張収縮に伸び率の高い導電体層
107は追随し、集電能の低下をより抑えることができ
る。また、リチウムと合金を作る金属元素を含有する部
材102の電解液中への脱落も防止することができる。
The negative electrode shown in FIG. 3 (d) corresponds to that shown in FIG. 1 (a).
In the negative electrode having the above structure, a conductive layer 107 having a high elongation rate is provided between a member 102 containing a metal element that forms an alloy with lithium and a current collecting portion 101 formed of a metal element that does not form an alloy with lithium. Even when a member 102 containing a metal element that forms an alloy with lithium is cracked due to expansion and contraction in a charge / discharge cycle, the conductive layer 107 having a high elongation rate follows expansion and contraction to further reduce the current collecting ability. Can be suppressed. It is also possible to prevent the member 102 containing a metal element that forms an alloy with lithium from dropping into the electrolytic solution.

【0041】図3(e)に示される負極は、リチウムと
合金を作る金属元素を含有する部材102表面及び裏面
にリチウムと合金を作らない金属元素106を配置し、
集電部を伸び率の高い導電体層107で被覆した負極で
ある。充放電サイクルの繰り返しによる、負極表面での
問題と集電部の集電能の低下と、リチウムと合金を作る
金属元素を含有する部材102の電解液中への脱落も、
防止することができる。
In the negative electrode shown in FIG. 3 (e), the metal element 106 not forming an alloy with lithium is arranged on the front and back surfaces of the member 102 containing the metal element forming an alloy with lithium.
It is a negative electrode in which a current collecting portion is covered with a conductor layer 107 having a high elongation rate. Due to the repeated charge and discharge cycles, problems on the surface of the negative electrode, a reduction in the current collecting ability of the current collector, and a drop of the member 102 containing a metal element that forms an alloy with lithium into the electrolytic solution are also caused.
Can be prevented.

【0042】図3(f)に示される負極は、図3(a)
に示される構成の負極の集電部を伸び率の高い導電体層
107で被覆した例である。集電部の集電能の低下を抑
え、リチウムと合金を作る金属元素を含有する部材10
2の電解液中への脱落も防止することができる。
The negative electrode shown in FIG. 3 (f) corresponds to the negative electrode shown in FIG. 3 (a).
In this example, the current collecting portion of the negative electrode having the structure shown in FIG. A member 10 containing a metal element that suppresses a decrease in current collecting ability of a current collecting portion and forms an alloy with lithium
It is also possible to prevent the drop of 2 into the electrolytic solution.

【0043】図3(g)に示される負極は、リチウムと
合金を作る金属元素とリチウムと合金を作らない金属元
素の合金108を負極に採用したものである。図3
(c)に示される負極の場合のように、リチウムと合金
を作る金属元素を含有する部材が粉体である場合にも適
用できる。リチウムと合金を作る金属元素とリチウムと
合金を作らない金属元素の合金108を用いることによ
って、内部の微細部まで、リチウムと合金を作らない金
属元素を配置して、集電能を保持でき、リチウムと合金
を作る金属の微粉化及び亀裂発生を防止することが可能
になる。ここで、上記リチウムと合金を作る金属元素の
割合は、リチウムの利用効率下げないように、50%以
上であることが望ましい。また、リチウムと合金を作る
金属元素とリチウムと合金を作らない金属元素のエッチ
ング比率が異なれば、選択エッチングが可能で、リチウ
ムと合金を作る金属元素あるいはリチウムと合金を作ら
ない金属元素の一部をエッチング除去することによっ
て、極めて高い比表面積を得ることが可能になる。
The negative electrode shown in FIG. 3 (g) employs an alloy 108 of a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium. Figure 3
As in the case of the negative electrode shown in (c), it can be applied to the case where the member containing the metal element that forms an alloy with lithium is powder. By using the alloy 108 of a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium, a metal element that does not form an alloy with lithium can be arranged to a fine internal portion to maintain the current collecting ability. It is possible to prevent pulverization and cracking of the metal forming the alloy with. Here, the ratio of the metal element forming an alloy with lithium is preferably 50% or more so as not to reduce the utilization efficiency of lithium. In addition, if the etching ratios of the metal element that forms an alloy with lithium and the metal element that does not form an alloy with lithium are different, selective etching is possible, and some metal elements that form an alloy with lithium or that do not form an alloy with lithium can be selected. By etching away, it is possible to obtain a very high specific surface area.

【0044】図2及び図3にで示されるような負極を使
用し正極とセパレータ及び電解質を組み合わせて、図1
に示されるような二次電池を形成することができる。図
1において、200は主にリチウムと合金を作らない金
属元素から成る集電部、201は主にリチウムと合金を
作る金属元素を含有する部材から成る層、202は負
極、203は正極、204は電解質(電解液)、205
はセパレータ、206は負極端子、207は正極端子、
208は電池ケース、である。尚、負極202の構成は
図2及び図3に夫々示される負極の構成に夫々置き換え
られるのはいうまでもない。
Using a negative electrode as shown in FIGS. 2 and 3 and combining a positive electrode with a separator and an electrolyte,
A secondary battery as shown in can be formed. In FIG. 1, reference numeral 200 is a current collector mainly composed of a metal element that does not form an alloy with lithium, 201 is a layer composed of a member containing a metal element that mainly forms an alloy with lithium, 202 is a negative electrode, 203 is a positive electrode, and 204 Is electrolyte (electrolyte), 205
Is a separator, 206 is a negative electrode terminal, 207 is a positive electrode terminal,
Reference numeral 208 is a battery case. Needless to say, the configuration of the negative electrode 202 can be replaced with the configurations of the negative electrodes shown in FIGS. 2 and 3, respectively.

【0045】本発明の負極は、リチウムと合金を作る金
属元素を含有する部材とリチウムと合金を作らない金属
元素から成る集電部から構成されているので、充放電を
繰り返しても、リチウムと合金を作らない金属元素から
成る集電部材は劣化することがなく、集電能を維持する
ことができ、定電流充電時の充電電圧の上昇を抑え、デ
ンドライト発生を抑制でき、結果的にサイクル寿命を伸
ばすことが可能になる。
Since the negative electrode of the present invention is composed of a member containing a metal element that forms an alloy with lithium and a current collecting section made of a metal element that does not form an alloy with lithium, even if charging and discharging are repeated, lithium does not react with lithium. The current collector made of metal elements that do not form alloys does not deteriorate and can maintain the current collecting ability, suppress the rise of charging voltage during constant current charging, suppress the generation of dendrites, and consequently the cycle life. Can be extended.

【0046】(負極)本発明の負極は、少なくともリチ
ウムと合金を作る金属元素とリチウムと合金を作らない
金属元素を構成要素として有し、リチウムと合金を作ら
ない金属を配置した集電部から負極側の出力端子が引き
出されているものである。
(Negative Electrode) The negative electrode of the present invention has at least a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium as constituent elements, and is composed of a current collecting portion in which a metal that does not form an alloy with lithium is arranged. The output terminal on the negative electrode side is pulled out.

【0047】実際の負極としては、リチウムと合金を作
る金属元素を含有する板または箔状の部材の集電部にリ
チウムと合金を作らない金属元素を配置するか、リチウ
ムと合金を作る金属元素を含有する粉末からなる層をリ
チウムと合金を作らない金属の集電部材上に形成したも
のを、用いる。さらに、上記負極の正極と対向する表面
に、リチウムと合金を作らない金属元素を配置して集電
能を高める。
As an actual negative electrode, a metal element that does not form an alloy with lithium is arranged in the current collecting portion of a plate or a foil-shaped member containing a metal element that forms an alloy with lithium, or a metal element that forms an alloy with lithium. A layer made of a powder containing P is formed on a metal current collecting member that does not form an alloy with lithium. Further, a metal element that does not form an alloy with lithium is placed on the surface of the negative electrode facing the positive electrode to enhance the current collecting ability.

【0048】上記リチウムと合金を作る金属元素を含有
する部材には、リチウムと合金を作る金属元素と、リチ
ウムと合金を作らない金属元素との、合金も使用可能で
ある。
For the member containing a metal element that forms an alloy with lithium, an alloy of a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium can be used.

【0049】さらに、室温でリチウムと合金を作る金属
より、伸び率の高い導電層で、上記負極の集電部を被覆
して、充放電の繰り返しでの膨張収縮を伴う疲労破壊を
防ぐ。
Further, the current collector of the negative electrode is covered with a conductive layer having a higher elongation than that of a metal that forms an alloy with lithium at room temperature to prevent fatigue fracture accompanied by expansion and contraction during repeated charging and discharging.

【0050】〈リチウムと合金を作らない金属元素の配
置〉まず、リチウムと合金を作る金属元素からなる部材
を負極基材として、これに処理を施して、リチウムと合
金を作らない金属元素の配置する方法の一例を以下に説
明する。上記リチウムと合金を作らない金属元素の負極
の正極と対向する表面と、集電部に、配置する方法は、
以下の方法がある。
<Arrangement of Metal Element Not Forming Alloy with Lithium> First, a member made of a metal element forming an alloy with lithium is used as a negative electrode base material, and this is treated to arrange the metal element not forming an alloy with lithium. An example of the method of doing will be described below. The surface of the negative electrode of the metal element that does not form an alloy with lithium facing the positive electrode and the current collector, the method of disposing,
There are the following methods.

【0051】リチウムと合金を作る金属元素のイオン化
傾向が、リチウムと合金を作らない金属元素より高い場
合には、リチウムと合金を作る金属元素からなる部材を
リチウムと合金を作らない金属元素の塩の溶液に浸すこ
とによって、リチウムと合金を作る金属元素の一部をリ
チウムと合金を作らない金属元素で置換することができ
る。置換量は、溶液に浸す時間、溶液中の塩の濃度、溶
液の温度などによって、制御することができる。すなわ
ち、溶液に浸す時間を長くすれば置換量が多くなり、溶
液中の塩の濃度を上げるか溶液の温度を上げれば置換反
応の速度を速めることになる。
When the ionization tendency of the metal element that forms an alloy with lithium is higher than that of the metal element that does not form an alloy with lithium, a member made of a metal element that forms an alloy with lithium is used as a salt of a metal element that does not form an alloy with lithium. By immersing in the solution described above, part of the metal element that forms an alloy with lithium can be replaced with the metal element that does not form an alloy with lithium. The substitution amount can be controlled by the time of immersion in the solution, the concentration of salt in the solution, the temperature of the solution, and the like. That is, the longer the time of immersion in the solution, the larger the amount of substitution, and the higher the concentration of salt in the solution or the higher the temperature of the solution, the faster the rate of the substitution reaction.

【0052】他の配置方法としては、リチウムと合金を
作らない金属元素を含有する層を、電解メッキ、無電解
(化学)メッキ、レーザーメッキ、スパッタリング、抵
抗加熱蒸着、電子ビーム蒸着、クラスターイオンビーム
蒸着、熱CVD(Chemical Vapor De
position)、減圧CVD、プラズマCVD、レ
ーザーCVD、などにより基材上に被着させる方法が使
用できる。また、スクリーン印刷などの方法での、リチ
ウムと合金を作らない金属元素を含有するインクあるい
はペーストのコーティング手法も用いることができる。
As another arrangement method, a layer containing a metal element which does not form an alloy with lithium is electroplated, electroless (chemical) plated, laser plated, sputtering, resistance heating vapor deposition, electron beam vapor deposition, cluster ion beam. Vapor deposition, thermal CVD (Chemical Vapor De)
position), low pressure CVD, plasma CVD, laser CVD, or the like. In addition, a coating method of ink or paste containing a metal element that does not form an alloy with lithium, such as screen printing, can be used.

【0053】他の方法に、リチウムと合金を作らない金
属元素から成る基材を集電体としてそのまま用い、その
上にリチウムと合金を作る金属元素から成る層を、スパ
ッタリング、抵抗加熱蒸着、電子ビーム蒸着、クラスタ
ーイオンビーム蒸着、熱CVD、減圧CVD、プラズマ
CVD、スクリーン印刷などのコーティング、方法で形
成する手法も採用できる。リチウムと合金を作らない金
属元素から成る基材の形状としては、板、箔、パンチン
グメタル、エキスパンドメタル、メッシュ状などの各種
形状が使用できる。
In another method, a base material made of a metal element that does not form an alloy with lithium is used as it is as a current collector, and a layer made of a metal element that forms an alloy with lithium is formed on the base material by sputtering, resistance heating evaporation, electron A method of forming by coating such as beam vapor deposition, cluster ion beam vapor deposition, thermal CVD, reduced pressure CVD, plasma CVD, or screen printing can also be adopted. Various shapes such as a plate, a foil, a punching metal, an expanded metal, and a mesh can be used as the shape of the base material made of a metal element that does not form an alloy with lithium.

