JPH05303978A - Sealed nickel-zinc battery - Google Patents

Sealed nickel-zinc battery

Info

Publication number
JPH05303978A
JPH05303978A JP4132022A JP13202292A JPH05303978A JP H05303978 A JPH05303978 A JP H05303978A JP 4132022 A JP4132022 A JP 4132022A JP 13202292 A JP13202292 A JP 13202292A JP H05303978 A JPH05303978 A JP H05303978A
Authority
JP
Japan
Prior art keywords
electrode plate
battery
sealed nickel
diameter
plate group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4132022A
Other languages
Japanese (ja)
Other versions
JP3287367B2 (en
Inventor
Takehito Bougauchi
丈仁 坊ケ内
Noriyoshi Kishimoto
知徳 岸本
Mitsuo Yamane
三男 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP13202292A priority Critical patent/JP3287367B2/en
Publication of JPH05303978A publication Critical patent/JPH05303978A/en
Application granted granted Critical
Publication of JP3287367B2 publication Critical patent/JP3287367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the leak of an electrolyte from a battery jar or the reduction of the moisture in the electrolyte, and provide a sealed nickel-lead battery having excellent life performance. CONSTITUTION:A sealed nickel-lead battery has an electrode plate group 5 and a liquid holding layer 6. The electrode plate group 5 has a positive electrode plate 1, a negative electrode plate 4, a separator 2, and a retainer 2. The liquid holding layer 6 has an electrolyte contained in a cellulose fiber 0.5-50mm in length and 5-100mum in diameter, and the liquid holding layer 6 is arranged around the electrode plate group 5. The cellulose fiber may be changed to a porous spherical cellulose fiber 0.1-7mum in diameter or an organic fiber 0.5-50mm in length and 5-100mum in diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形ニッケル亜鉛電
池の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed nickel-zinc battery.

【0002】[0002]

【従来の技術】近年、電気自動車をはじめポータブル機
器に至るまで電池の高エネルギー密度化あるいは高性能
化に対する要求はたいへん大きなものがある。その中で
亜鉛を負極活物質とした電池は単位重量当りのエネルギ
ー密度が大きくしかも安価であると言った利点を有す
る。一方、この亜鉛極を蓄電池の負極として動作させる
場合、亜鉛活物質が放電過程あるいは充電過程において
溶解析出していわゆるシェイプチェンジやデンドライト
ショートと言った問題を引き起こす。
2. Description of the Related Art In recent years, there has been a great demand for higher energy density or higher performance of batteries in electric vehicles and portable devices. Among them, the battery using zinc as the negative electrode active material has an advantage that it has a large energy density per unit weight and is inexpensive. On the other hand, when the zinc electrode is operated as the negative electrode of a storage battery, the zinc active material is dissolved and deposited during the discharging process or the charging process, causing problems such as so-called shape change and dendrite short circuit.

【0003】充電過程では、亜鉛酸イオンから析出され
る亜鉛金属結晶は特に水素ガス発生を伴った場合、水素
の触媒作用によってデンドライト結晶になり易く、電池
のショートを引き起こす。そのため従来より充電末期に
なっても負極から水素発生させぬよう負極の容量を正極
の容量より増加させ、電池を充電して充電末期の状態に
おいても正極から酸素ガスを優先させて発生するように
して、充電過程全てにおいて負極からは水の電気化学的
分解による水素ガス発生を起こらないようにし、デンド
ライト状の析出が発生しないように工夫されている。ま
た、上述の電池を充放電を行い2次電池としてサイクル
使用した場合において正極から発生した酸素が電池の系
外に漏れてしまうと正極と負極の容量バランスが崩れて
しまい、いずれ負極からの水素発生を生じ、亜鉛のデン
ドライト析出により電池寿命となる。したがってサイク
ル使用中の正極と負極の容量バランスを保つために、電
池の電解液量を制限し、充電末期に発生した酸素ガスを
負極で吸収リサイクルさせる密閉形ニッケル亜鉛電池が
ある。
During the charging process, zinc metal crystals deposited from zincate ions are apt to become dendrite crystals due to the catalytic action of hydrogen, especially when accompanied by the generation of hydrogen gas, which causes a battery short circuit. For this reason, the capacity of the negative electrode is increased from that of the positive electrode so that hydrogen will not be generated from the negative electrode even at the end of charging, and the oxygen gas is preferentially generated from the positive electrode even at the end of charging by charging the battery. In the entire charging process, hydrogen gas is not generated from the negative electrode due to electrochemical decomposition of water, and dendrite-like deposition is not generated. In addition, when the above battery is charged and discharged and used as a secondary battery in a cycle, if oxygen generated from the positive electrode leaks out of the system of the battery, the capacity balance between the positive electrode and the negative electrode is disturbed, and eventually the hydrogen from the negative electrode is lost. It is generated, and the dendrite of zinc is deposited to extend the battery life. Therefore, in order to maintain the capacity balance between the positive electrode and the negative electrode during cycle use, there is a sealed nickel-zinc battery in which the amount of electrolytic solution of the battery is limited and oxygen gas generated at the end of charging is absorbed and recycled by the negative electrode.

