JPH06267587A - Sealed alkali-zinc secondary battery - Google Patents

Sealed alkali-zinc secondary battery

Info

Publication number
JPH06267587A
JPH06267587A JP5081257A JP8125793A JPH06267587A JP H06267587 A JPH06267587 A JP H06267587A JP 5081257 A JP5081257 A JP 5081257A JP 8125793 A JP8125793 A JP 8125793A JP H06267587 A JPH06267587 A JP H06267587A
Authority
JP
Japan
Prior art keywords
zinc
electrode plate
negative electrode
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5081257A
Other languages
Japanese (ja)
Inventor
Hiroe Nakagawa
裕江 中川
Shunichi Kimura
俊一 木村
Noriyoshi Kishimoto
知徳 岸本
Takehito Bougauchi
丈仁 坊ケ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5081257A priority Critical patent/JPH06267587A/en
Publication of JPH06267587A publication Critical patent/JPH06267587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a sealed alkali-zinc secondary battery whose charging/ discharging cyclic life can be lengthened. CONSTITUTION:Each negative plate 1 containing oxygen depresant, and each positive plate 2 are housed in a battery jar 7 while being enclosed by liquid hold layers 4 and separators 3 in such a way that negative plates 11 and 12 are positioned at the outermost sections, and each zinc electrode 8 which the zinc content against zinc oxide is higher than that of each negative plate 1 is interposed between each negative plate 11 and 12 at the aforesaid outermost sections and the inner wall of the battery jar 7. Therefore, this constitution thereby enables oxygen generated out of the positive electrode at the end of charging and at the time of overcharging to be efficiently led to the entire single surface of each zinc electrode, and also enables oxygen around the periphery of each negative plate to be restrained from being absorbed, the charging/ discharging cyclic life of the battery can thereby be lengthened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形アルカリ亜鉛二
次電池に関するもので、さらに詳しく言えば、その極板
およびセパレータ、保液層の積層構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline zinc secondary battery, and more particularly to a laminated structure of its electrode plate, separator and liquid retaining layer.

【0002】[0002]

【従来の技術】近年、エレクトロニクス機器や種々の可
搬用、据置用機器の電源として軽量でメンテナンスが容
易な密閉形アルカリ亜鉛二次電池が注目されている。
2. Description of the Related Art Recently, a sealed alkaline zinc secondary battery, which is lightweight and easy to maintain, has been attracting attention as a power source for electronic devices and various portable and stationary devices.

【0003】このような密閉形アルカリ亜鉛二次電池
は、充電末期や過充電時に正極から発する酸素を負極で
吸収する必要があるため、その電解液量が制限され、該
電解液はセパレータや保液層に保持されてなる。
In such a sealed alkaline zinc secondary battery, it is necessary to absorb oxygen emitted from the positive electrode at the end of charging or overcharge at the negative electrode, so that the amount of the electrolytic solution is limited, and the electrolytic solution is separated from the separator or the protective solution. It is held in a liquid layer.

【0004】上記のように、負極で酸素を吸収させる
と、負極中の酸化亜鉛の減少を抑制することができ、充
電時に亜鉛のデンドライトの成長によるセパレータや保
液層の貫通ショートの発生や、シェイプチェンジによる
負極活物質の利用率の低下を抑制することができる。
As described above, when oxygen is absorbed in the negative electrode, the reduction of zinc oxide in the negative electrode can be suppressed, and the occurrence of penetrating short circuit in the separator and the liquid retaining layer due to the growth of zinc dendrites during charging, It is possible to suppress the decrease in the utilization rate of the negative electrode active material due to the shape change.

【0005】上記した従来の密閉形アルカリ亜鉛二次電
池の従来例を図2により説明する。
A conventional example of the above-mentioned conventional sealed alkaline zinc secondary battery will be described with reference to FIG.

