JPH01112660A - Manufacture of cadmium pole for battery - Google Patents

Manufacture of cadmium pole for battery

Info

Publication number
JPH01112660A
JPH01112660A JP62268642A JP26864287A JPH01112660A JP H01112660 A JPH01112660 A JP H01112660A JP 62268642 A JP62268642 A JP 62268642A JP 26864287 A JP26864287 A JP 26864287A JP H01112660 A JPH01112660 A JP H01112660A
Authority
JP
Japan
Prior art keywords
electrode
cadmium
battery
nickel
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268642A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Koji Gamo
孝治 蒲生
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62268642A priority Critical patent/JPH01112660A/en
Publication of JPH01112660A publication Critical patent/JPH01112660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve gas absorption characteristics at the time of charging by immersing an electrode mainly consisting of Cd oxide in a plating bath of Ni having a strong acidity so as to form a porous layer of Ni by electrolytic plating on the surface of the electrode. CONSTITUTION:An electrode mainly consisting of Cd oxide is immersed in Ni plating liquid of strong acidity of less than pH2, or preferably less than 1, to perform electrolytic plating. A porous layer of Ni of white without metallic gloss can thus be obtained, having much more of pinholes. A closed type alkali battery is then formed using this Cd pole. Gas absorption characteristics are thus improved, and a rapid charging is enabled.

Description

【発明の詳細な説明】 産業上の利用分野 従来の技術 各種の電源のうち、二次電池としては、鉛蓄電池とアル
カリ蓄電池とが広く使われている。後者のアルカリ蓄電
池では、最も広く使われているのが、ニッケルーカドミ
ウム蓄電池であり、密閉形構造の採用が実用の範囲を広
げる大きな要因になった。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Applications Prior Art Among various power sources, lead-acid batteries and alkaline batteries are widely used as secondary batteries. Among the latter alkaline storage batteries, the most widely used one is the nickel-cadmium storage battery, and the adoption of a sealed structure was a major factor in expanding the range of practical use.

また、電極としては、焼結式ニッケル極が開発されたこ
とから放電特性とくに高率放電にすぐれ、また、寿命も
長い。さらに過充電や放置などによる性能の劣化も少な
く、低温でも性能がよい。このような特性の上に密閉化
が可能になり、使い易さと信頼性が向上した。
Furthermore, since a sintered nickel electrode has been developed, it has excellent discharge characteristics, particularly high rate discharge, and has a long life. Furthermore, there is little performance deterioration due to overcharging or neglect, and performance is good even at low temperatures. In addition to these characteristics, it has become possible to seal the device, improving ease of use and reliability.

このような密閉形蓄電池を各種のポーダブル機器に用い
るようになってから、まず高エネルギー密度が要求され
る。これについては、電極に関する容量密度の向上によ
って対応している。最近では、その他に急速充電への要
望が強い。
Since such sealed storage batteries have come to be used in various portable devices, high energy density has been required. This is being addressed by increasing the capacitance density of the electrodes. Recently, there has also been a strong demand for rapid charging.

密閉形のニッケルーカドミウム蓄電池の密閉イヒの原理
は、いわゆるノイマン方式として知られ、充電完了時に
ニッケル極から発生する酸素をカドミウム極で吸収し、
カドミウム極を過充電状態にしないことにより、酸素も
水素も発生させないことを基本としている。
The principle of sealing a sealed nickel-cadmium storage battery is known as the so-called Neumann method, in which oxygen generated from the nickel electrode is absorbed by the cadmium electrode when charging is complete.
The basic idea is that neither oxygen nor hydrogen is generated by not overcharging the cadmium electrode.

したがって、急速充電を可能にするためには、カドミウ
ム極による酸素ガスの吸収をできるだけ迅速に行なわせ
ることが必要である。事実、たとえば1時間充電を行な
い、充電完了を電圧や温度で検知して過充電8態になる
と充電電流を減少させる方式で急速充電が可能になって
いる。
Therefore, in order to enable rapid charging, it is necessary for the cadmium electrode to absorb oxygen gas as quickly as possible. In fact, rapid charging is now possible by, for example, charging a battery for one hour, detecting the completion of charging based on voltage and temperature, and reducing the charging current when the eight overcharged states occur.