【0004】また、用途として特に据置用、電気自動車
用等は、電池容量がポータブル用に比べて大きく、極板
高さが高くなり、それに応じて電解液の保液性も悪くな
る傾向にある。電解液を充分保持できない場合は、亜鉛
極板があふれた電解液で覆われ酸素ガス吸収に有効な面
積を維持できなくなり、酸素ガス吸収能力は不十分とな
り、デンドライトショートを引き起こす。そのため特に
電池の容量が大きくなるに従い、加える電解液量を少な
くせねばならない。
In addition, especially for stationary use, for electric vehicles, etc., the battery capacity is larger than that for portable use, the electrode plate height becomes higher, and accordingly, the electrolyte retaining property tends to deteriorate. .. When the electrolytic solution cannot be sufficiently retained, the zinc electrode plate is covered with the overflowing electrolytic solution, and the area effective for absorbing oxygen gas cannot be maintained, the oxygen gas absorbing capacity becomes insufficient, and dendrite short circuit is caused. Therefore, the amount of electrolyte to be added must be reduced especially as the capacity of the battery increases.

【0005】さらに、前述の如く電池の電解液量を制限
し密閉化した場合、亜鉛デンドライトショートを防止す
ることには有効であるが、亜鉛のシェイプチェンジを招
く。従ってこの様な場合、密閉形ニッケル亜鉛電池の寿
命原因は、ショートではなくシェイプチェンジによるも
のとなる。また、このシェイプチェンジは、電池の電解
液量と深く関係があり、酸素ガス吸収効率を向上させる
ために電解液量を少なくする程その容量低下は加速さ
れ、電池の寿命は短くなる。即ちシェイプチェンジだけ
に限れば、電解液量は多いほど良いことになるが、前述
したように、特に電解液量が多いときは、極群に保持さ
れない電解液が遊離の状態で存在し、その遊離状態の電
解液はリテーナやセパレータまたは亜鉛極の表面に溢
れ、表面を覆ってしまい結果的に酸素ガスの透過性を妨
げ、電池の酸素ガス吸収能力が低下しデンドライトショ
ートを招くことは前述したとおりであるから、従来標準
的な密閉形ニッケル亜鉛電池の電解液量はこれら2つの
要素を適切な範囲とするために極群の全空隙の略98%
以下に設定してある。
Further, as described above, when the amount of the electrolytic solution of the battery is limited and the battery is hermetically sealed, it is effective in preventing zinc dendrite short circuit, but it causes zinc shape change. Therefore, in such a case, the cause of the life of the sealed nickel-zinc battery is not the short circuit but the shape change. Further, this shape change is closely related to the amount of electrolyte in the battery, and as the amount of electrolyte is reduced in order to improve the oxygen gas absorption efficiency, the capacity decrease is accelerated and the life of the battery is shortened. That is, as long as it is limited to shape change, the larger the amount of electrolytic solution, the better, but as described above, especially when the amount of electrolytic solution is large, the electrolytic solution that is not retained in the pole group exists in a free state, As mentioned above, the electrolyte in the free state overflows onto the surface of the retainer, separator or zinc electrode and covers the surface, which impedes the permeability of oxygen gas and reduces the oxygen gas absorption capacity of the battery, resulting in dendrite short circuit. Therefore, the amount of electrolyte in the conventional standard sealed nickel-zinc battery is approximately 98% of the total voids in the pole group in order to keep these two elements in appropriate ranges.
It is set below.