【0006】図2において、1は亜鉛と酸化亜鉛とを主
体とする負極活物質を銅製パンチングメタルの集電体の
両面に塗布した負極板、2は前記負極板1と同寸法で、
水酸化ニッケルを主体とする燃結式ニッケルからなる正
極板で、前記負極板1は内側をナイロン不織布あるいは
ポリプロピレン不織布からなる保液層4によって、外側
を微孔性フィルムからなるセパレータ3によって四方が
包囲されてなり、前記正極板2は同じ保液層4とセパレ
ータ3とによって上方を除く三方が包囲されてなる。こ
のように構成した負極板1と正極板2とは、最外部に負
極板が位置するように交互に積層されて電槽7内に収納
されてなる。
In FIG. 2, 1 is a negative electrode plate in which a negative electrode active material mainly containing zinc and zinc oxide is applied to both sides of a current collector made of copper punching metal, and 2 is the same size as the negative electrode plate 1,
A positive electrode plate made of nickel-metal hydride mainly composed of nickel hydroxide. The negative electrode plate 1 has a liquid retaining layer 4 made of nylon nonwoven fabric or polypropylene nonwoven fabric on the inside and a separator 3 made of a microporous film on the outside. The positive electrode plate 2 is surrounded by the same liquid retaining layer 4 and the separator 3 on three sides except the upper side. The negative electrode plate 1 and the positive electrode plate 2 configured as described above are alternately stacked so that the negative electrode plate is located at the outermost part and housed in the battery case 7.

【0007】[0007]

【発明が解決しようとする課題】上記した従来の密閉形
アルカリ亜鉛二次電池に用いられる負極としての亜鉛極
は、酸素の吸収能が高いため、発生する酸素のほとんど
が負極の周辺部で吸収される傾向があり、その結果、負
極の周辺部に酸化亜鉛が、中央部に金属亜鉛が存在しや
すくなって充放電サイクルの初期に放電容量が低下する
という問題があった。
Since the zinc electrode as the negative electrode used in the above-mentioned conventional sealed alkaline zinc secondary battery has a high oxygen absorbing ability, most of the generated oxygen is absorbed in the peripheral portion of the negative electrode. As a result, zinc oxide is likely to be present in the peripheral portion of the negative electrode and metallic zinc is present in the central portion of the negative electrode, so that there is a problem that the discharge capacity is lowered in the initial stage of the charge / discharge cycle.

【0008】このような不均一な酸素の吸収を均一化す
るために、酸素の透過性能の高いセパレータを用いるこ
とや、負極としての亜鉛極の周囲に撥水層を設けたり、
酸素透過用の溝を設けることが提案されているが、酸素
を効率よく負極に導く点では効果があるものの、負極に
よる不均一な酸素の吸収を均一化するには至っていな
い。
In order to make such uneven absorption of oxygen uniform, a separator having a high oxygen permeability is used, or a water repellent layer is provided around the zinc electrode as a negative electrode,
Providing a groove for oxygen permeation has been proposed, but although it is effective in efficiently guiding oxygen to the negative electrode, it has not yet been possible to make uneven absorption of oxygen by the negative electrode uniform.

【0009】一方、特願平4−300535号は、最外
部の負極板と電槽内壁との間に配した亜鉛極に酸素を導
こうというものであるが、充放電サイクルの進行に伴っ
て負極としての亜鉛極によって酸素が吸収されるように
なり、充放電サイクルの経過とともに放電容量が低下す
るという問題があった。
On the other hand, Japanese Patent Application No. 4-300535 discloses an attempt to introduce oxygen to a zinc electrode disposed between the outermost negative electrode plate and the inner wall of the battery case. Oxygen is now absorbed by the zinc electrode as the negative electrode, and there is a problem that the discharge capacity decreases with the progress of the charge / discharge cycle.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、保液層とセパレータとによって包囲され
た正極板と、酸素吸収抑制剤を含有させるとともに亜鉛
または酸化亜鉛の少なくとも一方を主体とし、保液層と
セパレータとによって包囲された負極板とを交互に積層
し、最外部に負極板を位置させるように電槽内に収納し
てなる密閉形アルカリ亜鉛二次電池において、前記最外
部の負極板と電槽内壁との間に亜鉛または酸化亜鉛の少
なくとも一方を主体とし、前記負極板より酸化亜鉛に対
する亜鉛の含有率が高い亜鉛極を配したことを特徴とす
るものである。
In order to solve the above problems, the present invention provides a positive electrode plate surrounded by a liquid retaining layer and a separator, an oxygen absorption inhibitor and at least one of zinc and zinc oxide. In a sealed alkaline zinc secondary battery mainly composed of a negative electrode plate surrounded by a liquid-retaining layer and a separator, alternately stacked, and housed in a battery case so that the negative electrode plate is located at the outermost part, At least one of zinc and zinc oxide is the main component between the outermost negative electrode plate and the inner wall of the battery case, and a zinc electrode having a higher zinc content relative to zinc oxide than the negative electrode plate is arranged. .