【0054】〈リチウムと合金を作る金属元素とリチウ
ムと合金を作らない金属元素〉リチウムと合金を作る金
属元素としては、アルミニウム、マグネシウム、カリウ
ム、ナトリウム、カルシウム、ストロンチウム、バリウ
ム、シリコン、ゲルマニウム、スズ、鉛、インジウム、
亜鉛などが使用でき、特にアルミニウム、マグネシウ
ム、カルシウム、鉛が好適である。
<Metallic element that forms an alloy with lithium and metallic element that does not form an alloy with lithium> Examples of the metallic element that forms an alloy with lithium include aluminum, magnesium, potassium, sodium, calcium, strontium, barium, silicon, germanium and tin. , Lead, indium,
Zinc or the like can be used, and aluminum, magnesium, calcium, and lead are particularly preferable.

【0055】リチウムと合金を作らない金属元素として
は、ニッケル、チタン、銅、銀、金、白金、鉄、コバル
ト、クロム、タングステン、モリブデン、などが使用で
き、特にニッケル、チタン、銅、白金、鉄、が好適であ
る。集電部材としては、上記元素の単一金属のほかに上
記元素から成る合金が採用できる。また、ステンレスス
チールもリチウムと合金を作らない集電部材として好ま
しい材料である。
As the metal element which does not form an alloy with lithium, nickel, titanium, copper, silver, gold, platinum, iron, cobalt, chromium, tungsten, molybdenum, etc. can be used, and particularly nickel, titanium, copper, platinum, Iron is preferred. As the current collecting member, in addition to a single metal of the above elements, an alloy of the above elements can be adopted. Further, stainless steel is also a preferable material as a current collecting member that does not form an alloy with lithium.

【0056】〈リチウムと合金を作る金属元素を含有す
る粉末から成る負極〉上記リチウムと合金を作る金属元
素を含有する粉末から成る層を、集電部材上に形成する
具体的な方法としては、リチウムと合金を作る金属元素
を含有する粉末、またはリチウムと合金を作る金属元素
とリチウムと合金を作らない金属元素の合金の粉末に、
結着剤として樹脂あるいは低融点ガラスを混合し、有機
溶媒などを添加して、粘度を調整したペーストを、リチ
ウムと合金を作らない金属の集電部材上に塗布した後、
乾燥あるいは燒結して形成する方法が採用できる。
<Negative Electrode Containing Powder Containing Metal Element Forming Alloy with Lithium> As a specific method for forming a layer containing the powder containing metal element forming an alloy with lithium on the current collecting member, A powder containing a metal element that forms an alloy with lithium, or an alloy powder of a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium,
Resin or low melting point glass is mixed as a binder, an organic solvent or the like is added, and a paste whose viscosity is adjusted is applied on a metal current collecting member that does not form an alloy with lithium,
A method of forming by drying or sintering can be adopted.

【0057】上記結着剤として有機高分子を使用する場
合は、電解液に安定なものが好ましく、たとえば、ポリ
テトラフルオロエチレン、ポリフッ化ビリニデン、ポリ
エチレン、ポリプロピレン、エチレンープロピレンコポ
リマー、エチレンープロピレンージエンターポリマー、
シリコン樹脂など、を挙げることができる。これらの他
には高度に架橋する高分子、が好ましい材料として挙げ
られる。結着剤に有機高分子を採用する場合は、充放電
での膨張収縮によっても、活物質の脱落が少ないが、集
電能が金属の場合に比べて低いので、導電補助剤とし
て、カーボンブラック、ケッチェンブラック、アセチレ
ンブラック、黒鉛、などのカーボン粉や金属微粉体を添
加して集電能を改善するのが好ましい。特に、導電補助
材としての黒鉛に、結晶面に平行方向に大きく垂直方向
に薄い形状で、嵩密度が0.1以下の、フレーク状黒鉛
を用いれば、導電性が高いので集電能を高められると共
に、電解液の保持量を高めることもできるので、粉末か
ら形成した負極のインピーダンスを低くすることができ
る。
When an organic polymer is used as the above-mentioned binder, one which is stable in the electrolytic solution is preferable. For example, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene- Diene terpolymer,
A silicon resin etc. can be mentioned. In addition to these, highly cross-linked polymers are mentioned as preferable materials. When an organic polymer is used as the binder, the active material is less likely to fall off due to expansion and contraction during charge and discharge, but since the current collecting ability is lower than that of metal, carbon black as a conductive auxiliary agent, It is preferable to add carbon powder or metal fine powder such as Ketjen black, acetylene black or graphite to improve the current collecting ability. In particular, if graphite having a shape that is large in the direction parallel to the crystal plane and thin in the direction perpendicular to the surface and has a bulk density of 0.1 or less is used as graphite as a conductive auxiliary material, the conductivity is high and thus the current collecting ability can be improved. At the same time, the amount of the electrolytic solution retained can be increased, so that the impedance of the negative electrode formed of powder can be lowered.

【0058】上記結着剤として低融点ガラスも使用でき
るが、この場合は、樹脂を使用する場合に比べて、膨張
収縮あるいは曲げによる機械的強度は弱くなる。
Low melting point glass can be used as the binder, but in this case, the mechanical strength due to expansion / contraction or bending becomes weaker than in the case of using resin.

【0059】上記集電部材は、少なくとも表面がリチウ
ムと合金を作らない金属元素で被覆されている導電材で
あることが必要である。集電部材の形状としては、板
状、箔状、メッシュ状、スポンジ状、繊維状、パンチン
グメタル、エキスパンドメタル、など各種の形状が採用
できる。上記集電部材の材料としては、ニッケル、銅、
チタン、アルミニウム、銀、金、白金、鉄、ステンレス
スチール、などが挙げられる。
It is necessary that the current collecting member is a conductive material having at least the surface coated with a metal element that does not form an alloy with lithium. As the shape of the current collecting member, various shapes such as a plate shape, a foil shape, a mesh shape, a sponge shape, a fiber shape, a punching metal, and an expanded metal can be adopted. The material of the current collecting member, nickel, copper,
Examples include titanium, aluminum, silver, gold, platinum, iron, stainless steel, and the like.

【0060】〈伸び率の高い導電体層での集電部の被
覆〉伸び率の高い導電体層の具体的な形成方法として
は、スパッタリング、抵抗加熱蒸着、電子ビーム蒸着、
クラスターイオンビーム蒸着、熱CVD、減圧CVD、
プラズマCVD、レーザーCVD、電解メッキ、無電解
(化学)メッキ、レーザーメッキ、などの方法が使用で
きる。また、伸び率の高い導電体を含有するインクの、
スクリーン印刷などに代表されるコーティング方法も用
いることができる。
<Coating of Current Collecting Section with Conductor Layer with High Elongation Rate> Specific methods for forming the conductor layer with high elongation rate include sputtering, resistance heating vapor deposition, electron beam vapor deposition,
Cluster ion beam deposition, thermal CVD, low pressure CVD,
Methods such as plasma CVD, laser CVD, electrolytic plating, electroless (chemical) plating, and laser plating can be used. In addition, of the ink containing a high elongation conductor,
A coating method represented by screen printing can also be used.

【0061】上記負極の集電部に配置した伸び率の高い
導電体層の具体例としては、スズ、スズ−ビスマス合
金、スズ−鉛合金、亜鉛−アルミニウム合金、銅−亜鉛
合金、カドミウム−亜鉛合金、導電体微粉を有機高分子
材で結着させる導電性インク、から選択される一種類以
上の導電体から構成されていること導電体層が挙げられ
る。また、場合によっては、金、銀、アルミニウム及び
それらの合金も使用可能である。
Specific examples of the high-conductivity conductor layer disposed in the current collector of the negative electrode include tin, tin-bismuth alloy, tin-lead alloy, zinc-aluminum alloy, copper-zinc alloy, cadmium-zinc. The conductor layer is composed of one or more kinds of conductors selected from an alloy and a conductive ink in which fine conductor powder is bound with an organic polymer material. In some cases, gold, silver, aluminum and alloys thereof can also be used.

【0062】上記負極集電部の伸び率の高い導電体層に
用いる導電性インク中の有機高分子としては、電解液と
反応しない、フッ素樹脂、ポリオレフィン、シリコン樹
脂、高度に架橋する高分子であることが好ましい。さら
に、上記有機高分子ガラス転移温度が実使用温度の最低
温度以下であることが望ましく、たとえばマイナス30
℃以下であることがより好ましい。
The organic polymer in the conductive ink used for the conductor layer having a high elongation of the negative electrode current collector is a fluororesin, a polyolefin, a silicone resin, or a highly crosslinkable polymer that does not react with the electrolytic solution. Preferably there is. Further, it is desirable that the organic polymer glass transition temperature is equal to or lower than the lowest temperature of the actual use temperature, for example, minus 30.
More preferably, the temperature is not higher than ° C.

【0063】〈負極のエッチング〉リチウムと合金を作
る金属元素を含有する部材とリチウムと合金を作らない
金属元素から成る集電部材から構成される本発明の負極
の表面をエッチングすることによって、負極の比表面積
を増大させることができる。
<Etching of Negative Electrode> By etching the surface of the negative electrode of the present invention composed of a member containing a metal element that forms an alloy with lithium and a current collecting member containing a metal element that does not form an alloy with lithium, the negative electrode is etched. The specific surface area can be increased.

【0064】エッチング方法としては、化学エッチン
グ、電気化学エッチング、プラズマエッチングなどの手
法が採用できる。
As the etching method, methods such as chemical etching, electrochemical etching and plasma etching can be adopted.

【0065】化学エッチングは、酸あるいはアルカリと
反応させて、エッチングするものである。具体例として
は、以下のようなものがある。
In the chemical etching, etching is performed by reacting with acid or alkali. The following are specific examples.

【0066】リチウムと合金を作る金属元素であるアル
ミニウムのエッチング液としては、りん酸、硫酸、塩
酸、硝酸、酢酸、フッ酸、水酸化カリウム、水酸化ナト
リウム、水酸化リチウム、及びこれらの混合溶液などが
用いられる。
As an etching solution for aluminum, which is a metal element that forms an alloy with lithium, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, acetic acid, hydrofluoric acid, potassium hydroxide, sodium hydroxide, lithium hydroxide, or a mixed solution thereof is used. Are used.

【0067】リチウムと合金を作る金属元素がマグネシ
ウムである場合のエッチング液としては、硝酸、硫酸、
塩酸、アンモニウム塩を混合したアルカリ水溶液、及び
これらの混合溶液などが用いられる。
When magnesium is the metal element forming an alloy with lithium, nitric acid, sulfuric acid,
An alkaline aqueous solution in which hydrochloric acid and ammonium salt are mixed, a mixed solution thereof, and the like are used.

【0068】リチウムと合金を作らない金属元素がニッ
ケルの場合のエッチング液としては、硝酸、などの希酸
が、用いられる。
When the metal element which does not form an alloy with lithium is nickel, a dilute acid such as nitric acid is used as an etching solution.

【0069】リチウムと合金を作らない金属元素が銅の
場合のエッチング液としは、硫酸、塩酸、硝酸、酢酸な
どの有機酸、塩化第二銅溶液、塩化第二鉄溶液、アンモ
ニア水、などが使用できる。
When the metal element that does not form an alloy with lithium is copper, the etchant may be an organic acid such as sulfuric acid, hydrochloric acid, nitric acid, acetic acid, a cupric chloride solution, a ferric chloride solution, or aqueous ammonia. Can be used.

【0070】リチウムと合金を作らない金属元素がチタ
ンの場合のエッチング液としは、フッ酸、りん酸、など
が使用できる。
When the metal element which does not form an alloy with lithium is titanium, hydrofluoric acid, phosphoric acid, etc. can be used as the etching solution.

【0071】化学エッチングの場合には、リチウムと合
金を作る金属元素とリチウムと合金を作らない金属元素
とのエッチング速度比が異なり、選択的エッチングが可
能なエッチング液を使用することが好ましい。
In the case of chemical etching, it is preferable to use an etching solution capable of selective etching because the etching rate ratios of the metal element that forms an alloy with lithium and the metal element that does not form an alloy with lithium are different.

【0072】電気化学エッチングは、電解液中で対極間
に電界を印加して、電気化学的に金属イオンとして溶出
させるものである。
In the electrochemical etching, an electric field is applied between the counter electrodes in an electrolytic solution to electrochemically elute it as metal ions.

【0073】リチウムと合金を作る金属元素であるアル
ミニウムの電解液としては、りん酸、硫酸、クロム酸の
混合溶液などが用いられる。
A mixed solution of phosphoric acid, sulfuric acid, and chromic acid is used as the electrolytic solution of aluminum, which is a metal element that forms an alloy with lithium.

【0074】リチウムと合金を作らない金属元素が銅の
場合のエッチング液としは、りん酸溶液などが使用でき
る。
When the metal element which does not form an alloy with lithium is copper, a phosphoric acid solution or the like can be used as the etching solution.