【0006】[0006]

【発明が解決しようとする課題】従来の技術で述べたよ
うな密閉形ニッケル亜鉛電池は、電解液量が制限されて
いるため、極板群より出た電解液が電槽外部へ少量でも
漏液した場合、容量や寿命が極端に低下したり、周辺機
器の腐食を引き起すという問題点を有し、長時間使用し
ている間に、水分が蒸発したり、負極の自己放電により
水が消費されて内部抵抗が増加し、放電されにくくなる
という問題点を有していた。
Since the sealed nickel-zinc battery as described in the prior art has a limited amount of electrolytic solution, even a small amount of electrolytic solution leaking from the electrode plate is leaked to the outside of the battery case. When liquid is used, there are problems that the capacity and life will be extremely reduced and that peripheral devices will be corroded, and water will evaporate during long-time use or water will be generated due to self-discharge of the negative electrode. There is a problem in that it is consumed, the internal resistance increases, and it becomes difficult to discharge.

【0007】本発明は、上記問題点に鑑みてなされたも
のであって、その目的とするところは、電槽内から電解
液が漏れたり、電解液の水分が減少するのを防止して、
寿命性能の優れた密閉形ニッケル亜鉛電池を提供するこ
とにある。
The present invention has been made in view of the above problems, and an object of the present invention is to prevent the electrolytic solution from leaking from the inside of a battery case and to reduce the water content of the electrolytic solution.
An object is to provide a sealed nickel-zinc battery with excellent life performance.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、極板群5と、保液層6とを有する密閉
形ニッケル亜鉛電池であって、前記極板群5は、正極板
1と、負極板4と、セパレータ3と、リテーナ2とを有
するものであり、前記保液層6は、長さ0.5〜50m
m、直径5〜100μmのセルロース繊維中に電解液を
含むものであり、前記保液層6は、前記極板群5の周囲
に配置されていることを特徴とするものである。なお、
前記セルロース繊維は直径0.1〜7μmの多孔質球状
のセルロース繊維または長さ0.5〜50mm、直径5
〜100μmの有機繊維に代えてもよい。
In order to solve the above problems, the present invention relates to a sealed nickel-zinc battery having an electrode plate group 5 and a liquid retaining layer 6, wherein the electrode plate group 5 is , Positive electrode plate 1, negative electrode plate 4, separator 3, and retainer 2, and the liquid retaining layer 6 has a length of 0.5 to 50 m.
m, the electrolytic solution is contained in cellulose fibers having a diameter of 5 to 100 μm, and the liquid retaining layer 6 is arranged around the electrode plate group 5. In addition,
The cellulose fibers are porous spherical cellulose fibers having a diameter of 0.1 to 7 μm or a length of 0.5 to 50 mm and a diameter of 5
It may be replaced with an organic fiber having a thickness of 100 μm.

【0009】[0009]

【作用】極板群の周囲に保液層を配置しているので、極
板群から漏れ出た電解液が保液層にはばまれて外部へ漏
出しにくくなる。また、極板群に含浸している電解液の
水分が消費されても、保液層から水分を補うことができ
る。
Since the liquid retaining layer is arranged around the electrode plate group, the electrolytic solution leaking from the electrode plate group is scattered by the liquid retaining layer and hardly leaks to the outside. Further, even when the water content of the electrolytic solution with which the electrode plate group is impregnated is consumed, the water content can be supplemented from the liquid retaining layer.

【0010】[0010]

【実施例】本発明の一実施例を図面を参照して説明す
る。図1は、本発明密閉形ニッケル亜鉛電池の断面図
で、1はニッケル焼結極板よりなる正極板、2はリテー
ナで、その材質はポリオレフィン系の不織布、3はポリ
プロピレン多孔膜に界面活性剤処理したセパレータ、4
は金属亜鉛粉末及び酸化亜鉛粉末をポリテトラフロロエ
チレン樹脂と混合し、これにロール掛けしてシート状に
なしたものを、銅または銀の集電体に圧着した負極板
で、5はこれら正極板1を5枚、負極板4を6枚交互に
配置し、それらの間に前記リテーナ2とセパレータ3と
リテーナ2とをこの順序で積層したものを挿入した極板
群である。6は、該極板群5の上部と側部に密着して配
置した長さ6mm、直径25μmのセルロース繊維また
は有機繊維に電解液を含浸させた保液層である。7は正
極板1同士を接続する正極端子、8は負極板4同士を接
続する負極端子である。9は極板群5の上部の保液層6
を極板群5に密接させる中蓋であり、10は上記極板群
5と保液層6と端子7,8と中蓋9を収容するABS製
の電槽である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the sealed nickel-zinc battery of the present invention, 1 is a positive electrode plate made of a sintered nickel electrode plate, 2 is a retainer, the material thereof is a polyolefin-based non-woven fabric, 3 is a polypropylene porous film and a surfactant. Treated separator, 4
Is a negative electrode plate in which metallic zinc powder and zinc oxide powder are mixed with polytetrafluoroethylene resin and rolled into a sheet, and the sheet is pressed onto a copper or silver current collector. This is an electrode plate group in which five plates 1 and six negative plates 4 are alternately arranged, and the retainer 2, the separator 3, and the retainer 2 laminated in this order are inserted between them. Reference numeral 6 is a liquid-retaining layer in which a length of 6 mm and a diameter of 25 μm of cellulose fibers or organic fibers, which are arranged in close contact with the upper and side portions of the electrode plate group 5, are impregnated with an electrolytic solution. Reference numeral 7 is a positive electrode terminal that connects the positive electrode plates 1 to each other, and 8 is a negative electrode terminal that connects the negative electrode plates 4 to each other. 9 is a liquid retaining layer 6 on the upper side of the electrode plate group 5
Is an inner lid that closely contacts the electrode plate group 5, and 10 is an ABS battery case that houses the electrode plate group 5, the liquid retaining layer 6, the terminals 7 and 8, and the inner lid 9.