さらに、カドミウム極の酸素との反応を助けるために、
白金、パラジウムなどの酸素イオン化触媒を加える試み
があるが、高価になる。
Furthermore, to help the reaction of the cadmium electrode with oxygen,
Attempts have been made to add oxygen ionization catalysts such as platinum and palladium, but these are expensive.

その他にカドミウム極の表面に銅やニッケルあるいは炭
素などの導電性の居を形成することも効果があることが
明らかにされている。
It has also been revealed that forming a conductive layer of copper, nickel, or carbon on the surface of the cadmium electrode is also effective.

発明が解決しようとする問題点 急速充電特性を向上させるための、カドミウム極の表面
への導電性多孔体層としては、特に耐アルカリ性に優れ
たニッケルが好ましい、このニッケル層の形成法として
は、最も工業的に簡単なのは電解メッキである。つまり
、耐電解液性、耐酸化性等を者慮すると、多孔性の電解
ニッケルメッキ府の形成が最も好ましい、そこで、公知
のニッケルメッキ浴を用い、これに酸化カドミウムを主
とするカドミウム極を前処理後浸漬して電解メッキを施
したところ、比較的容易にニッケルの光沢を持った層の
形成が、可能であった。このカドミウム極を用いて、密
閉形アルカリ蓄電池を構成し、急充電特性を調べたとこ
ろガス吸収特性も向上した。しかし、高エネルキゝ−密
度を可能にするには、さらにガス吸収特性の向上が望ま
れ、また、メッキの過程で不要な水酸化ニッケルの形成
も抑制することが、好ましい。
Problems to be Solved by the Invention Nickel, which has particularly excellent alkali resistance, is preferably used as the conductive porous layer on the surface of the cadmium electrode in order to improve rapid charging characteristics.The method for forming this nickel layer is as follows: The most industrially simple method is electrolytic plating. In other words, when considering electrolyte resistance, oxidation resistance, etc., it is most preferable to form a porous electrolytic nickel plating bath.Therefore, a known nickel plating bath is used, and a cadmium electrode containing mainly cadmium oxide is added to it. When electrolytic plating was performed by dipping after pretreatment, it was possible to form a shiny layer of nickel relatively easily. Using this cadmium electrode, a sealed alkaline storage battery was constructed and the rapid charging characteristics were investigated, and the gas absorption characteristics were also improved. However, to enable high energy density, it is desirable to further improve the gas absorption properties, and it is also desirable to suppress the formation of unnecessary nickel hydroxide during the plating process.

本発明は上記従来技術に基づきカズ吸収特性を改善でき
る製造法を得ることを目的とする。
The object of the present invention is to obtain a manufacturing method that can improve the dust absorption characteristics based on the above-mentioned conventional technology.

問題点を解決するための手段 本発明は、公知のニッケルメッキ浴のpHを2以下、好
ましく1以下に調整し、酸化カドミウムを主とするカド
ミウム極を用いて電解ニッケルメッキを行ない、多孔性
のニッケル層を形成することを特徴とする。
Means for Solving the Problems The present invention involves adjusting the pH of a known nickel plating bath to 2 or less, preferably 1 or less, and performing electrolytic nickel plating using a cadmium electrode mainly made of cadmium oxide. It is characterized by forming a nickel layer.

作  用 汎用のニッケルメッキ浴では、いわゆる普通浴や複塩浴
ではpHが5.6〜6.2、W a t を浴で、2.
5〜5;5、光沢ニッケル浴で2.5〜4.5である。
Function: In general-purpose nickel plating baths, so-called ordinary baths and double salt baths have a pH of 5.6 to 6.2, W at of 2.
5-5; 2.5-4.5 in bright nickel bath.