【0075】プラズマエッチングは、エッチング用のガ
スをプラズマ化して、反応性のイオンやラジカルを反応
させてエッチングする方法である。原料のエッチングガ
スとしては、テトラクロロメタン、テトラフルオロメタ
ン、塩素、トリクロロモノフルオロメタン、ジクロロジ
フルオロメタン、クロロトリフルオロメタン、などが使
用できる。
Plasma etching is a method in which an etching gas is turned into plasma and reactive ions or radicals are reacted to perform etching. As the raw material etching gas, tetrachloromethane, tetrafluoromethane, chlorine, trichloromonofluoromethane, dichlorodifluoromethane, chlorotrifluoromethane, or the like can be used.

【0076】〈負極の表面被覆〉本発明の電池の負極表
面をリチウムイオンを選択的に透過して、析出するリチ
ウム金属は透過しない絶縁体膜または半導体膜の皮膜で
被覆することによって、充電時のデンドライト発生の抑
制効果をさらに高めることができる。
<Negative Electrode Surface Coating> During charging, the negative electrode surface of the battery of the present invention is coated with an insulating film or a semiconductor film that selectively permeates lithium ions and does not permeate precipitated lithium metal. The effect of suppressing the generation of dendrites can be further enhanced.

【0077】本発明の負極表面を被覆する材料として
は、リチウムイオンを透過できる細孔あるいは分子構造
を有するものを使用する。リチウムイオンを透過できる
分子構造を有するもの例としては、大冠状エーテルの構
造、カリックスアレーン(複数個のフェノール単位から
成る盃状の環状化合物)、エーテル結合を有する構造な
どを有する高分子が挙げられる。その他には、リチウム
イオンがインターカレートするガラス状物質なども使用
できる。リチウムイオンを透過できる細孔を積極的に作
製する方法としては、皮膜材料の塗液中に電解質塩など
の塗膜形成後溶出可能な材料を混合しておく、発泡剤ま
たは容易に熱分解する材料などを混合しておき、細孔を
作製する方法が採用できる。
As the material for coating the surface of the negative electrode of the present invention, one having pores or a molecular structure capable of penetrating lithium ions is used. Examples of those having a molecular structure capable of penetrating lithium ions include polymers having a structure of a large crown ether, a calixarene (a cup-shaped cyclic compound composed of a plurality of phenol units), a structure having an ether bond, and the like. . In addition, a glassy substance in which lithium ions are intercalated can be used. As a method of positively producing pores that can permeate lithium ions, a material such as an electrolyte salt that can be eluted after forming a coating film is mixed in the coating liquid of the coating material, a foaming agent or easily pyrolyzed. A method of preparing the pores by mixing the materials and the like can be adopted.

【0078】〈負極の出入力端子〉負極の出入力端子
は、負極のリチウムと合金を作らない金属元素が配置し
てある集電部から引き出す。端子の引き出しには、集電
部に導電体の部材をレーザー溶接、スポット溶接、ハン
ダ接続などの方法で接続する手法が用いられる。また、
リチウムと合金を作らない金属元素から成る基材を集電
体としてその上にリチウムと合金を作る金属元素を主体
とする負極が形成されている場合には、集電体に予め出
入力端子に接続する引き出し部を加工して設けておいて
も良い。
<Negative Electrode Input / Output Terminal> The negative electrode input / output terminal is drawn out from the current collector in which a metal element that does not form an alloy with lithium of the negative electrode is arranged. A method of connecting a member of a conductor to the current collecting portion by a method such as laser welding, spot welding, or soldering is used to draw out the terminal. Also,
If a negative electrode composed mainly of a metal element that forms an alloy with lithium is formed on a base material that is made of a metal element that does not form an alloy with lithium and is formed on the base material, the current collector must be connected to the input / output terminals beforehand. You may process and provide the drawer part to connect.

【0079】リチウム二次電池 正極 正極は、集電体、正極活物質、導電補助剤、結着剤など
から構成され、正極活物質と導電補助剤と結着剤などを
混合し、集電体上に成形して作製する。正極に使用する
導電補助剤は、粉体状あるいは繊維状のアルミニウム、
銅、ニッケル、ステンレススチール、カーボンブラッ
ク、ケッチェンブラック、アセチレンブラック、などの
カーボン粉及びカーボン繊維が使用できる。結着剤とし
ては、電解液に安定なものが好ましく、たとえば、ポリ
テトラフルオロエチレン、ポリフッ化ビリニデン、ポリ
エチレン、ポリプロピレン、エチレンープロピレンコポ
リマー、エチレンープロピレンージエンターポリマー、
などが挙げられる。
The positive electrode of the lithium secondary battery positive electrode is composed of a current collector, a positive electrode active material, a conductive auxiliary agent, a binder and the like. The positive electrode active material, the conductive auxiliary agent and the binder are mixed to form a current collector. It is formed by molding on top. The conductive additive used for the positive electrode is powdery or fibrous aluminum,
Carbon powders and carbon fibers such as copper, nickel, stainless steel, carbon black, Ketjen black and acetylene black can be used. The binder is preferably stable in an electrolytic solution, for example, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene terpolymer,
And so on.

【0080】集電体は充放電時の電極反応で効率よく消
費する電流を供給するあるいは発生する電流を集電する
役目を担っている。したがって、電導度が高く、かつ電
池反応に不活性な材質が望ましい。好ましい材質として
は、ニッケル、チタニウム、銅、アルミニウム、ステン
レススチール、白金、パラジウム、金、亜鉛、各種合
金、及び上記材料の二種以上の複合金属が挙げられる。
集電体の形状としては、板状、箔状、メッシュ状、スポ
ンジ状、繊維状、パンチングメタル、エキスパンドメタ
ル、などの形状が採用できる。
The current collector has a role of supplying a current that is efficiently consumed by the electrode reaction during charging and discharging or collecting a current that is generated. Therefore, a material having high electric conductivity and inert to the battery reaction is desirable. Preferable materials include nickel, titanium, copper, aluminum, stainless steel, platinum, palladium, gold, zinc, various alloys, and composite metals of two or more of the above materials.
As the shape of the current collector, a plate shape, a foil shape, a mesh shape, a sponge shape, a fiber shape, a punching metal, an expanded metal, or the like can be adopted.

【0081】正極活物質は、遷移金属酸化物や遷移金属
硫化物が一般に用いられる。遷移金属酸化物や遷移金属
硫化物の遷移金属元素としては、部分的にd殻あるいは
f殻を有する元素で、Sc,Y,ランタノイド,アクチ
ノイド,Ti,Zr,Hf,V,Nb,Ta,Cr,M
o,W,Mn,Tc,Re,Fe,Ru,Os,Co,
Rh,Ir,Ni,Pd,Pt,Cu,Ag,Auを用
いる。主には、第一遷移系列金属のTi,V,Cr,M
n,Fe,Co,Ni,Cuを使用することが好まし
い。
As the positive electrode active material, a transition metal oxide or a transition metal sulfide is generally used. The transition metal element of the transition metal oxide or the transition metal sulfide is an element partially having a d-shell or f-shell, and is Sc, Y, a lanthanoid, an actinide, Ti, Zr, Hf, V, Nb, Ta, Cr. , M
o, W, Mn, Tc, Re, Fe, Ru, Os, Co,
Rh, Ir, Ni, Pd, Pt, Cu, Ag and Au are used. Mainly, Ti, V, Cr, M of the first transition series metals
It is preferable to use n, Fe, Co, Ni, Cu.

【0082】上記正極活物質には、遷移金属酸化物や遷
移金属硫化物中にリチウムを含有しているものを用いた
方が好ましい。リチウムを含有する正極活物質から成る
正極を用いることによって、予めリチウムを含有した負
極を調製することが無いので、電池の製造工程が簡略に
できる利点がある。リチウムを含有する正極活物質の調
製方法の一つには、水酸化リチウム、またはリチウムの
塩を使用して、遷移金属酸化物や遷移金属硫化物を調製
する方法が使用できる。他の方法としては、遷移金属酸
化物や遷移金属硫化物に、熱分解反応を起こし易い、水
酸化リチウム、硝酸リチウム、炭酸リチウムなどのリチ
ウム化合物を混合して、加熱処理して調製する方法もあ
る。
As the positive electrode active material, it is preferable to use a transition metal oxide or a transition metal sulfide containing lithium. By using a positive electrode made of a positive electrode active material containing lithium, there is no need to prepare a negative electrode containing lithium in advance, which has the advantage of simplifying the battery manufacturing process. As one of the methods for preparing a lithium-containing positive electrode active material, a method for preparing a transition metal oxide or a transition metal sulfide using lithium hydroxide or a salt of lithium can be used. As another method, a method in which a transition metal oxide or a transition metal sulfide is mixed with a lithium compound such as lithium hydroxide, lithium nitrate, or lithium carbonate, which easily causes a thermal decomposition reaction, and heat treatment is also prepared. is there.

【0083】セパレータ セパレーターは、負極と正極との間に配置され、負極と
正極の短絡を防ぐ役割を持っている。また、電解液を保
持する役目を有する場合もある。セパレターはリチウム
イオンが移動できる細孔を有し、電解液に不溶で安定で
ある必要があるため、ガラス,ポリプロピレン,ポリエ
チレン,フッ素樹脂,ポリアミドなどの不織布あるいは
ミクロポア構造の材料のものが用いられる。また、微細
孔を有する金属酸化物フィルムあるいは金属酸化物を複
合化した樹脂フィルムも使用できる。特に多層状構造を
した金属酸化物フィルムを使用した場合には、デンドラ
イトが貫通しにくく短絡防止に効果がある。難燃材であ
るフッ素樹脂フィルムあるいは不燃材であるガラスや金
属酸化物フィルムを用いた場合には、より安全性を高め
ることができる。
Separator The separator is arranged between the negative electrode and the positive electrode and has a role of preventing a short circuit between the negative electrode and the positive electrode. It may also have a role of holding the electrolytic solution. Since the separator has pores through which lithium ions can move and must be insoluble and stable in the electrolytic solution, a nonwoven fabric such as glass, polypropylene, polyethylene, fluororesin, or polyamide, or a material having a micropore structure is used. Further, a metal oxide film having fine pores or a resin film in which a metal oxide is composited can also be used. In particular, when a metal oxide film having a multi-layered structure is used, dendrites are unlikely to penetrate, which is effective in preventing short circuits. When a fluororesin film which is a flame retardant material or a glass or metal oxide film which is a nonflammable material is used, the safety can be further enhanced.

【0084】電解質 電解質はそのままの状態で使用する場合のほかに、溶媒
に溶解した溶液や溶液にポリマーなどのゲル化剤を添加
して固定化したものを使用する。一般的には、溶媒に電
解質を溶かした電解液を多孔性のセパレーターに保液さ
せて使用する。
[0084] The electrolyte electrolyte in addition to the case of using as it is, to use those immobilized by adding a gelling agent such as a solution or solution polymer dissolved in a solvent. Generally, an electrolyte solution obtained by dissolving an electrolyte in a solvent is used by holding it in a porous separator.

【0085】電解質の導電率は高ければ高いほど好まし
く、少なくも25℃での導電率は1×10-3S/cm以
上あることが望ましく、5×10-3S/cm以上あるこ
とがより好ましい。
The higher the conductivity of the electrolyte is, the more preferable. The conductivity at 25 ° C. is preferably 1 × 10 −3 S / cm or more, and more preferably 5 × 10 −3 S / cm or more. preferable.

【0086】電解質は、H2SO4、HCl、HNO3
どの酸、リチウムイオン(Li+)とルイス酸イオン
(BF4 -、PF6 -、ClO4 -、CF3SO3 -、BPh4 -
(Ph:フェニル基))から成る塩、およびこれらの混
合塩を用いることができる。上記支持電解質のほかに
は、ナトリウムイオン,カリウムイオン,テトラアルキ
ルアンモニウムイオン,などの陽イオンとルイス酸イオ
ンとの塩も使用できる。上記塩は、減圧下で加熱したり
して、十分な脱水と脱酸素を行っておくことが望まし
い。
The electrolyte is an acid such as H 2 SO 4 , HCl or HNO 3 , lithium ion (Li + ) and Lewis acid ion (BF 4 , PF 6 , ClO 4 , CF 3 SO 3 , BPh 4). -
(Ph: phenyl group)), and mixed salts thereof can be used. In addition to the above supporting electrolyte, a salt of a cation such as sodium ion, potassium ion, tetraalkylammonium ion and Lewis acid ion can be used. It is desirable that the salt be heated under reduced pressure to be sufficiently dehydrated and deoxidized.