【0011】[0011]

【作 用】従って、本発明は、正極板に対向している負
極板を保液層とセパレータとによって包囲してその酸素
の吸収能を小さくするとともに、最外部の負極板と電槽
内壁との間に配した亜鉛極を、前記負極板より酸化亜鉛
に対する亜鉛の含有率を高いものとし、その片面に発生
した酸素を導くようにしているので、酸素の吸収能を低
下させることなく、充放電に寄与する負極板の均一性を
保持することができる。
[Operation] Therefore, according to the present invention, the negative electrode plate facing the positive electrode plate is surrounded by the liquid-retaining layer and the separator to reduce its oxygen absorption capacity, and the outermost negative electrode plate and the inner wall of the battery case are provided. The zinc electrode disposed between the two is made to have a higher content of zinc relative to zinc oxide than the negative electrode plate, and the oxygen generated on one side of the zinc electrode is guided, so that the absorption capacity of oxygen is not reduced and charging is performed. The uniformity of the negative electrode plate that contributes to discharge can be maintained.

【0012】また、本発明は、負極板に酸素吸収抑制剤
を含有させることにより、負極板の周辺部での酸素の吸
収を抑制することができる。
Further, according to the present invention, the absorption of oxygen in the peripheral portion of the negative electrode plate can be suppressed by including the oxygen absorption inhibitor in the negative electrode plate.

【0013】[0013]

【実施例】図1は、本発明の密閉形アルカリ亜鉛二次電
池の断面図である。
EXAMPLE FIG. 1 is a sectional view of a sealed alkaline zinc secondary battery of the present invention.

【0014】図1において、1は亜鉛と酸化亜鉛とを主
体とし、酸素吸収抑制剤としての酸化錫を含有させた負
極活物質を銅製パンチングメタルの集電体の両面に塗布
した負極板、2は前記負極板1と同寸法で、水酸化ニッ
ケルを主体とする燃結式ニッルからなる正極板で、前記
負極板1は内側をナイロン不織布あるいはポリプロピレ
ン不織布からなる保液層4によって、外側を微孔性フィ
ルムからなるセパレータ3によって四方が包囲されてな
り、前記正極板2は同じ保液層4とセパレータ3とによ
って上方を除く三方が包囲されてなる。
In FIG. 1, reference numeral 1 denotes a negative electrode plate in which zinc and zinc oxide are the main components, and a negative electrode active material containing tin oxide as an oxygen absorption inhibitor is applied to both sides of a copper punching metal current collector. Is a positive electrode plate having the same size as that of the negative electrode plate 1 and made of a nickel-based combustion-type nitrite. The separator 3 made of a porous film is surrounded on all sides, and the positive electrode plate 2 is surrounded by the same liquid retaining layer 4 and the separator 3 on all sides except the upper side.

【0015】上記した負極板1と正極板2とは、最外部
に負極板11,12が位置するように交互に積層されて
電槽7内に収納されてなり、前記最外部の負極板11,
12と電槽7の内壁との間に亜鉛または酸化亜鉛の少な
くとも一方を主体とし、前記負極板1,11,12より
酸化亜鉛に対する亜鉛の含有率が高い亜鉛極8を配した
ものである。
The negative electrode plate 1 and the positive electrode plate 2 are alternately stacked so that the negative electrode plates 11 and 12 are located on the outermost side and housed in the battery case 7. ,
A zinc electrode 8 having at least one of zinc and zinc oxide as a main component and having a higher content ratio of zinc to zinc oxide than the negative electrode plates 1, 11 and 12 is arranged between the anode 12 and the inner wall of the battery case 7.