このような浴で電解メッキを行なうとピンホールが少な
い箔試のニッケル層が形成し、同時に水酸化ニッケルも
形成しやすくなる。
When electrolytic plating is performed in such a bath, a nickel layer with few pinholes is formed on the foil, and at the same time, nickel hydroxide is also easily formed.

これに対して、本発明のように硫酸などで、好ましくは
p H’l以下にして、電解メッキを行なうと、全屈光
沢はなく白色のニッケル層が形成しピンホールもはるか
に多い。つまり、いわゆる通常の金属メッキの逆を行な
う方が密閉形アルカリ蓄電池でのガス吸収には好都合で
あることを見出した。さらに、強酸性であるので不要の
水酸化ニッケルの析出も抑えられる。
On the other hand, when electrolytic plating is carried out using sulfuric acid or the like, preferably at pH'l or less, as in the present invention, a white nickel layer is formed with no full gloss, and there are far more pinholes. In other words, it has been found that performing the reverse of so-called normal metal plating is more convenient for gas absorption in sealed alkaline storage batteries. Furthermore, since it is strongly acidic, precipitation of unnecessary nickel hydroxide can be suppressed.

実施例 市販の酸化カドミウムをポリビニルアルコールの3%(
重量)のエチレングリコール溶液 1皿iで5%のポリ
エチレン微粉末、同じく0.6%の塩化ビニル−アクリ
ロニトリル短繊維などを加えてペーストをつくる。これ
を厚さ0.15mm。
Example Commercially available cadmium oxide was mixed with 3% polyvinyl alcohol (
Make a paste by adding 5% polyethylene fine powder and 0.6% vinyl chloride-acrylonitrile short fibers in one dish. This is 0.15mm thick.

孔径1,8mm、開孔度50%の鉄製でニッケルメッキ
を施したパンチングメタル板に塗着する。
It is applied to a nickel-plated punched metal plate made of iron with a hole diameter of 1.8 mm and a porosity of 50%.

スリットを通して平滑化し、厚さを0.6mmに調整す
る。その後、120℃で2時間乾燥してペースト式カド
ミウム極を得る。
Smooth it through the slit and adjust the thickness to 0.6 mm. Thereafter, it is dried at 120° C. for 2 hours to obtain a paste-type cadmium electrode.

電池としては、Su bC形の密閉形ニッケルーカドミ
ウム蓄電池を例にした。したがって、このようにして得
られたカドミウム極な幅3.3cm。
As the battery, a SubC type sealed nickel-cadmium storage battery was used as an example. Therefore, the width of the cadmium pole thus obtained was 3.3 cm.

長さ20 c rnに裁断して、リード板を所定の2ケ
所にスポット溶接により取り付けた。
It was cut to a length of 20 cm, and lead plates were attached to two predetermined locations by spot welding.

このようにして得られたカドミウム極を汎用のW a 
t を浴(硫酸ニッケル240g/I 、塩化ニッケル
45g/l、硼酸30g/I ) i l (リットル
)に濃硫酸10m1を加えた浴中で25℃ 150 m
A/cm2の条件で2.5分間、対極にニッケル極を用
いてメッキを行なった。
The cadmium pole obtained in this way was used as a general-purpose W a
t in a bath (240 g/I of nickel sulfate, 45 g/l of nickel chloride, 30 g/I of boric acid) at 25°C in a bath containing 10 ml of concentrated sulfuric acid (1 liter).
Plating was performed for 2.5 minutes under the condition of A/cm2 using a nickel electrode as a counter electrode.

白色のニッケルメッキが電極全面に均一に行なわれた。White nickel plating was uniformly applied to the entire surface of the electrode.

ついで、放電袖口用容量を保持させるために、この極を
140 mA/Cm2の電流密度2時間4分、電解浴、
比重1.15の苛性カリ水溶液、温度25℃の条件で対
極にニッケル板を用いて充電する。
Then, in order to maintain the discharge cuff capacity, the electrode was placed in an electrolytic bath for 2 hours and 4 minutes at a current density of 140 mA/Cm2.
Charging is performed using a nickel plate as a counter electrode in a caustic potassium aqueous solution with a specific gravity of 1.15 at a temperature of 25°C.

この充電量は、計算の上では、全体のカドミウム理論容
量の約16%に相当するが、充電効率が低いので、実際
には8%程度が充電されたとみてよい。
This charge amount corresponds to about 16% of the total theoretical cadmium capacity, but since the charging efficiency is low, it can be assumed that about 8% was actually charged.

水洗、乾燥後、市販のフッソ樹脂ディスバージョンの2
0倍希釈液を加え、乾燥して、カドミウム極を得た。
After washing with water and drying, use commercially available fluorine resin dispersion 2.
A 0-fold diluted solution was added and dried to obtain a cadmium electrode.

電池構成のための相平衡としては、公知の発泡式ニッケ
ル極を選び、幅3.3cm、長さ17cmとした。厚さ
はQ、7mmである。セパレータとしては、ポリアミド
不織布、電解液としては、比重1.22の苛性カリ水溶
液に水酸化リチウムを25g/I溶解して用いた。公称
容量は2.2Ahである。この電池を(A)とする。
As a phase balance for the battery construction, a known foamed nickel electrode was chosen, with a width of 3.3 cm and a length of 17 cm. The thickness is Q, 7 mm. A polyamide nonwoven fabric was used as the separator, and 25 g/I of lithium hydroxide was dissolved in a caustic potassium aqueous solution having a specific gravity of 1.22 as the electrolyte. The nominal capacity is 2.2Ah. This battery is referred to as (A).

つぎに、比較のために、あらかじめ酸化カドミウム極に
センシタイザ−処理、アクチベータ処理を行なった後、
(A)と同じ硫酸ニッケル、塩化ニッケル、硼酸などを
主とするW a t を浴をこの場合は、そのまま用い
、43℃、TL流密度60 mA/e+2で時間6.5
分の条件で、電解ニッケルメッキを行なった。このよう
にして得られたカドミウム極を用いた電池を(B)とし
た。
Next, for comparison, after sensitizer treatment and activator treatment were performed on the cadmium oxide electrode,
In this case, the same W a t bath mainly containing nickel sulfate, nickel chloride, boric acid, etc. as in (A) was used as it was, and the temperature was 43°C and the TL flow density was 60 mA/e+2 for 6.5 hours.
Electrolytic nickel plating was performed under the following conditions. A battery using the cadmium electrode thus obtained was designated as (B).

これら電池の通常の充放電での放電容量はほぼ同じであ
った。たとえば、0.20充電−0,2C放電では、い
ずれも2.2〜2.3Ahを示した。
The discharge capacities of these batteries during normal charging and discharging were almost the same. For example, at 0.20C charge-0.2C discharge, all showed 2.2 to 2.3Ah.

そこでつぎに各電池の急速充電特性を調べた。Next, we investigated the quick charging characteristics of each battery.

電池は、いずれも10セル用いた。周囲温度な0℃とし
、各充電率で充電した際の電池内の圧力の変化を測定し
た。なお、充電は、放電容量の1゜3倍まで各充電率で
行ない。その後は、0.20に減少させて全体で放電容
量の1.4倍充電した。
In each case, 10 cells were used. The ambient temperature was set to 0° C., and changes in pressure inside the battery were measured when charging at each charging rate. Note that charging was performed at each charging rate up to 1.3 times the discharge capacity. Thereafter, the charge was reduced to 0.20, and the total charge was 1.4 times the discharge capacity.

まず、IC充電(2,2A)時での各電池の最高内圧は
、電池(A)では0 、8〜0 、9 kg/cm2゜
電池(B)では、1 、3〜1. 、5 kg/Cm2
であった。
First, the maximum internal pressure of each battery during IC charging (2, 2A) is 0, 8-0, 9 kg/cm2 for battery (A), 1, 3-1. ,5 kg/cm2
Met.

つぎに1.25C(2,75A)にすると電池(A)で
は、2.5〜2.6.(I3)で3.2〜3゜5であっ
た。
Next, when it is set to 1.25C (2.75A), battery (A) will have a power of 2.5 to 2.6. (I3) was 3.2 to 3°5.