【0087】電解質の溶媒としては、アセトニトリル、
ベンゾニトリル、プロピレンカーボネイト、エチレンカ
ーボネート、ジメチルカーボネート、ジエチルカーボネ
ート、ジメチルホルムアミド、テトラヒドロフラン、ニ
トロベンゼン、ジクロロエタン、ジエトキシエタン、
1,2−ジメトキシエタン、クロロベンゼン、γ−ブチ
ロラクトン、ジオキソラン、スルホラン、ニトロメタ
ン、ジメチルサルファイド、ジメチルサルオキシド、ジ
メトキシエタン、ギ酸メチル、3−メチル−2−オキダ
ゾリジノン、2−メチルテトラヒドロフラン、3−プロ
ピルシドノン、二酸化イオウ、塩化ホスホリル、塩化チ
オニル、塩化スルフリル、など、およびこれらの混合液
が使用できる。
As a solvent for the electrolyte, acetonitrile,
Benzonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethylformamide, tetrahydrofuran, nitrobenzene, dichloroethane, diethoxyethane,
1,2-dimethoxyethane, chlorobenzene, γ-butyrolactone, dioxolane, sulfolane, nitromethane, dimethyl sulfide, dimethylsulfoxide, dimethoxyethane, methyl formate, 3-methyl-2-oxazolidinone, 2-methyltetrahydrofuran, 3-propylsydnone , Sulfur dioxide, phosphoryl chloride, thionyl chloride, sulfuryl chloride, and the like, and mixtures thereof can be used.

【0088】上記溶媒は、活性アルミナ、モレキュラー
シーブ、五酸化リン、塩化カルシウムなどで脱水する
か、溶媒によっては、不活性ガス中でアルカリ金属共存
下で蒸留して不純物除去と脱水をも行ってよい。
The above solvent is dehydrated with activated alumina, molecular sieves, phosphorus pentoxide, calcium chloride or the like, or depending on the solvent, it is distilled in an inert gas in the presence of an alkali metal to remove impurities and dehydrate. Good.

【0089】電解液の漏洩を防止するために、ゲル化す
ることが好ましい。ゲル化剤としては電解液の溶媒を吸
収して膨潤するようなポリマーを用いるのが望ましく、
ポリエチレンオキサイドやポリビニルアルコール、ポリ
アクリルアミドなどのポリマーが用いられる。
Gelation is preferable in order to prevent leakage of the electrolytic solution. As the gelling agent, it is desirable to use a polymer that absorbs the solvent of the electrolytic solution and swells,
Polymers such as polyethylene oxide, polyvinyl alcohol and polyacrylamide are used.

【0090】電池の形状及び構造 実際の電池の形状は、特に制約はなく、偏平型や円筒型
や直方形型、シート型などの電池がある。スパイラル型
円筒型では、負極と正極の間にセパレーターをはさんで
卷くことによって電極面積を大きくすることができ、充
放電時に大電流を流すことができる。また、直方体型で
は、二次電池を収納する機器の収納スペースを有効利用
することができる。構造としても、単層式と多層式など
の構造を用いることができる。
Shape and Structure of Battery The shape of the actual battery is not particularly limited, and there are flat type, cylindrical type, rectangular type, sheet type and the like. In the spiral cylindrical type, the electrode area can be increased by sandwiching a separator between the negative electrode and the positive electrode, and a large current can be passed during charge / discharge. Further, in the rectangular parallelepiped type, it is possible to effectively use the storage space of the device that stores the secondary battery. As the structure, a single-layer structure or a multi-layer structure can be used.

【0091】図4と図5は、それぞれ、単層式偏平型電
池、スパイラル構造円筒型電池の概略断面図の一例であ
る。図4と図5において、300と400は負極集電
体、301と401は負極活物質、303と403は正
極活物質、404は正極集電体、305と405は負極
端子(負極キャップ)、306と406は正極缶、30
7と407は電解質とセパレーター、310と410は
絶縁パッキング、411は絶縁板、である。
FIG. 4 and FIG. 5 are examples of schematic cross-sectional views of a single-layer flat type battery and a spiral structure cylindrical battery, respectively. 4 and 5, 300 and 400 are negative electrode current collectors, 301 and 401 are negative electrode active materials, 303 and 403 are positive electrode active materials, 404 is a positive electrode current collector, and 305 and 405 are negative electrode terminals (negative electrode caps). 306 and 406 are positive electrode cans, 30
7 and 407 are electrolytes and separators, 310 and 410 are insulating packings, and 411 is an insulating plate.

【0092】図4や図5の電池の組立の一例としては、
負極活物質301,401と成形した正極活物質30
3,403でセパレーター307,407を挟んで正極
缶306,406に組み込み電解質を注入した後、負極
キャップ305,405と絶縁パッキング310,41
0を組み、かしめて電池を作製する。尚、図中負極集電
体300,400は図2及び図3に示したよう負極活性
物質301,401のリチウムと合金を作らない金属に
接続されている。また、場合によっては、負極集電体3
00,400そのものがリチウムと合金を作らない金属
としていてもよい。
As an example of assembling the battery shown in FIGS. 4 and 5,
Negative electrode active material 301, 401 and molded positive electrode active material 30
After sandwiching the separators 307 and 407 with 3,403 and incorporating them into the positive electrode cans 306 and 406 and injecting an electrolyte, the negative electrode caps 305 and 405 and the insulating packings 310 and 41
0 is assembled and caulked to produce a battery. In the figure, the negative electrode current collectors 300 and 400 are connected to a metal that does not form an alloy with lithium of the negative electrode active substances 301 and 401 as shown in FIGS. In some cases, the negative electrode current collector 3
00,400 itself may be a metal that does not form an alloy with lithium.

【0093】なお、リチウム電池の材料の調製、および
電池の組立は、水分が十分除去された乾燥空気中、ある
いは乾燥不活性ガス中で行うのが望ましい。
The preparation of the lithium battery material and the assembly of the battery are preferably carried out in dry air from which water is sufficiently removed or in dry inert gas.

【0094】絶縁パッキング 絶縁パッキング310,410の材料としては、フッ素
樹脂,ポリアミド樹脂,ポリスルフォン樹脂,各種ゴム
を使用することができる。封口方法としては、図4と図
5のように絶縁パッキングなどのガスケットを用いたか
しめ以外にも、ガラス封管,接着剤,溶接,半田付けな
どの方法を好適に用いることができる。
[0094] As the material for the insulating packing insulating packing 310, 410, may be used fluororesin, polyamide resin, polysulfone resin, and various rubbers. As a sealing method, in addition to caulking using a gasket such as an insulating packing as shown in FIGS. 4 and 5, a method such as a glass sealing tube, an adhesive, welding, and soldering can be preferably used.

【0095】また、図5の絶縁板411の材料として
は、各種有機樹脂材料やセラミックスを好適に用いるこ
とができる。
Various organic resin materials and ceramics can be preferably used as the material of the insulating plate 411 of FIG.

【0096】外缶 実際の電池の正極缶306,406や負極キャップ30
5,405の材料としては、ステンレススチール、特に
チタンクラッドステンレスや銅クラッドステンレス、ニ
ッケルメッキ鋼板などを好適に用いることができる。
Outer can Positive electrode cans 306, 406 and negative electrode cap 30 of actual battery
As the material of 5,405, stainless steel, particularly titanium clad stainless steel, copper clad stainless steel, nickel-plated steel plate and the like can be preferably used.

【0097】図4と図5では正極缶306,406が電
池ケースを兼ねているが、電池ケースの材質としては、
ステンレススチール以外にも亜鉛などの金属、ポリプロ
ピレンなどのプラスチック、あるいは金属やガラス繊維
とプラスチックの複合材を用いることができる。
In FIGS. 4 and 5, the positive electrode cans 306 and 406 also serve as the battery case.
Other than stainless steel, a metal such as zinc, a plastic such as polypropylene, or a composite material of metal or glass fiber and plastic can be used.

【0098】安全弁 図4と図5には図示されていないが、電池の内圧が高ま
ったときの安全策としては、ゴム、スプリング、金属ボ
ール、破裂箔などの安全弁が設けることは好ましい。
Safety valve Although not shown in FIG. 4 and FIG. 5, it is preferable to provide a safety valve such as rubber, spring, metal ball, or rupture foil as a safety measure when the internal pressure of the battery increases.

【0099】[0099]

【実施例】以下、実施例に基づき本発明を詳細に説明す
る。なお、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be described in detail below based on examples. The present invention is not limited to these examples.

【0100】(実施例1)構造と組立が簡単な図4に示
した概略断面構造のリチウム二次電池を作製した。厚さ
50ミクロンに研磨した50%ー50%のチタン−アル
ミニウム合金箔を5wt%の水酸化カリウム水溶液に5
分間浸して表面のアルミニウムをエッチングした後水洗
乾燥して負極301として使用した(チタンはリチウム
と合金をつくらない金属元素)。なお、上記負極の作製
前のチタンーアルミニウム合金板の表面研磨とエッチン
グ処理で、正極と対向する負極表面の触針法で計測した
表面粗さが、中心線平均粗さで0.6ミクロン以下、最
大高さで3.8ミクロン以下になるように調整した。こ
のとき測定長80ミクロンに対して、荒れの山の数は7
であった。
(Example 1) A lithium secondary battery having a schematic sectional structure shown in FIG. 50% -50% titanium-aluminum alloy foil polished to a thickness of 50 microns is added to a 5 wt% potassium hydroxide aqueous solution.
It was immersed for a minute to etch aluminum on the surface, washed with water and dried to be used as the negative electrode 301 (titanium is a metal element which does not form an alloy with lithium). The surface roughness of the surface of the negative electrode facing the positive electrode measured by the stylus method by the surface polishing and etching treatment of the titanium-aluminum alloy plate before the production of the negative electrode was 0.6 μm or less in terms of center line average roughness. The maximum height was adjusted to be 3.8 microns or less. At this time, the measured length is 80 microns, but the number of rough mountains is 7.
Met.

【0101】正極活物質としては、電解二酸化マンガン
と炭酸リチウムを1:0.4の比率で混合した後、80
0℃で加熱してリチウム−マンガン酸化物を調製した。
調製したリチウム−マンガン酸化物にアセチレンブラッ
クの炭素粉3重量(wt)%とポリフッ化ビリニデン粉
5wt%を混合しNーメチルー2ーピロリドンを添加し
てペースト状に調製した後、アルミニウム箔に塗布乾燥
して正極を形成した。
As the positive electrode active material, electrolytic manganese dioxide and lithium carbonate were mixed in a ratio of 1: 0.4, and then 80
A lithium-manganese oxide was prepared by heating at 0 ° C.
3 wt% carbon powder of acetylene black and 5 wt% polyvinylidene fluoride powder were mixed with the prepared lithium-manganese oxide, N-methyl-2-pyrrolidone was added to prepare a paste, and the mixture was applied to an aluminum foil and dried. To form a positive electrode.

【0102】電解液には、十分に水分を除去したエチレ
ンカーボネート(EC)とジメトキカーボンネート(D
MC)の等量混合溶媒に、四フッ化ホウ酸リチウム塩を
1M(mol/l)溶解したものを使用した。
The electrolytic solution contained ethylene carbonate (EC) and dimethocarbonate (D
1M (mol / l) of tetrafluoroboric acid lithium salt was dissolved in an equivalent mixed solvent of MC).

【0103】セパレータは、ポリプロピレン製の、不織
布と微細孔フィルムをサンドイッチし、50ミクロンの
厚みに調整したものを用いた。
As the separator, a polypropylene non-woven fabric and a microporous film sandwiched and adjusted to a thickness of 50 μm was used.

【0104】組立は、乾燥アルゴンガス雰囲気で行い、
負極と正極の間にセパレータをはさみ、チタンクラッド
のステンレス材の正極缶に挿入して、電解液を注入した
後、チタンクラッドのステンレス材の負極キャップとフ
ッ素ゴムの絶縁パッキングで密閉して、リチウム二次電
池を作製した。
Assembly was carried out in a dry argon gas atmosphere,
Insert a separator between the negative and positive electrodes, insert it into a titanium-clad stainless steel positive electrode can, inject the electrolyte, and then seal with a titanium-clad stainless steel negative electrode cap and fluororubber insulating packing, A secondary battery was produced.

【0105】(実施例2)構造と組立が簡単な図4に示
した概略断面構造のリチウム二次電池を作製した。
(Example 2) A lithium secondary battery having a schematic sectional structure shown in FIG.