【0016】なお、図1の密閉形アルカリ亜鉛二次電池
では、最外部の負極板11,12と亜鉛極8との間にセ
ロハン等からなる隔離膜5を配するとともに、亜鉛極8
と電槽7の内壁との間に撥水性のネット状スペーサー6
を配している。
In the sealed alkaline zinc secondary battery shown in FIG. 1, a separator film 5 made of cellophane or the like is arranged between the outermost negative electrode plates 11 and 12 and the zinc electrode 8 and the zinc electrode 8 is used.
And a water-repellent net spacer 6 between the inner wall of the battery case 7 and
Are arranged.

【0017】上記の如く構成されてなる極群が収納され
た電槽7内に、電解液としての水酸化リチウムを添加し
た比重1.35の水酸化カリウム水溶液を、前記極群の
全空隙の80〜95%まで注液し、容量10Ahの密閉
形アルカリ亜鉛二次電池とした。
An aqueous solution of potassium hydroxide having a specific gravity of 1.35, to which lithium hydroxide as an electrolytic solution is added, is placed in a battery case 7 in which the electrode group having the above-mentioned structure is housed. The solution was poured to 80 to 95% to obtain a sealed alkaline zinc secondary battery having a capacity of 10 Ah.

【0018】上記した本発明電池Aに対し、比較電池B
として、酸素吸収抑制剤としての酸化錫を含有させない
負極板1と、酸化亜鉛に対する亜鉛の含有率が負極板1
と同じである亜鉛極8とを用いてなるものを製作すると
ともに、図2のような従来電池Cを製作した。
In comparison with the above-mentioned battery A of the present invention, comparative battery B
As the negative electrode plate 1 containing no tin oxide as an oxygen absorption inhibitor, the negative electrode plate 1 has a zinc content relative to zinc oxide.
And a zinc electrode 8 which is the same as the above, and a conventional battery C as shown in FIG.

【0019】次に、上記した本発明電池A、比較電池B
および従来電池Cについて、充放電サイクル寿命試験を
行い、その結果を図3に示す。なお、試験条件は、25
℃の温度下で0.1Cの電流で充電した後、0.5Cの
電流で容量の80%まで放電したものである。
Next, the present invention battery A and comparative battery B described above
A charge / discharge cycle life test was performed on the conventional battery C and the result is shown in FIG. The test condition is 25
The battery was charged with a current of 0.1 C at a temperature of ° C and then discharged with a current of 0.5 C to 80% of the capacity.

【0020】図3から、本発明電池Aと比較電池Bと
は、充放電サイクルの初期に放電容量が低下せず、本発
明電池Aは300サイクル、比較電池Bは200サイク
ル程度の寿命になることがわかった。これに対し、従来
電池Cは充放電サイクルの初期から放電容量が低下して
120サイクル程度で寿命になることがわかった。
From FIG. 3, the battery A of the present invention and the battery B of the comparison do not have a reduced discharge capacity at the beginning of the charging / discharging cycle, and the battery A of the present invention has a life of about 300 cycles and the battery B of the comparison has a life of about 200 cycles. I understood it. On the other hand, it was found that the discharge capacity of the conventional battery C decreased from the beginning of the charge / discharge cycle and reached the end of its life at about 120 cycles.

【0021】図4は、上記充放電サイクル寿命試験中の
酸素の吸収効率の変化を電池の重量変化によって測定し
た結果を示すものである。
FIG. 4 shows the results of measurement of changes in oxygen absorption efficiency during the above charge / discharge cycle life test by changes in the weight of the battery.

【0022】図4から酸素の吸収効率は、従来電池Cが
充放電サイクル寿命試験中を通じて90%程度であった
のに対し、本発明電池Aおよび比較電池Bは100サイ
クル付近まではほぼ100%程度であった。ただ、比較
電池Bは100サイクルを経過すると徐々に酸素の吸収
効率が低下し、寿命末期には90%程度になることがわ
かった。
From FIG. 4, the oxygen absorption efficiency of the conventional battery C was about 90% throughout the charge / discharge cycle life test, whereas the battery A of the present invention and the comparative battery B were almost 100% up to around 100 cycles. It was about. However, it was found that the comparative battery B gradually decreased in oxygen absorption efficiency after 100 cycles and reached about 90% at the end of its life.