【0011】電解液は、比重値を1.30〜1.40程
度の水酸化カリウムを主体とする水溶液で、その量は、
極板群5と保液層6の全空隙容積の90〜98%に相当
する量がそれぞれに注入されている。
The electrolytic solution is an aqueous solution mainly composed of potassium hydroxide having a specific gravity of about 1.30 to 1.40, and its amount is
An amount corresponding to 90 to 98% of the total void volume of the electrode plate group 5 and the liquid retaining layer 6 is injected into each.

【0012】このような構成からなる10Ahの本発明
電池を作製し、極板群5の周囲に保液層6を配置してい
ない従来の電池とを電動刈払機用に用い、100,20
0,300サイクル毎の電解液の漏液率とサイクル特性
を調査した。その結果を表1と図2に示す。尚、漏液率
Aは100%充電状態での初期の極板群重量をa、各サ
イクル経過後の100%充電状態の極板群重量をbとす
ると、A=(a−b)÷a×100(%)とし、充電は
0.1c放電は平均1cであった。
A battery of the present invention of 10 Ah having such a structure was produced, and a conventional battery in which the liquid retaining layer 6 was not arranged around the electrode plate group 5 was used for an electric brush cutter.
The electrolyte leakage rate and cycle characteristics at every 0,300 cycles were investigated. The results are shown in Table 1 and FIG. The leakage rate A is A = (ab) / a, where a is the initial electrode plate group weight in the 100% charged state and b is the 100% charged state electrode plate group after each cycle. × 100 (%), the charge was 0.1 c, and the discharge was 1 c on average.

【0013】 [0013]

【0014】この結果より、本発明品は従来品に比べ、
漏液率が少なく、しかもサイクル特性も優れていること
が分かった。次に、保液層6に用いられているセルロー
ス繊維および有機繊維の直径βをパラメータとして長さ
αを変化させ、初期容量の60%に低下するまでのサイ
クル数を調査した。その結果を図3に示す。
From these results, the product of the present invention is
It was found that the liquid leakage rate was small and the cycle characteristics were excellent. Next, the length α was changed with the diameter β of the cellulose fiber and the organic fiber used in the liquid retaining layer 6 as a parameter, and the number of cycles until the volume decreased to 60% of the initial capacity was investigated. The result is shown in FIG.

【0015】この結果より、長さαが0.5〜50m
m、直径βが5〜100μmであれば図2に示す従来品
のサイクル数(150サイクル)より非常に優れるが直
径βが5μm未満または100μm超であれば従来品と
略同じである。
From this result, the length α is 0.5 to 50 m.
When m and the diameter β are 5 to 100 μm, the number of cycles is significantly superior to the number of cycles (150 cycles) of the conventional product shown in FIG.

【0016】さらに、保液層6に用いられているセルロ
ース繊維を多孔質球状のものに代え、球の直径γが変わ
れば前記サイクル数がどのように変化するか調査した。
その結果を図4に示す。この結果より直径γが0.1〜
7mmの範囲であれば約155サイクル以上となり従来
品より非常に優れるが、0.1未満または7mm超であ
れば従来品と殆ど変わらない。
Further, the cellulose fibers used in the liquid retaining layer 6 were replaced with porous spherical ones, and it was investigated how the cycle number changes if the diameter γ of the spheres changes.
The result is shown in FIG. From this result, the diameter γ is 0.1
In the range of 7 mm, it is about 155 cycles or more, which is extremely superior to the conventional product, but if it is less than 0.1 or more than 7 mm, it is almost the same as the conventional product.