【0106】まず、負極の作製を以下の手順で行った。
30ミクロン厚のアルミニウム箔を5%の水酸化カリウ
ム水溶液に5分間浸して表面をエッチングした後、洗浄
乾燥した。ついで、50℃の20wt%の塩化ニッケル
水溶液中で5分間浸して、両表面のアルミニウムの一部
をニッケルで置換した後水洗し、150℃で減圧乾燥し
た(ニッケルはリチウムと合金をつくらない金属元
素)。なお、表面研磨とエッチング処理で、正極と対向
する負極表面の触針法で計測した表面粗さが、中心線平
均粗さで0.4ミクロン以下、最大高さで2.0ミクロ
ン以下になるように調整した。このとき測定長80ミク
ロンに対して、荒れの山の数は8であった。
First, the negative electrode was manufactured by the following procedure.
A 30-micron-thick aluminum foil was immersed in a 5% aqueous potassium hydroxide solution for 5 minutes to etch the surface, and then washed and dried. Next, it was immersed in a 20 wt% nickel chloride aqueous solution at 50 ° C for 5 minutes, part of the aluminum on both surfaces was replaced with nickel, washed with water, and dried under reduced pressure at 150 ° C (nickel does not form an alloy with lithium). element). By the surface polishing and etching treatment, the surface roughness of the negative electrode surface facing the positive electrode measured by the stylus method is 0.4 μm or less in the center line average roughness and 2.0 μm or less in the maximum height. Was adjusted. At this time, the number of rough peaks was 8 for the measurement length of 80 μm.

【0107】セパレータには、厚み25ミクロンのポリ
プロピレン製の微細孔フィルムを用いた。
A 25-micron-thick polypropylene microporous film was used as the separator.

【0108】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0109】(実施例3) 構造と組立が簡単な図4に示した概略断面構造のリチウ
ム二次電池を作製した。
Example 3 A lithium secondary battery having a schematic cross-sectional structure shown in FIG. 4 having a simple structure and easy assembly was produced.

【0110】実施例2と同様の操作で作製した負極の集
電側の面にガラス転移温度−30℃のエポキシ樹脂中に
銀の微粉体を分散させた導電性インクをスクリーン印刷
で10ミクロンの厚みで形成し、減圧下150℃で架橋
硬化し導電層を形成して、負極を作製した。
A conductive ink in which fine silver powder was dispersed in an epoxy resin having a glass transition temperature of -30 ° C. was applied to the surface of the negative electrode prepared in the same manner as in Example 2 on the current collecting side by screen printing to a thickness of 10 μm. A negative electrode was prepared by forming the conductive film with a thickness and crosslinking and curing at 150 ° C. under reduced pressure.

【0111】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0112】(実施例4)構造と組立が簡単な図4に示
した概略断面構造のリチウム二次電池を作製した。
(Example 4) A lithium secondary battery having a schematic sectional structure shown in FIG.

【0113】まず、負極の作製を以下の手順で行った。
30ミクロン厚のアルミニウム箔を5%のフッ化水素酸
水溶液に浸して表面をエッチングした後、洗浄乾燥し
た。ついで、硫酸銅と硫酸の混合水溶液中で、両表面に
50ナノメートルの厚みの銅メッキを施し、150℃で
減圧乾燥した後、集電側の面にスズービスマス合金をス
パッタリングで500ナノメートルの厚みで形成し、負
極を作製した(銅はリチウムと合金を作らない金属元
素、スズ−ビスマス合金は伸び率の高い導電体層を形成
する合金)。なお、表面研磨とエッチング処理で、正極
と対向する負極表面の触針法で計測した表面粗さが、中
心線平均粗さで0.3ミクロン以下、最大高さで1.7
ミクロン以下になるように調整した。このとき測定長8
0ミクロンに対して、荒れの山の数は8であった。
First, the negative electrode was manufactured by the following procedure.
A 30-micron-thick aluminum foil was immersed in a 5% aqueous solution of hydrofluoric acid to etch the surface, and then washed and dried. Next, in a mixed solution of copper sulfate and sulfuric acid, both surfaces are plated with copper with a thickness of 50 nanometers and dried under reduced pressure at 150 ° C. Then, tin-bismuth alloy is sputtered on the surface of the current collecting side to a thickness of 500 nanometers. To form a negative electrode (copper is a metal element that does not form an alloy with lithium, and tin-bismuth alloy is an alloy that forms a conductor layer having a high elongation). The surface roughness of the negative electrode surface facing the positive electrode measured by the stylus method by the surface polishing and etching treatment was 0.3 μm or less in the center line average roughness and 1.7 in the maximum height.
It was adjusted to be less than or equal to micron. Measurement length 8 at this time
The number of rough peaks was 8 for 0 micron.

【0114】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0115】(実施例5)構造と組立が簡単な図4に示
した概略断面構造のリチウム二次電池を作製した。
(Embodiment 5) A lithium secondary battery having a schematic sectional structure shown in FIG.

【0116】まず、負極の作製を以下の手順で行った。
300メッシュのアルミニウム粉:結着剤のポリフッ化
ビリニデン粉:アセチレンブラック:フレーク状黒鉛を
89:5:3:3の重量比で混合し、N−メチル−2−
ピロリドンを添加してペーストを調製し、35ミクロン
厚のスズメッキ銅箔に塗布し、ロールプレス機で塗布厚
を均一に調整して、150℃で減圧乾燥して70ミクロ
ン厚の負極を作製した。
First, the negative electrode was manufactured by the following procedure.
300 mesh aluminum powder: binder polyvinylidene fluoride powder: acetylene black: flake graphite were mixed in a weight ratio of 89: 5: 3: 3, and N-methyl-2-
Pyrrolidone was added to prepare a paste, which was applied to a tin-plated copper foil having a thickness of 35 μm, the coating thickness was adjusted uniformly with a roll press, and dried under reduced pressure at 150 ° C. to prepare a 70 μm-thick negative electrode.

【0117】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0118】(実施例6)構造と組立が簡単な図4に示
した概略断面構造のリチウム二次電池を作製した。
(Embodiment 6) A lithium secondary battery having a schematic sectional structure shown in FIG. 4 having a simple structure and assembly was produced.

【0119】まず、負極の作製を以下の手順で行った。
ニッケルメッキした鉄のパンチングメタル箔に、300
メッシュのアルミニウム粉:粒径0.1ミクロン以下の
ニッケル超微粉:結着剤のメチルセルロースを90:
5:5の重量比で混合し、キシレンを添加してペースト
状にしコーターで35ミクロン厚のニッケル箔に塗布
し、ロールプレス機で塗布厚を均一に調整して、100
℃で乾燥した。ついで、700℃の減圧下で燒結させ
た。
First, the negative electrode was manufactured by the following procedure.
Nickel-plated iron punching metal foil, 300
Aluminum powder of mesh: Nickel ultrafine powder having a particle size of 0.1 micron or less: 90% of methylcellulose as a binder
Mix in a weight ratio of 5: 5, add xylene to form a paste and coat it on a 35 micron thick nickel foil with a coater.
It was dried at ° C. Then, it was sintered under a reduced pressure of 700 ° C.

【0120】次に、20wt%塩化ニッケル水溶液に5
0℃5分間浸漬して、アルミニウム粉のアルミニウムの
一部をニッケルで置換処理し洗浄乾燥後、150℃で減
圧乾燥して60ミクロン厚の負極を作製した。
Next, 5 wt.
It was immersed at 0 ° C. for 5 minutes, a part of aluminum in the aluminum powder was replaced with nickel, washed, dried, and dried under reduced pressure at 150 ° C. to prepare a 60-micron-thick negative electrode.

【0121】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0122】(実施例7)構造と組立が簡単な図4に示
した概略断面構造のリチウム二次電池を作製した。
(Example 7) A lithium secondary battery having a schematic sectional structure shown in FIG.

【0123】まず、負極の作製を以下の手順で行った。
250メッシュの40%ー60%のニッケル−アルミニ
ウム合金粉:結着剤のメチルセルロースを90:10の
重量比で混合し、キシレンを添加してペースト状にしコ
ーターで35ミクロン厚のニッケルのエキスパンドメタ
ル箔に塗布し、ロールプレス機で塗布厚を均一に調整し
て、100℃で乾燥した。ついで、700℃の減圧下で
燒結させた。次に、5wt%の水酸化カリウム水溶液に
5分間浸漬して表面をエッチング処理して、50ミクロ
ン厚の負極を作製した。
First, the negative electrode was manufactured by the following procedure.
250-mesh 40% -60% nickel-aluminum alloy powder: 90% by weight of a binder methylcellulose are mixed, and xylene is added to form a paste, and a 35 micron-thick nickel expanded metal foil is coated with a coater. The coating thickness was uniformly adjusted with a roll press and dried at 100 ° C. Then, it was sintered under a reduced pressure of 700 ° C. Next, the surface was etched by immersing it in a 5 wt% potassium hydroxide aqueous solution for 5 minutes to prepare a 50-micron-thick negative electrode.

【0124】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0125】(実施例8) 構造と組立が簡単な図4に示した概略断面構造のリチウ
ム二次電池を作製した。
(Example 8) A lithium secondary battery having a schematic cross-sectional structure shown in Fig. 4 was manufactured, which is easy in structure and assembly.

【0126】まず、負極の作製を以下の手順で行った。
300メッシュの50%ー50%のリチウムーアルミニ
ウム合金粉:150メッシュのマグネシウム粉:結着剤
のアセチルセルロースを45:45:10の重量比で混
合し、キシレンを添加してペースト状にしコーターで3
5ミクロン厚のニッケルのエキスパンドメタル箔に塗布
し、ロールプレス機で塗布厚を均一に調整して、100
℃で乾燥した。ついで、700℃の減圧下で燒結させ
た。次に、5wt%の水酸化カリウム水溶液に5分間浸
漬して表面をエッチング処理して、60ミクロン厚の負
極を作製した。
First, the negative electrode was manufactured by the following procedure.
300 mesh of 50% -50% lithium-aluminum alloy powder: 150 mesh of magnesium powder: acetyl cellulose as a binder are mixed in a weight ratio of 45:45:10, and xylene is added to form a paste. Three
Apply to a 5 micron thick expanded metal foil of nickel and adjust the coating thickness evenly with a roll press machine to 100
It was dried at ° C. Then, it was sintered under a reduced pressure of 700 ° C. Next, the surface was etched by immersing it in a 5 wt% potassium hydroxide aqueous solution for 5 minutes to prepare a 60-micron-thick negative electrode.

【0127】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0128】(実施例9) 構造と組立が簡単な図4に示した概略断面構造のリチウ
ム二次電池を作製した。
Example 9 A lithium secondary battery having the schematic sectional structure shown in FIG.

【0129】まず、日本油脂製のテトラフルオロエチレ
ンとビニルエーテルとの共重合体(商品名スーパーコナ
ックF)のキシレン溶液とホウフッ化リチウムのジメチ
ルカーボネート溶液を混合し、表面被覆用の溶液を調製
した。尚、ホウフッ化リチウムは混合した溶液全体に対
して1wt%混合した。次に、実施例4と同様な操作で
作製した負極の正極と対向する表面に、スピナーで先に
調製した表面被覆用の溶液を塗布し、減圧下170℃で
乾燥硬化し、さらに紫外線を照射して、膜厚100ナノ
メートル程のリチウムイオン透過性膜を表面被覆した負
極を作製した。
First, a xylene solution of a copolymer of tetrafluoroethylene and vinyl ether (trade name: Super Konak F) manufactured by NOF CORPORATION and a dimethyl carbonate solution of lithium borofluoride were mixed to prepare a solution for surface coating. . Note that lithium borofluoride was mixed in an amount of 1 wt% with respect to the entire mixed solution. Next, the surface coating solution previously prepared with a spinner was applied to the surface of the negative electrode prepared in the same manner as in Example 4 facing the positive electrode, dried and cured at 170 ° C. under reduced pressure, and further irradiated with ultraviolet rays. Then, a negative electrode having a surface coated with a lithium ion permeable film having a film thickness of about 100 nanometers was produced.

【0130】以下は実施例1と同様にして、電池を組み
立てた。
A battery was assembled in the same manner as in Example 1 below.

【0131】なお、上記実施例1から9の正極活物質に
は負極の性能を評価する為にリチウム−マンガン酸化物
一種類を使用したが、これに限定されるものでなく、リ
チウム−ニッケル酸化物、リチウム−コバルト酸化物、
など各種の正極活物質も採用できる。
The positive electrode active materials of Examples 1 to 9 used one type of lithium-manganese oxide in order to evaluate the performance of the negative electrode. However, the present invention is not limited to this, and lithium-nickel oxide is used. Thing, lithium-cobalt oxide,
Various positive electrode active materials can also be adopted.

【0132】また、電解液に関しても、実施例1から9
まで同じものを使用したが、本発明はこれに限定される
ものでない。
Further, regarding the electrolytic solution, Examples 1 to 9 were used.
Although the same has been used up to now, the present invention is not limited thereto.