【0023】このことは、本発明電池Aおよび従来電池
Bは、充電末期や過充電時に正極から発生する酸素がネ
ット状スペーサ6を介して亜鉛極8の片面全面に導かれ
て均一にかつ効率よく吸収されることを示すもので、同
時に保液層4とセパレータ3とによって包囲された負極
板1の周辺部で酸素が吸収されるのを抑制し、この負極
板1中の負極活物質の存在が不均一になるのを防止しう
ることを示すものである。
In the battery A of the present invention and the battery B of the prior art, oxygen generated from the positive electrode at the end of charging or overcharging is introduced to the entire one surface of the zinc electrode 8 via the net-shaped spacer 6, and the efficiency is uniformly and efficiently. It shows that it is well absorbed, and at the same time, suppresses the absorption of oxygen in the peripheral portion of the negative electrode plate 1 surrounded by the liquid retaining layer 4 and the separator 3, and It shows that the existence can be prevented from becoming non-uniform.

【0024】さらに、本発明電池Aでは、前記負極板1
中に酸素吸収抑制剤を含有させ、負極板1より酸化亜鉛
に対する亜鉛の含有率が高い亜鉛極8を用いているの
で、上記効果を一層高めることができる。
Further, in the battery A of the present invention, the negative electrode plate 1
Since the oxygen absorption inhibitor is contained therein and the zinc electrode 8 having a higher content ratio of zinc to zinc oxide than the negative electrode plate 1 is used, the above effect can be further enhanced.

【0025】[0025]

【発明の効果】上記したとおりであるから、本発明電池
は、亜鉛極によって酸素の吸収を均一にかつ効率よく行
うことができるので、密閉形アルカリ亜鉛二次電池の充
放電サイクル寿命を向上することができる。
As described above, according to the battery of the present invention, oxygen can be uniformly and efficiently absorbed by the zinc electrode, so that the charge / discharge cycle life of the sealed alkaline zinc secondary battery is improved. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の密閉形アルカリ亜鉛二次電池の断面図
である。
FIG. 1 is a cross-sectional view of a sealed alkaline zinc secondary battery of the present invention.

【図2】従来の密閉形アルカリ亜鉛二次電池の断面図で
ある。
FIG. 2 is a cross-sectional view of a conventional sealed alkaline zinc secondary battery.

【図3】充放電サイクル寿命試験を行った結果を示す図
である。
FIG. 3 is a diagram showing the results of a charge / discharge cycle life test.

【図4】充放電サイクル寿命試験中の負極板による酸素
の吸収効率の変化を示す図である。
FIG. 4 is a diagram showing changes in oxygen absorption efficiency by a negative electrode plate during a charge / discharge cycle life test.

【符号の説明】[Explanation of symbols]