つまり、電池(B)に比べて(A)ではガス吸収の点で
優れていた最も大きな理由は、カドミウム極上に形成し
たニッケル府が導電性であるとともに適度な多孔性、つ
まりピンホールを有していたことであると思われる。
In other words, the biggest reason why battery (A) was superior in terms of gas absorption compared to battery (B) is that the nickel layer formed on top of cadmium is conductive and has appropriate porosity, that is, pinholes. It seems that this was the case.

このように、本願の電池(A)では、メッキ浴を単に強
酸性にするだけの簡単な操作で、ガス吸収特性の向上が
可能になった。
As described above, in the battery (A) of the present application, the gas absorption characteristics can be improved by simply making the plating bath strongly acidic.

発明の効果 以上のように、本発明の製造法においては、充電時のガ
ス吸収特性の改善が可能になる。
Effects of the Invention As described above, in the manufacturing method of the present invention, it is possible to improve gas absorption characteristics during charging.

Claims (3)

【特許請求の範囲】[Claims] (1)酸化カドミウムを主とする電極を、強酸性のニッ
ケルメッキ浴に浸漬し、電解メッキにより電極表面に多
孔性のニッケル層を形成することを特徴とする電池用カ
ドミウム極の製造法。
(1) A method for producing a cadmium electrode for a battery, which comprises immersing an electrode mainly made of cadmium oxide in a strongly acidic nickel plating bath, and forming a porous nickel layer on the electrode surface by electrolytic plating.
(2)強酸性が少なくともpH2以下、好ましくは1以
下であることを特徴とする特許請求の範囲第1項記載の
電池用カドミウム極の製造法。
(2) The method for producing a cadmium electrode for a battery according to claim 1, wherein the strong acidity is at least pH 2 or less, preferably pH 1 or less.
(3)硫酸あるいは塩酸を加えることにより、pH2以
下にすることを特徴とする特許請求の範囲第1項または
第2項記載の電池用カドミウム極の製造法。
(3) The method for producing a cadmium electrode for a battery according to claim 1 or 2, which comprises adjusting the pH to 2 or less by adding sulfuric acid or hydrochloric acid.
JP62268642A 1987-10-23 1987-10-23 Manufacture of cadmium pole for battery Pending JPH01112660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268642A JPH01112660A (en) 1987-10-23 1987-10-23 Manufacture of cadmium pole for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268642A JPH01112660A (en) 1987-10-23 1987-10-23 Manufacture of cadmium pole for battery

Publications (1)

Publication Number Publication Date
JPH01112660A true JPH01112660A (en) 1989-05-01

Family

ID=17461385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268642A Pending JPH01112660A (en) 1987-10-23 1987-10-23 Manufacture of cadmium pole for battery

Country Status (1)

Country Link
JP (1) JPH01112660A (en)

Similar Documents

Publication Publication Date Title
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
US2880258A (en) Method of making negative electrodes for electric batteries
JPH01112660A (en) Manufacture of cadmium pole for battery
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP3006371B2 (en) Battery
JPH05182670A (en) Electrode for battery
JPH01209660A (en) Manufacture of cadmium electrode for battery
JPH01166464A (en) Manufacture of cadmium for battery
JPH01154460A (en) Manufacture of cadmium electrode for battery
JPH01248465A (en) Manufacture of cadmium electrode for battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPS6369142A (en) Cadmium electrode for alkaline battery
JPH01248467A (en) Manufacture of cadmium electrode for battery
JPS6369143A (en) Cadmium electrode for battery
JPS63266769A (en) Manufacture of cadmium electrode for battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JPH01315962A (en) Alkali secondary battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS63124378A (en) Sealed alkaline storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JPS6334852A (en) Cadmium electrode for cell
JPH0775163B2 (en) Manufacturing method of cadmium electrode for battery
JPS62180969A (en) Hermetically-sealed nickel-cadmium storage battery