【0017】[0017]

【発明の効果】本発明は、上述のとおり構成されている
ので次に記載する効果を奏する。 (1)電池の使用中に電解液が漏れたり水分が減少して
も、極板群から電解液が漏れたり水分が減少することが
殆どなく、サイクル性能を低下させることがないので長
寿命の密閉形ニッケル亜鉛蓄電池が得られる。 (2)保液層を構成する繊維を特定することにより電解
液の保持を高めることができ、サイクル性能の優れた密
閉形ニッケル亜鉛電池が得られる。
Since the present invention is configured as described above, it has the following effects. (1) Even if the electrolytic solution leaks or the water content decreases during use of the battery, the electrolytic solution rarely leaks from the electrode group or the water content does not decrease. A sealed nickel-zinc storage battery is obtained. (2) The retention of the electrolytic solution can be enhanced by specifying the fibers constituting the liquid retaining layer, and a sealed nickel-zinc battery having excellent cycle performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明品と従来品との寿命性能を比較したサイ
クル特性図である。
FIG. 2 is a cycle characteristic diagram comparing the life performances of the product of the present invention and the conventional product.

【図3】保液層の繊維の長さと直径を変化させた時のサ
イクル数を示す特性図である。
FIG. 3 is a characteristic diagram showing the number of cycles when the length and diameter of the fibers of the liquid retaining layer are changed.

【図4】多孔質球状のセルロース繊維の直径を変化させ
た時のサイクル数を示す特性図である。
FIG. 4 is a characteristic diagram showing the number of cycles when the diameter of a porous spherical cellulose fiber is changed.

【符号の説明】[Explanation of symbols]

1 正極板 2 リテーナ 3 セパレータ 4 負極板 5 極板群 6 保液層 1 Positive Electrode Plate 2 Retainer 3 Separator 4 Negative Electrode Plate 5 Electrode Plate Group 6 Liquid Retaining Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 極板群(5)と、保液層(6)とを有す
る密閉形ニッケル亜鉛電池であって、 前記極板群(5)は、正極板(1)と、負極板(4)
と、セパレータ(3)と、リテーナ(2)とを有するも
のであり、 前記保液層(6)は、長さ0.5〜50mm、直径5〜
100μmのセルロース繊維中に電解液を含むものであ
り、 前記保液層(6)は、前記極板群(5)の周囲に配置さ
れていることを特徴とする、 密閉形ニッケル亜鉛電池。
1. A sealed nickel-zinc battery having an electrode plate group (5) and a liquid retaining layer (6), wherein the electrode plate group (5) comprises a positive electrode plate (1) and a negative electrode plate (1). 4)
And a separator (3) and a retainer (2). The liquid retaining layer (6) has a length of 0.5 to 50 mm and a diameter of 5 to 5.
A sealed nickel-zinc battery, characterized in that the electrolyte solution is contained in 100 μm cellulose fibers, and the liquid retaining layer (6) is arranged around the electrode plate group (5).
【請求項2】 前記セルロース繊維に代えて有機繊維を
用いることを特徴とする請求項1記載の密閉形ニッケル
亜鉛電池。
2. The sealed nickel-zinc battery according to claim 1, wherein organic fibers are used instead of the cellulose fibers.
【請求項3】 前記セルロース繊維は、直径0.1〜7
mmの多孔質球状のセルロース繊維であることを特徴と
する請求項1記載の密閉形ニッケル亜鉛電池。
3. The cellulose fiber has a diameter of 0.1 to 7
The sealed nickel-zinc battery according to claim 1, which is a porous spherical cellulose fiber having a diameter of mm.
JP13202292A 1992-04-24 1992-04-24 Sealed nickel zinc battery Expired - Fee Related JP3287367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13202292A JP3287367B2 (en) 1992-04-24 1992-04-24 Sealed nickel zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13202292A JP3287367B2 (en) 1992-04-24 1992-04-24 Sealed nickel zinc battery

Publications (2)

Publication Number Publication Date
JPH05303978A true JPH05303978A (en) 1993-11-16
JP3287367B2 JP3287367B2 (en) 2002-06-04

Family

ID=15071684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13202292A Expired - Fee Related JP3287367B2 (en) 1992-04-24 1992-04-24 Sealed nickel zinc battery

Country Status (1)