1 負極板 2 正極板 3 セパレータ 4 保液層 5 隔離膜 6 ネット状スペーサ 7 電槽 8 亜鉛極 DESCRIPTION OF SYMBOLS 1 Negative electrode plate 2 Positive electrode plate 3 Separator 4 Liquid retention layer 5 Separation film 6 Net spacer 7 Battery case 8 Zinc electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坊ケ内 丈仁 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Bogauchi Takehito 6-6 Josaimachi, Takatsuki City, Osaka Prefecture Yuasa Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 保液層とセパレータとによって包囲され
た正極板と、酸素吸収抑制剤を含有させるとともに亜鉛
または酸化亜鉛の少なくとも一方を主体とし、保液層と
セパレータとによって包囲された負極板とを交互に積層
し、最外部に負極板を位置させるように電槽内に収納し
てなる密閉形アルカリ亜鉛二次電池において、前記最外
部の負極板と電槽内壁との間に、亜鉛または酸化亜鉛の
少なくとも一方を主体とし、前記負極板より酸化亜鉛に
対する亜鉛の含有率が高い亜鉛極を配したことを特徴と
する密閉形アルカリ亜鉛二次電池。
1. A positive electrode plate surrounded by a liquid retaining layer and a separator, and a negative electrode plate containing an oxygen absorption inhibitor and containing at least one of zinc and zinc oxide as a main component and surrounded by the liquid retaining layer and a separator. Alternately stacked, and in a sealed alkaline zinc secondary battery which is housed in a battery case so that the negative electrode plate is located on the outermost side, between the outermost negative electrode plate and the inner wall of the battery case, zinc Alternatively, a sealed alkaline zinc secondary battery is characterized in that a zinc electrode having at least one of zinc oxide as a main component and having a higher content ratio of zinc to zinc oxide than the negative electrode plate is arranged.
【請求項2】 酸素吸収抑制剤は酸化錫であることを特
徴とする請求項第1項記載の密閉形アルカリ亜鉛二次電
池。
2. The sealed alkaline zinc secondary battery according to claim 1, wherein the oxygen absorption inhibitor is tin oxide.
【請求項3】 最外部の負極板と亜鉛極との間に隔離膜
を配し、かつ/または亜鉛極と電槽内壁との間に撥水性
のネット状スペーサを配したことを特徴とする請求項第
1項または第2項記載の密閉形アルカリ亜鉛二次電池。
3. A separator is arranged between the outermost negative electrode plate and the zinc electrode, and / or a water-repellent net-like spacer is arranged between the zinc electrode and the inner wall of the battery case. The sealed alkaline zinc secondary battery according to claim 1 or 2.
【請求項4】 正極板は保液層とセパレータとによって
上方を除く三方が包囲され、負極板は四方が包囲されて
いることを特徴とする請求項第1項、第2項または第3
項記載の密閉形アルカリ亜鉛二次電池。
4. The positive electrode plate is surrounded by a liquid-retaining layer and a separator on three sides except the upper side, and the negative electrode plate is surrounded on four sides, and the positive electrode plate is surrounded by four sides.
The sealed alkaline zinc secondary battery according to the item.
JP5081257A 1993-03-15 1993-03-15 Sealed alkali-zinc secondary battery Pending JPH06267587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081257A JPH06267587A (en) 1993-03-15 1993-03-15 Sealed alkali-zinc secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081257A JPH06267587A (en) 1993-03-15 1993-03-15 Sealed alkali-zinc secondary battery

Publications (1)

Publication Number Publication Date
JPH06267587A true JPH06267587A (en) 1994-09-22

Family

ID=13741328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081257A Pending JPH06267587A (en) 1993-03-15 1993-03-15 Sealed alkali-zinc secondary battery

Country Status (1)

Country Link
JP (1) JPH06267587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283901A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Alkaline battery
JP2019102245A (en) * 2017-11-30 2019-06-24 京セラ株式会社 Secondary battery and flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283901A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Alkaline battery
JP2019102245A (en) * 2017-11-30 2019-06-24 京セラ株式会社 Secondary battery and flow battery

Similar Documents

Publication Publication Date Title
US3226260A (en) Rechargeable alkaline cell
CA2064965A1 (en) Lithium secondary battery
JP3287367B2 (en) Sealed nickel zinc battery
JPH06267587A (en) Sealed alkali-zinc secondary battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH0787102B2 (en) Sealed nickel-zinc battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JPH06124727A (en) Sealed alkaline zinc secondary battery
JP2006155960A (en) Negative electrode and battery
JPS61165956A (en) Sealed type lead acid battery
GB2314200A (en) A group of winding electrodes
JPH08115745A (en) Nonaqueous electrolyte battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JPH0689719A (en) Sealed type nickel zinc storage battery
JPH0714604A (en) Sealed alkaline zinc secondary battery
JPH0696795A (en) Sealed nickel-zinc battery
JPH0696796A (en) Sealed secondary battery
JPH01100872A (en) Sealed type nickel-zinc cell
JPH01149376A (en) Sealed lead-acid battery
JPH05182686A (en) Sealed nickel zinc storage battery
JPS63152871A (en) Sealed lead-acid battery
JPH10106525A (en) Sealed alkaline storage battery
JPH01189871A (en) Sealed type lead-acid battery
JP2691533B2 (en) Sealed alkaline storage battery