【0133】(比較例1) 実施例1の負極に替えて30ミクロン厚のアルミニウム
箔を用いて、実施例同様に図4に示した概略断面構造の
電池を実施例1と同様な手順で作製した。なお、正極と
対向する負極表面の触針法で計測した表面粗さは、中心
線平均粗さで0.15ミクロン以下、最大高さで0.7
ミクロン以下であった。このとき測定長80ミクロンに
対して、荒れの山の数は6であった。
(Comparative Example 1) A battery having a schematic sectional structure shown in FIG. 4 was prepared in the same procedure as in Example 1, except that the negative electrode of Example 1 was replaced with an aluminum foil having a thickness of 30 μm. did. The surface roughness of the surface of the negative electrode facing the positive electrode measured by the stylus method was 0.15 μm or less in center line average roughness and 0.7 in maximum height.
It was less than micron. At this time, the number of rough peaks was 6 for the measurement length of 80 μm.

【0134】(比較例2) 実施例1の負極に替えて日本蓄電器工業製の表面をエッ
チング処理した100ミクロン厚のアルミニウム箔を用
いて、実施例同様に図4に示した概略断面構造の電池を
実施例1と同様な手順で作製した。
Comparative Example 2 A battery having a schematic sectional structure shown in FIG. 4 was used in the same manner as in Example 1 except that the negative electrode of Example 1 was replaced by a 100 μm thick aluminum foil manufactured by Nihon Denki Kogyo Kogyo Co., Ltd. Was manufactured in the same procedure as in Example 1.

【0135】(比較例3)実施例2の負極に替えて以下
の手順で作製したグラファイト負極用いて、実施例同様
に図4に示した概略断面構造の電池を実施例2と同様な
手順で作製した。グラファイト負極は、天然グラファイ
ト粉をアルゴンガス下2000℃で熱処理した後、天然
グラファイト粉:アセチレンブラック:ポリフッ化ビリ
ニデン粉を82:3:5の重量比で混合し、Nーメチル
ー2ーピロリドンを添加してペースト状に調製した後、
35ミクロン厚の銅箔に塗布し、ロールプレス機で塗布
厚を均一に調整して、150℃で減圧乾燥して110ミ
クロン厚の負極を作製した。
(Comparative Example 3) A battery having the schematic cross-sectional structure shown in FIG. 4 was prepared in the same procedure as in Example 2 in the same manner as in Example 2 except that the graphite anode prepared in the following procedure was used instead of the anode in Example 2. It was made. The graphite negative electrode was prepared by heat treating natural graphite powder at 2000 ° C. under argon gas, mixing natural graphite powder: acetylene black: polyvinylidene fluoride powder at a weight ratio of 82: 3: 5, and adding N-methyl-2-pyrrolidone. After preparing into a paste,
A 35-micron-thick copper foil was coated, the coating thickness was adjusted uniformly with a roll press, and dried under reduced pressure at 150 ° C. to prepare a 110-micron-thick negative electrode.

【0136】リチウム二次電池の性能評価 実施例および比較例で作製したリチウム二次電池の性能
評価を以下の条件で充放電サイクル試験を行い、比較例
の電池と比較して性能を評価した。
Performance Evaluation of Lithium Secondary Battery A charge / discharge cycle test was performed under the following conditions to evaluate the performance of the lithium secondary batteries manufactured in Examples and Comparative Examples, and the performance was evaluated in comparison with the batteries of Comparative Examples.

【0137】サイクル試験の条件は、正極活物質量から
計算される電気容量を基準に0.5C(容量/時間の
0.5倍の電流)の充放電、充電のカットオフ電圧4.
5V、30分の休憩時間、放電のカットオフ電圧2.5
V、とした。充電のカットオフ電圧は電解液中の溶媒の
分解を進行させないように決めた。電池の充放電装置に
は、北斗電工製HJ−106Mを使用した。なお、充放
電試験は、充電より開始し、電池容量は3回目の放電量
とし、サイクル寿命は充電電位が4.5Vに達したサイ
クル回数とした。
The conditions of the cycle test are: charge and discharge of 0.5 C (0.5 times the capacity / hour of current) based on the electric capacity calculated from the amount of the positive electrode active material;
5V, 30 minutes rest time, discharge cut-off voltage 2.5
V. The charge cut-off voltage was determined so that decomposition of the solvent in the electrolytic solution would not proceed. Hokuto Denko HJ-106M was used for the battery charging / discharging device. The charge / discharge test was started from charging, the battery capacity was the third discharge amount, and the cycle life was the number of cycles at which the charge potential reached 4.5V.

【0138】本発明の負極を用いて作製したリチウム電
池、すなわち実施例と比較例の電池の単位体積当たりの
放電エネルギー密度とサイクル寿命に関する性能の評価
結果を、比較例1の電池の性能(放電容量及びサイクル
寿命)を1.0として規格化して、表1にまとめて示し
た。
The performance evaluation results of the lithium battery manufactured by using the negative electrode of the present invention, that is, the discharge energy density per unit volume and the cycle life of the batteries of Examples and Comparative Examples are shown as the performance (discharge) of the battery of Comparative Example 1. Capacity and cycle life) were standardized as 1.0 and summarized in Table 1.

【0139】表1から理解できるように実施例1から9
と比較例1、2の比較から、本発明の負極を用いた二次
電池を採用し、負極表面を活性にし、集電能を向上させ
ることによって、サイクル寿命が伸びることがわかっ
た。また、実施例1から9と比較例3の比較から、カー
ボン負極に較べて寿命はほぼ同じであるがエネルギー密
度が高い二次電池が作製できることが分かった。
As can be seen from Table 1, Examples 1 to 9
From the comparison between Comparative Examples 1 and 2, it was found that the cycle life was extended by adopting the secondary battery using the negative electrode of the present invention, activating the surface of the negative electrode, and improving the current collecting ability. Further, from the comparison between Examples 1 to 9 and Comparative Example 3, it was found that it is possible to manufacture a secondary battery having substantially the same life as the carbon negative electrode but a high energy density.

【0140】[0140]

【表1】 [Table 1]

【0141】[0141]

【発明の効果】上記した本発明によれば充放電サイクル
寿命の長い、高エネルギー密度のリチウム二次電池を提
供することができる。
According to the present invention described above, it is possible to provide a high energy density lithium secondary battery having a long charge / discharge cycle life.

【0142】また、本発明によれば、充放電時のリチウ
ムの析出溶解による微粉化及び亀裂の発生による集電能
の低下を抑えることのできる負極構造を有する電池用電
極及び該電極を有するリチウム二次電池を提供すること
ができる。
Further, according to the present invention, a battery electrode having a negative electrode structure and a lithium battery having the electrode, which can suppress deterioration of current collecting ability due to pulverization and cracking due to precipitation and dissolution of lithium during charge and discharge, A secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二次電池の好適な一例を説明するため
の概念的構成図である。
FIG. 1 is a conceptual configuration diagram for explaining a preferred example of a secondary battery of the present invention.

【図2】(a),(b),(c),(c′)は夫々本発
明の負極の好適な一例を説明するための模式的断面図で
ある。
2 (a), (b), (c) and (c ') are schematic cross-sectional views for explaining a preferred example of the negative electrode of the present invention.

【図3】(d),(e),(f),(g)は夫々本発明
の負極の好適な一例を説明するための模式的断面図であ
る。
3 (d), (e), (f) and (g) are schematic cross-sectional views for explaining a preferred example of the negative electrode of the present invention.

【図4】単層式偏平型電池の一例を説明するための概略
断面図である。
FIG. 4 is a schematic cross-sectional view for explaining an example of a single-layer flat type battery.

【図5】スパイラル構造円筒型電池の一例を説明するた
めの概略断面図である。
FIG. 5 is a schematic cross-sectional view for explaining an example of a spiral structure cylindrical battery.

【図6】触針法による負極表面の測定結果の一例を説明
するための図である。
FIG. 6 is a diagram for explaining an example of a measurement result of a negative electrode surface by a stylus method.

【図7】負極表面の導電体部の表面粗さの最大高さRm
axの1/2と中心線平均粗さRaとの差と、負極のサ
イクル寿命との関係の一例を示した図である。
FIG. 7 is the maximum height Rm of the surface roughness of the conductor portion on the negative electrode surface.
It is a figure showing an example of the relation between the cycle life of a negative electrode and the difference of 1/2 of ax and center line average roughness Ra.

【図8】負極表面の導電体部の中心線平均粗さRa、測
定長L、測定長L当たりの山の数nと負極のサイクル寿
命との関係の一例を示した図である。
FIG. 8 is a diagram showing an example of the relationship between the centerline average roughness Ra of the conductor portion on the negative electrode surface, the measurement length L, the number n of peaks per measurement length L, and the cycle life of the negative electrode.

【符号の説明】[Explanation of symbols]

101 リチウムと合金を作らない金属元素から成る集
電部 102 リチウムと合金を作る金属元素を含有する部材 103 リチウムと合金を作る金属元素を含有する粉体
状部材 104 導電補助剤 105 結着剤 106 リチウムと合金を作らない金属元素 107 伸び率の高い導電層 108 リチウムと合金を作る金属元素とリチウムと合
金を作らない金属元素の合金 200 集電部 201 リチウムと合金を作る金属元素を含有する部材
からなる層 202 負極 203 正極 204 電解質(電解液) 205 セパレータ 206 負極端子 207 正極端子 208 電池ケース 300 負極集電体 301 負極活物質(又は負極) 303 正極活物質(又は正極) 305 負極端子 306 正極缶 307 電解質とセパレータ 310 絶縁パッキング 400 負極集電体 401 負極活物質(又は負極) 403 正極活物質(又は正極) 404 正極集電体 405 負極端子 406 正極缶 407 電解質とセパレータ 410 絶縁パッキング 411 絶縁板
Reference numeral 101 is a current collector made of a metal element that does not form an alloy with lithium 102 is a member that contains a metal element that forms an alloy with lithium 103 is a powdery member that contains a metal element that forms an alloy with lithium 104 Conductive auxiliary agent 105 Binder 106 Metal element that does not form an alloy with lithium 107 Conductive layer 108 having a high elongation rate 108 Alloy of a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium 200 Current collecting portion 201 Member that contains a metal element that forms an alloy with lithium Layer 202 made of negative electrode 203 positive electrode 204 electrolyte (electrolyte) 205 separator 206 negative electrode terminal 207 positive electrode terminal 208 battery case 300 negative electrode current collector 301 negative electrode active material (or negative electrode) 303 positive electrode active material (or positive electrode) 305 negative electrode terminal 306 positive electrode Can 307 Electrolyte and separator 310 Insulating packing 400 Negative electrode current collector 401 negative electrode active material (or negative electrode) 403 positive electrode active material (or positive electrode) 404 positive electrode current collector 405 negative electrode terminal 406 positive electrode can 407 electrolyte and separator 410 insulating packing 411 insulating plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 4/66 H01M 4/66 A 10/40 10/40 Z (72)発明者 浅尾 昌也 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (56)参考文献 特開 昭62−243247(JP,A) 特開 昭61−8849(JP,A) 特開 平3−167762(JP,A) 特開 平4−179069(JP,A) 特開 平4−129177(JP,A) 特開 平3−291852(JP,A) 特開 昭63−285865(JP,A) 特開 昭60−175375(JP,A) 特開 平4−259764(JP,A) 特開 昭63−126157(JP,A) 特開 平6−84512(JP,A) 特開 平4−149959(JP,A) 特開 平5−144475(JP,A) 特開 平4−206258(JP,A) 特開 平4−249862(JP,A) 特開 平6−36800(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/36 - 10/40 H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 4/66 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01M 4/66 H01M 4/66 A 10/40 10/40 Z (72) Inventor Masaya Asao 3-30 Shimomaruko, Ota-ku, Tokyo No. 2 within Canon Inc. (56) Reference JP 62-243247 (JP, A) JP 61-8849 (JP, A) JP 3-167762 (JP, A) JP 4- 179069 (JP, A) JP 4-129177 (JP, A) JP 3-291852 (JP, A) JP 63-285865 (JP, A) JP 60-175375 (JP, A) JP-A-4-259764 (JP, A) JP-A-63-126157 (JP, A) JP-A-6-84512 (JP, A) JP-A-4-149959 (JP, A) JP-A-5-144475 (JP, A) JP-A-4-206258 (JP, A) JP-A-4-249862 (JP, A) JP-A-6-36800 JP, A) (58) investigated the field (Int.Cl. 7, DB name) H01M 10/36 - 10/40 H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 4/66

Claims (26)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負極、セパレーター、正極、電解質ある
いは電解液を少なくとも有するリチウム二次電池におい
て、負極が少なくとも充電時にリチウムと合金を作る金
属元素と充電時にリチウムと合金を作らない金属元素を
構成要素として有し、充電時にリチウムと合金を作らな
い金属部分から負極側の出力端子が引き出され、前記電
解液と接し正極と対向する負極表面の導電体部の粗さの
(最大山から最深谷までの)最大高さRmaxの1/2
と中心線平均粗さRaとの差が、負極表面正極表面間の
距離の1/10以下であり、前記負極表面の導電体部の
粗さに関して、測定長をL、測定長L当たりの山の数を
nとする時、1+(4nRa/L)が1.05以上であ
ことを特徴とするリチウム二次電池。
1. A negative electrode, a separator, a positive electrode, at least a lithium secondary battery electrolyte or electrolytic solution, component a metal element anode is not made of an alloy with lithium during charging and the metal element to make an alloy with lithium at least during charging as a, an output terminal of the negative electrode side of a metal portion which is not made of an alloy with lithium is drawn during charging, the electric
The roughness of the conductor part on the surface of the negative electrode that is in contact with the solution and faces the positive electrode
1/2 of maximum height Rmax (from maximum mountain to deepest valley)
And the centerline average roughness Ra is the difference between the negative electrode surface and the positive electrode surface.
It is 1/10 or less of the distance, and
Regarding roughness, the measurement length is L and the number of peaks per measurement length L is
When n, 1+ (4nRa / L) is 1.05 or more
Lithium secondary battery, characterized by that.
【請求項2】 前記負極の電解液と接し正極と対向する
表面、及び出力端子につながる部分で、充電時にリチウ
ムと合金を作らない金属元素の含有率が高いことを特徴
とする請求項1に記載のリチウム二次電池。
2. The content of a metal element which does not form an alloy with lithium at the time of charging is high in a portion of the surface of the negative electrode which is in contact with the electrolytic solution and faces the positive electrode and a portion which is connected to the output terminal. The lithium secondary battery according to claim 1.
【請求項3】 前記負極が粉体状の充電時にリチウムと
合金を作る金属元素を含有する部材を、結着剤で、充電
時にリチウムと合金を作らない金属の集電部材に結着さ
せていることを特徴とする請求項1乃至2のいずれか1
項に記載のリチウム二次電池。
Wherein the member to which the anode contains a metal element to make an alloy with lithium during charging of the powdery, in a binder, charge
Can any of claims 1 to 2, characterized in that is bound to at lithium alloy metallic current collecting member not to make 1
The lithium secondary battery according to the item.
【請求項4】 前記負極が、少なくとも充電時にリチウ
ムと合金を作る金属と、充電時にリチウムと合金を作ら
ない金属の、合金から構成されていることを特徴とする
請求項1乃至3のいずれか1項に記載のリチウム二次電
池。
Wherein said negative electrode comprises a metal making lithium <br/> arm and alloys least during charging, the metal does not form an alloy with lithium during charge, claim 1, characterized by being composed of an alloy 4. The lithium secondary battery according to any one of items 1 to 3.
【請求項5】 前記充電時にリチウムと合金を作る金属
元素を含有する部材が、エッチング速度が異なり選択的
にエッチング可能な二種以上の金属の合金から成ること
を特徴とする請求項1乃至4のいずれか1項に記載のリ
チウム二次電池。
5. The member containing a metal element that forms an alloy with lithium upon charging is made of an alloy of two or more kinds of metals having different etching rates and capable of being selectively etched. The lithium secondary battery according to any one of 1.
【請求項6】 前記負極中の、充電時にリチウムと合金
を作る金属元素、あるいは充電時にリチウムと合金を作
らない金属元素の少なくともいずれか1方を選択的にエ
ッチングして比表面積を高められた負極を有することを
特徴とする請求項1乃至5のいずれか1項に記載のリチ
ウム二次電池。
6. The specific surface area is increased by selectively etching at least one of a metal element that forms an alloy with lithium during charging or a metal element that does not form an alloy with lithium during charging in the negative electrode. It has a negative electrode, The lithium secondary battery of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
【請求項7】 前記負極の集電部に、室温での伸び率が
前記充電時にリチウムと合金を作る金属より高い導電体
層を設けたことを特徴とする請求項1乃至のいずれか
1項に記載のリチウム二次電池。
7. The current collecting portion of the negative electrode has an elongation percentage at room temperature.
The lithium secondary battery according to any one of claims 1 to 6, characterized in that a high conductive layer of a metal to make an alloy with lithium during the charging.
【請求項8】 前記充電時にリチウムと合金を作る金属
元素がアルミニウム、マグネシウム、カリウム、ナトリ
ウム、カルシウム、ストロンチウム、バリウム、シリコ
ン、ゲルマニウム、スズ、鉛、インジウム、亜鉛から選
択される一種以上の元素であることを特徴とする請求項
1乃至6のいずれか1項に記載のリチウム二次電池。
8. The metal element which forms an alloy with lithium upon charging is one or more elements selected from aluminum, magnesium, potassium, sodium, calcium, strontium, barium, silicon, germanium, tin, lead, indium and zinc. It exists, The lithium secondary battery of any one of Claims 1 thru | or 6 characterized by the above-mentioned.
【請求項9】 前記充電時にリチウムと合金を作らない
金属元素から成る集電部材がニッケル、チタン、銅、
銀、金、白金、鉄、コバルト、クロム、タングステン、
モリブデン、から選択される一種以上の部材であること
を特徴とする請求項1乃至6のいずれか1項に記載のリ
チウム二次電池。
9. The current collecting member made of a metal element that does not form an alloy with lithium during charging is nickel, titanium, copper,
Silver, gold, platinum, iron, cobalt, chromium, tungsten,
The lithium secondary battery according to any one of claims 1 to 6, wherein the lithium secondary battery is one or more members selected from molybdenum.
【請求項10】 前記負極の集電部に配置した伸び率の
高い導電体層が、スズ、スズ−ビスマス合金、スズ−鉛
合金、亜鉛−アルミニウム合金、銅−亜鉛合金、カドミ
ウム−亜鉛合金、導電体微粉を有機高分子材で結着させ
る導電性インク、から選択される一種類以上の導電体か
ら構成されていることを特徴とする請求項に記載のリ
チウム二次電池。
10. The high-elongation conductor layer disposed in the current collector of the negative electrode comprises tin, tin-bismuth alloy, tin-lead alloy, zinc-aluminum alloy, copper-zinc alloy, cadmium-zinc alloy, The lithium secondary battery according to claim 7 , wherein the lithium secondary battery is composed of one or more kinds of conductors selected from a conductive ink in which fine conductor powder is bound with an organic polymer material.
【請求項11】 前記負極集電部の伸び率の高い導電体
層に用いる導電性インク中の有機高分子が、電解液と反
応しないフッ素樹脂、ポリオレフィン、シリコン樹脂、
高度に架橋する高分子であることを特徴とする請求項
に記載のリチウム二次電池。
11. A fluororesin, a polyolefin, a silicone resin, in which an organic polymer in a conductive ink used for a conductor layer having a high elongation of the negative electrode current collector does not react with an electrolytic solution,
Claim, characterized in that a polymer that highly crosslinked 1
The lithium secondary battery according to 0 .
【請求項12】 前記正極を構成する正極活物質がリチ
ウム元素を含有していることを特徴とする請求項1に記
載のリチウム二次電池。
12. The lithium secondary battery according to claim 1, wherein the positive electrode active material forming the positive electrode contains a lithium element.
【請求項13】 前記負極表面が、電解液に溶解しな
い、リチウムイオンを透過できるが充電で析出したリチ
ウム金属は透過しない絶縁体膜または半導体膜で被覆さ
れていることを特徴とする請求項1乃至のいずれか1
項に記載のリチウム二次電池。
13. The negative electrode surface is covered with an insulating film or a semiconductor film which is insoluble in an electrolytic solution and is permeable to lithium ions but impermeable to lithium metal deposited by charging. 1 to 6
The lithium secondary battery according to the item.
【請求項14】 少なくとも充電時にリチウムと合金を
作る金属元素と充電時にリチウムと合金を作らない金属
元素を構成要素として有し、充電時にリチウムと合金を
作らない金属部分から出力端子が引き出され、負極とし
て用いられる 電池用電極であって、電解液と接し正極と
対向する負極表面の導電体部の粗さの(最大山から最深
谷までの)最大高さRmaxの1/2と中心線平均粗さ
Raとの差が、負極表面正極表面間の距離の1/10以
下であり、前記負極表面の導電体部の粗さに関して、測
定長をL、測定長L当たりの山の数をnとする時、1+
(4nRa/L)が1.05以上であることを特徴とす
る電池用電極。
Has a 14. A metal element does not form an alloy with lithium at least during charging and the metal element to make an alloy with lithium during charging as a component, an output terminal from the metal portion does not form an alloy with lithium during charging withdrawn, As the negative electrode
An electrode for a battery that is used as a positive electrode
The roughness of the conductor part on the surface of the facing negative electrode
1/2 of maximum height Rmax (to valley) and center line average roughness
The difference from Ra is 1/10 or less of the distance between the negative electrode surface and the positive electrode surface.
Below, the roughness of the conductor portion on the surface of the negative electrode was measured.
When the fixed length is L and the number of peaks per measured length L is n, 1+
(4nRa / L) is 1.05 or more, The electrode for batteries characterized by the above-mentioned .
【請求項15】 前記負極の電解液と接し正極と対向す
る表面、及び出力端子につながる部分で、充電時にリチ
ウムと合金を作らない金属元素の含有率が高いことを特
徴とする請求項14に記載の電池用電極。
15. The content of a metal element that does not form an alloy with lithium at the time of charging is high in the surface of the negative electrode that is in contact with the electrolytic solution and faces the positive electrode, and the portion that is connected to the output terminal. 15. The battery electrode according to claim 14 .
【請求項16】 前記負極が粉体状の充電時にリチウム
と合金を作る金属元素を含有する部材を、結着剤で、
電時にリチウムと合金を作らない金属の集電部材に結着
させていることを特徴とする請求項14又は15に記載
の電池用電極。
The member of claim 16 wherein said negative electrode contains a metal element to make an alloy with lithium during charging of the powdery, in a binder, charge
The battery electrode according to claim 14 or 15 , which is bound to a metal current collecting member that does not form an alloy with lithium when electricity is applied.
【請求項17】 前記負極が、少なくとも充電時にリチ
ウムと合金を作る金属と、充電時にリチウムと合金を作
らない金属の、合金から構成されていることを特徴とす
る請求項14乃至16のいずれか1項に記載の電池用電
極。
17. The negative electrode includes a metal making lithium <br/> um alloy at least during charging, the metal does not form an alloy with lithium during charge, claim 14, characterized by being composed of an alloy 17. The battery electrode according to any one of items 1 to 16 .
【請求項18】 前記充電時にリチウムと合金を作る金
属元素を含有する部材が、エッチング速度が異なり選択
的にエッチング可能な二種以上の金属の合金から成るこ
とを特徴とする請求項14乃至17のいずれか1項に記
載の電池用電極。
18. member containing the metal element to make an alloy with lithium during the charging, claims 14 to 17, characterized in that it consists of selectively etchable two or more metal alloy different from the etching rate The battery electrode according to any one of 1 .
【請求項19】 前記負極中の、充電時にリチウムと合
金を作る金属元素、あるいは充電時にリチウムと合金を
作らない金属元素の少なくともいずれか1方を選択的に
エッチングして比表面積を高められた負極を有すること
を特徴とする請求項14乃至18のいずれか1項に記載
の電池用電極。
19. The specific surface area is increased by selectively etching at least one of a metal element that forms an alloy with lithium during charging or a metal element that does not form an alloy with lithium during charging in the negative electrode. The battery electrode according to any one of claims 14 to 18, which has a negative electrode.
【請求項20】 前記負極の集電部に、室温での伸び率
前記充電時にリチウムと合金を作る金属より高い導電
体層を設けたことを特徴とする請求項14乃至19のい
ずれか1項に記載の電池用電極。
To 20. collector portion of the negative electrode, Neu claims 14 to 19 elongation, characterized in that a high conductive layer of a metal to make an alloy with lithium during the charging at room temperature
The battery electrode according to item 1 .
【請求項21】 前記充電時にリチウムと合金を作る金
属元素がアルミニウム、マグネシウム、カリウム、ナト
リウム、カルシウム、ストロンチウム、バリウム、シリ
コン、ゲルマニウム、スズ、鉛、インジウム、亜鉛から
選択される一種以上の元素であることを特徴とする請求
項14乃至19のいずれか1項に記載の電池用電極。
21. The metal element which forms an alloy with lithium upon charging is one or more elements selected from aluminum, magnesium, potassium, sodium, calcium, strontium, barium, silicon, germanium, tin, lead, indium and zinc. Claims characterized by
Item 20. The battery electrode according to any one of items 14 to 19 .
【請求項22】 前記充電時にリチウムと合金を作らな
い金属元素から成る集電部材がニッケル、チタン、銅、
銀、金、白金、鉄、コバルト、クロム、タングステン、
モリブデン、から選択される一種以上の部材であること
を特徴とする請求項14乃至19のいずれか1項に記載
の電池用電極。
22. The current collecting member made of a metal element that does not form an alloy with lithium during charging is nickel, titanium, copper,
Silver, gold, platinum, iron, cobalt, chromium, tungsten,
The battery electrode according to any one of claims 14 to 19, which is one or more members selected from molybdenum.
【請求項23】 前記負極の集電部に配置した伸び率の
高い導電体層が、スズ、スズ−ビスマス合金、スズ−鉛
合金、亜鉛−アルミニウム合金、銅−亜鉛合金、カドミ
ウム−亜鉛合金、導電体微粉を有機高分子材で結着させ
る導電性インク、から選択される一種類以上の導電体か
ら構成されていることを特徴とする請求項20に記載の
電池用電極。
23. The high-elongation conductor layer disposed in the current collector of the negative electrode comprises tin, tin-bismuth alloy, tin-lead alloy, zinc-aluminum alloy, copper-zinc alloy, cadmium-zinc alloy, 21. The battery electrode according to claim 20 , comprising one or more kinds of conductors selected from a conductive ink in which fine conductor powder is bound with an organic polymer material.
【請求項24】 前記負極集電部の伸び率の高い導電体
層に用いる導電性インク中の有機高分子が、電解液と反
応しないフッ素樹脂、ポリオレフィン、シリコン樹脂、
高度に架橋する高分子であることを特徴とする請求項
に記載の電池用電極。
24. A fluororesin, a polyolefin, a silicone resin, in which an organic polymer in a conductive ink used for a conductive layer having a high elongation of the negative electrode current collector does not react with an electrolytic solution,
3. A highly cross-linked polymer.
3. The battery electrode according to item 3 .
【請求項25】 前記正極を構成する正極活物質がリチ
ウム元素を含有していることを特徴とする請求項14
記載の電池用電極。
25. The battery electrode according to claim 14 , wherein the positive electrode active material forming the positive electrode contains a lithium element.
【請求項26】 前記負極表面が、電解液に溶解しな
い、リチウムイオンを透過できるが充電で析出したリチ
ウム金属は透過しない絶縁体膜または半導体膜で被覆さ
れていることを特徴とする請求項14乃至19のいずれ
か1項に記載の電池用電極。
26. The method of claim 25, wherein the surface of the negative electrode does not dissolve in the electrolytic solution, claim 14, characterized in that it can pass through the lithium ion of lithium metal precipitated at a charge is covered with an insulating film or a semiconductor film does not transmit Any of through 19
2. The battery electrode according to item 1 .
JP12813995A 1994-05-30 1995-05-26 Battery electrode and lithium secondary battery having the electrode Expired - Lifetime JP3495814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12813995A JP3495814B2 (en) 1994-05-30 1995-05-26 Battery electrode and lithium secondary battery having the electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11671794 1994-05-30
JP6-116717 1994-05-30
JP12813995A JP3495814B2 (en) 1994-05-30 1995-05-26 Battery electrode and lithium secondary battery having the electrode

Publications (2)

Publication Number Publication Date
JPH0850922A JPH0850922A (en) 1996-02-20
JP3495814B2 true JP3495814B2 (en) 2004-02-09

Family

ID=26454990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12813995A Expired - Lifetime JP3495814B2 (en) 1994-05-30 1995-05-26 Battery electrode and lithium secondary battery having the electrode

Country Status (1)

Country Link
JP (1) JP3495814B2 (en)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619000B2 (en) * 1997-01-28 2005-02-09 キヤノン株式会社 Electrode structure, secondary battery, and manufacturing method thereof
JP3879197B2 (en) * 1997-09-12 2007-02-07 トヨタ自動車株式会社 Method for producing electrode for lithium ion secondary battery
JP4016344B2 (en) * 1998-12-03 2007-12-05 住友電気工業株式会社 Lithium secondary battery
JP3578015B2 (en) * 1998-12-03 2004-10-20 住友電気工業株式会社 Lithium secondary battery
EP1244163A4 (en) 1999-10-22 2007-10-31 Sanyo Electric Co Electrode for lithium secondary cell and lithium secondary cell
AU7951100A (en) 1999-10-22 2001-04-30 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
JP3702224B2 (en) 1999-10-22 2005-10-05 三洋電機株式会社 Method for producing electrode for lithium secondary battery
JP3733067B2 (en) 1999-10-22 2006-01-11 三洋電機株式会社 Lithium battery electrode and lithium secondary battery
JP3733071B2 (en) 1999-10-22 2006-01-11 三洋電機株式会社 Lithium battery electrode and lithium secondary battery
JP4049506B2 (en) * 2000-02-29 2008-02-20 三洋電機株式会社 Lithium secondary battery
WO2001084654A1 (en) 2000-04-26 2001-11-08 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
CN1280930C (en) * 2000-09-01 2006-10-18 三洋电机株式会社 Negative electrode for lithium secondary cell and method for producing the same
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2002151056A (en) 2000-11-14 2002-05-24 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP5303817B2 (en) * 2001-07-25 2013-10-02 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP4225727B2 (en) 2001-12-28 2009-02-18 三洋電機株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
EP1501136A4 (en) * 2002-04-26 2009-12-30 Mitsui Mining & Smelting Co Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
JP3664252B2 (en) 2002-11-19 2005-06-22 ソニー株式会社 Negative electrode and battery using the same
JP4422417B2 (en) * 2003-02-07 2010-02-24 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
KR100680650B1 (en) 2002-11-29 2007-02-08 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
JP3935067B2 (en) 2002-12-26 2007-06-20 ソニー株式会社 Secondary battery negative electrode and secondary battery using the same
JP2004311141A (en) 2003-04-04 2004-11-04 Sony Corp Electrode and battery using it
BR0317920B1 (en) * 2003-04-23 2012-02-07 negative electrode for non-aqueous secondary battery, negative electrode production process, and non-aqueous secondary battery.
JP3707617B2 (en) * 2003-05-20 2005-10-19 ソニー株式会社 Negative electrode and battery using the same
JP2005025978A (en) * 2003-06-30 2005-01-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2005063958A (en) * 2003-07-29 2005-03-10 Mamoru Baba Thin-film solid lithium secondary battery and its manufacturing method
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
KR100974402B1 (en) * 2003-12-04 2010-08-05 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Secondary battery-use electrode and production method therefor and secondary battery
JP4764232B2 (en) * 2003-12-04 2011-08-31 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005197217A (en) * 2003-12-10 2005-07-21 Mitsui Mining & Smelting Co Ltd Anode for non-aqueous electrolytic solution secondary battery
JP3953026B2 (en) * 2003-12-12 2007-08-01 松下電器産業株式会社 Electrode plate for lithium ion secondary battery, lithium ion secondary battery and method for producing the same
JP4763995B2 (en) * 2004-01-07 2011-08-31 三井金属鉱業株式会社 Nonaqueous electrolyte secondary battery electrode
KR100856638B1 (en) 2004-03-30 2008-09-03 마쯔시다덴기산교 가부시키가이샤 Lithium ion secondary battery and charge/discharge controlling system thereof
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
JP3799049B2 (en) * 2004-05-12 2006-07-19 三井金属鉱業株式会社 Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP3742828B2 (en) * 2004-05-19 2006-02-08 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
JP4798966B2 (en) * 2004-06-07 2011-10-19 三洋電機株式会社 Lithium secondary battery
US7417266B1 (en) 2004-06-10 2008-08-26 Qspeed Semiconductor Inc. MOSFET having a JFET embedded as a body diode
US7838154B2 (en) 2004-09-09 2010-11-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery
TWI311384B (en) 2004-11-25 2009-06-21 Sony Corporatio Battery and method of manufacturing the same
EP1780820A4 (en) * 2005-03-02 2009-09-09 Panasonic Corp Lithium ion secondary cell and manufacturing method thereof
JP4910297B2 (en) 2005-03-17 2012-04-04 パナソニック株式会社 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP2006338996A (en) 2005-06-01 2006-12-14 Sony Corp Negative electrode for secondary battery, secondary battery, and manufacturing method of negative electrode for secondary battery
JP5758560B2 (en) 2005-07-20 2015-08-05 ソニー株式会社 Charging method of lithium ion secondary battery
JP4849307B2 (en) 2005-09-29 2012-01-11 ソニー株式会社 Negative electrode and battery
JP4622803B2 (en) 2005-10-25 2011-02-02 ソニー株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
US8026568B2 (en) 2005-11-15 2011-09-27 Velox Semiconductor Corporation Second Schottky contact metal layer to improve GaN Schottky diode performance
JP4779633B2 (en) 2005-12-16 2011-09-28 ソニー株式会社 Secondary battery
JP4984553B2 (en) 2006-01-30 2012-07-25 ソニー株式会社 Secondary battery negative electrode and secondary battery using the same
JP4655976B2 (en) 2006-03-20 2011-03-23 ソニー株式会社 Negative electrode and battery
JP4816180B2 (en) 2006-03-20 2011-11-16 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5093439B2 (en) 2006-04-04 2012-12-12 ソニー株式会社 Secondary battery
JP4743020B2 (en) 2006-06-26 2011-08-10 ソニー株式会社 Electrode current collector and manufacturing method thereof, battery electrode and manufacturing method thereof, and secondary battery
JP4470917B2 (en) 2006-06-29 2010-06-02 ソニー株式会社 Electrode current collector, battery electrode and secondary battery
JP4635978B2 (en) * 2006-08-02 2011-02-23 ソニー株式会社 Negative electrode and secondary battery
JP2007019032A (en) * 2006-08-09 2007-01-25 Sony Corp Battery
JP4288621B2 (en) 2006-12-19 2009-07-01 ソニー株式会社 Negative electrode, battery using the same, and method for manufacturing negative electrode
JP4345810B2 (en) 2006-12-27 2009-10-14 ソニー株式会社 Secondary battery electrode, method for manufacturing the same, and secondary battery
US7939853B2 (en) 2007-03-20 2011-05-10 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
WO2012002136A1 (en) 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
JP5645971B2 (en) * 2010-11-30 2014-12-24 昭和電工株式会社 Negative electrode active material for lithium secondary battery and method for producing the same
US8633094B2 (en) 2011-12-01 2014-01-21 Power Integrations, Inc. GaN high voltage HFET with passivation plus gate dielectric multilayer structure
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer
KR101586251B1 (en) * 2013-06-24 2016-01-18 주식회사 제낙스 Current collector for rechargeable battery and electrode using the same
JP6329862B2 (en) * 2013-09-26 2018-05-23 株式会社ダイセル Electrode for electricity storage device and method for producing the same
EP3451424B1 (en) * 2016-04-26 2021-09-08 Murata Manufacturing Co., Ltd. Negative electrode for magnesium secondary battery, method for producing same, and magnesium secondary battery
WO2018201125A1 (en) * 2017-04-28 2018-11-01 Board Of Regents, The University Of Texas System Multiphase metal foils as integrated metal anodes for non-aqueous batteries
JP2020007319A (en) * 2019-08-14 2020-01-16 株式会社リコー Compound, electrode material, and electrode
US11469333B1 (en) 2020-02-19 2022-10-11 Semiq Incorporated Counter-doped silicon carbide Schottky barrier diode
CN113745642A (en) * 2021-08-09 2021-12-03 信阳师范学院 Preparation method of shell structure aluminum-based material and application of shell structure aluminum-based material in lithium ion battery

Also Published As

Publication number Publication date
JPH0850922A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
JP3495814B2 (en) Battery electrode and lithium secondary battery having the electrode
US6558848B1 (en) Electrodes for secondary cells, process for their production, and secondary cells having such electrodes
US6495289B1 (en) Lithium secondary cell with an alloyed metallic powder containing electrode
EP0690517B1 (en) Rechargeable lithium battery
JP3619000B2 (en) Electrode structure, secondary battery, and manufacturing method thereof
US5888666A (en) Secondary battery
JP3347555B2 (en) Method for manufacturing negative electrode of lithium secondary battery
US6638322B1 (en) Rechargeable lithium battery having an improved cathode and process for the production thereof
US5998063A (en) Lithium secondary cell
JPH11233116A (en) Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
EP2099043A1 (en) Coated electrode and organic electrolyte capacitor
CN1152443C (en) Method for production of lithium nickelate positive electrode and lithium cell using said electrode
KR19980070935A (en) An electrode structure, a secondary battery provided with the electrode structure, and a method of manufacturing the electrode structure and the secondary battery
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JPH0850917A (en) Secondary cell
JP2000100429A (en) Electrode structure and secondary battery
JP3245009B2 (en) Secondary battery and method of manufacturing the secondary battery
JP4227581B2 (en) Electrode structure and secondary battery
JP4973892B2 (en) Capacitors
JP4717192B2 (en) Secondary battery and manufacturing method thereof
CN1185666A (en) Positive pole-plate for lithium cell and lithium cell thereof
JP2005032688A (en) Non-aqueous electrolyte secondary battery
CA2296838C (en) Method of producing a rechargeable lithium battery having an improved cathode
WO2021087327A1 (en) Mitigating the zincate effect in energy dense manganese dioxide electrodes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

EXPY Cancellation because of completion of term