Country Link
JP (1) JP3287367B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1611621A2 (en) * 2003-02-19 2006-01-04 KVG Technologies Inc. Battery containing fibrous material
JP2007103540A (en) * 2005-09-30 2007-04-19 Nippon Chemicon Corp Separator for capacitor and capacitor using same
JP2012138172A (en) * 2010-12-24 2012-07-19 Primearth Ev Energy Co Ltd Battery
WO2016006350A1 (en) * 2014-07-09 2016-01-14 日本碍子株式会社 Nickel-zinc battery
US10128542B2 (en) 2014-07-09 2018-11-13 Ngk Insulators, Ltd. Nickel-zinc battery
US10263292B2 (en) 2014-07-09 2019-04-16 Ngk Insulators, Ltd. Nickel-zinc Battery
US10297869B2 (en) 2014-07-09 2019-05-21 Ngk Insulators, Ltd. Nickel-zinc battery
JP2022046681A (en) * 2015-02-26 2022-03-23 ダラミック エルエルシー Improved moisture loss separator used with lead-acid battery, system for improved moisture loss performance, and manufactured method and usage method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012084A1 (en) 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1611621A2 (en) * 2003-02-19 2006-01-04 KVG Technologies Inc. Battery containing fibrous material
EP1611621A4 (en) * 2003-02-19 2007-10-03 Kvg Technologies Inc Battery containing fibrous material
EP2045853A2 (en) * 2003-02-19 2009-04-08 KVG Technologies Inc. Battery containing fibrous material
EP2045853A3 (en) * 2003-02-19 2009-05-06 KVG Technologies Inc. Battery containing fibrous material
JP2007103540A (en) * 2005-09-30 2007-04-19 Nippon Chemicon Corp Separator for capacitor and capacitor using same
JP2012138172A (en) * 2010-12-24 2012-07-19 Primearth Ev Energy Co Ltd Battery
WO2016006350A1 (en) * 2014-07-09 2016-01-14 日本碍子株式会社 Nickel-zinc battery
US10128542B2 (en) 2014-07-09 2018-11-13 Ngk Insulators, Ltd. Nickel-zinc battery
US10263292B2 (en) 2014-07-09 2019-04-16 Ngk Insulators, Ltd. Nickel-zinc Battery
US10276896B2 (en) 2014-07-09 2019-04-30 Ngk Insulators, Ltd. Nickel-zinc battery
US10297869B2 (en) 2014-07-09 2019-05-21 Ngk Insulators, Ltd. Nickel-zinc battery
US10381689B2 (en) 2014-07-09 2019-08-13 Ngk Insulators, Ltd. Nickel-zinc battery
US10734685B2 (en) 2014-07-09 2020-08-04 Ngk Insulators, Ltd. Nickel-zinc battery
JP2022046681A (en) * 2015-02-26 2022-03-23 ダラミック エルエルシー Improved moisture loss separator used with lead-acid battery, system for improved moisture loss performance, and manufactured method and usage method thereof

Also Published As

Publication number Publication date
JP3287367B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US3516862A (en) Rechargeable alkaline-zinc cell with porous matrix containing trapping material to eliminate zinc dendrites
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
JP3287367B2 (en) Sealed nickel zinc battery
JPH07254431A (en) Secondary battery containing electrolytic aqueous solution of which maintenance is unnecessary
JP2512019B2 (en) Electrochemical battery
JP3387158B2 (en) Zinc plate
JPH04206468A (en) Sealed alkali-zinc storage battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH0787102B2 (en) Sealed nickel-zinc battery
JP3332139B2 (en) Sealed alkaline storage battery
JP2734523B2 (en) Battery separator
JPH0722028A (en) Sealed alkaline zinc storage battery
JP2000082490A (en) Alkaline secondary battery
JP2001283902A (en) Alkaline battery
JPH07326382A (en) Hermetically sealed button-type alkali battery
JPH0696795A (en) Sealed nickel-zinc battery
JPH06283194A (en) Sealed alkaline zinc storage battery
JPH01100872A (en) Sealed type nickel-zinc cell
JP2002367586A (en) Sealed lead-acid battery
JPH071732Y2 (en) Alkaline zinc secondary battery
JPH10284117A (en) Alkaline storage battery
JPH06150920A (en) Hydrogen storage alloy electrode for battery and manufacture thereof
JPH06267587A (en) Sealed alkali-zinc secondary battery
JPS63124378A (en) Sealed alkaline storage battery
JPS60264049A (en) Alkali zinc battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees