JPH01187767A - Manufacture of cadmium negative electrode for alkaline storage battery - Google Patents

Manufacture of cadmium negative electrode for alkaline storage battery

Info

Publication number
JPH01187767A
JPH01187767A JP63009825A JP982588A JPH01187767A JP H01187767 A JPH01187767 A JP H01187767A JP 63009825 A JP63009825 A JP 63009825A JP 982588 A JP982588 A JP 982588A JP H01187767 A JPH01187767 A JP H01187767A
Authority
JP
Japan
Prior art keywords
cadmium
nickel
aqueous solution
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63009825A
Other languages
Japanese (ja)
Inventor
Katsumi Yamashita
勝己 山下
Hideo Kaiya
英男 海谷
Masako Kusaka
草鹿 雅子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63009825A priority Critical patent/JPH01187767A/en
Publication of JPH01187767A publication Critical patent/JPH01187767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide excellent gas absorbing characteristic and prolong the lifetime even in high temp. range by using a current collecting roller, and accomplishing a film layer of uniform metal nickel. CONSTITUTION:Active substance powder is turned into paste or sheet and coated on both sides of a conductive support followed by drying, and the resultant is immersed in aqueous solution containing at least one of sulfuric acid and hydrochloric acid, put in contact with a current collecting roller in this aqueous solution, immesed in an aqueous solution containing nickel sulfate, nickel chloride, and boric acid, followed by current supply to the current collecting roller, and thereby the product is negative electrolyzed to form a film layer of metal nickel continuously on the surface of cadmium active substance. Thus a film layer of uniform metal nickel is obtained excellent in gas absorbing characteristic and with long life even in high temp. range.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用カドミウム負極の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a cadmium negative electrode for an alkaline storage battery.

従来の技術 従来アルカリ蓄電池用カドミウム負極として、活物質を
結着剤とともに練合し、これを導電性支持体の両側に塗
布するペースト式負極が、製造工程が簡単であり、製造
コストも安く、且つ高エネルギー密度が得られるという
点で広く採用されている。
Conventional technology Conventionally, as a cadmium negative electrode for alkaline storage batteries, a paste-type negative electrode in which an active material is kneaded with a binder and coated on both sides of a conductive support has a simple manufacturing process and low manufacturing cost. In addition, it is widely adopted because it provides high energy density.

発明が解決しようとする課題 このようなペースト式カドミウム負極は、高エネルギー
密度が得られる等の利点を有する反面、電子伝導性に劣
るため過充電により正極から発生する酸素ガスの吸収能
力が悪く、密閉型に使用すると内部ガス圧が上昇し易い
という欠点があった。
Problems to be Solved by the Invention Although such paste-type cadmium negative electrodes have advantages such as high energy density, they have poor electron conductivity and poor ability to absorb oxygen gas generated from the positive electrode due to overcharging. When used in a closed type, the internal gas pressure tends to increase.

また40℃以上の高温領域においては高濃度アルカリ溶
液中での水酸化カドミウムの溶解度が高くなり、充放電
サイクルのくり返しにより、カドミウムの溶解析出がく
り返され、負極の変形や利用率の低下、デンドライトの
成長等により、比較的短寿命になりやすいという欠点を
有していた。
In addition, in a high temperature region of 40°C or higher, the solubility of cadmium hydroxide in a highly concentrated alkaline solution increases, and repeated charge/discharge cycles cause repeated leaching and precipitation of cadmium, resulting in deformation of the negative electrode and reduction in utilization rate. It has the disadvantage that it tends to have a relatively short life due to the growth of dendrites, etc.

このような課題を解決するだめに、特公昭48−251
49号公報に見られるように無電解メツキまたは電解メ
ツキにより電極の表面に金属のニッケル層を設けること
が提案されているが、無電解メツキは活性化処理等の工
程が煩雑であり、また電解メツキは水溶液中に漬浸した
後、金属ニッケルを析出させるため、ニッケル化合物の
残留物が活物質中又はニラケル層中に混入しやすい。こ
れらの残留物が混入した場合、金属のニッケル層が不均
一になりやすく、電池として十分な効果が得られないと
いう欠点を有していた。
In order to solve these problems, the special public
As seen in Publication No. 49, it has been proposed to provide a metal nickel layer on the surface of the electrode by electroless plating or electrolytic plating, but electroless plating requires complicated steps such as activation treatment, and Since metal nickel is precipitated after being immersed in an aqueous solution, residues of the nickel compound are likely to be mixed into the active material or the nickel layer. When these residues are mixed in, the metal nickel layer tends to become non-uniform, resulting in a drawback that a sufficient effect as a battery cannot be obtained.

本発明は、このような課題を解決し、均一な金属ニッケ
ルの薄膜層を得ることにより、ガス吸収特性の優れ、高
温領域でも長寿命を有するアルカリ蓄電池用カドミウム
負極を得ることを目的とする。
The object of the present invention is to solve these problems and obtain a cadmium negative electrode for alkaline storage batteries that has excellent gas absorption characteristics and has a long life even in high temperature regions by obtaining a uniform thin film layer of metallic nickel.

課題を解決するだめの手段 このような課題を解決するために、本発明は活物質粉末
をペースト状もしくはシート状として導電性支持体の両
側に塗布、乾燥した後、ホウ酸、硫酸もしくは塩酸のう
ち少なくとも1種を含む水溶液に浸漬し、同時にこの水
溶液中で集電ローラーと接触させた後、引続いて硫酸ニ
ッケル、塩化ニッケル及びホウ酸を含む水溶液に浸漬し
、前記集電ローラーに通電を行なうことにより、陰電解
して、カドミウム活物質表面に金属ニッケルの薄膜層を
連続的に形成することを特徴とするアルカリ蓄電池用カ
ドミウム負極の製造法である。
Means for Solving the Problems In order to solve these problems, the present invention provides active material powder that is applied in the form of a paste or sheet to both sides of a conductive support, dried, and then treated with boric acid, sulfuric acid, or hydrochloric acid. After being immersed in an aqueous solution containing at least one of these and simultaneously brought into contact with a current collector roller in this aqueous solution, it is subsequently immersed in an aqueous solution containing nickel sulfate, nickel chloride, and boric acid, and the current collector roller is energized. This method of producing a cadmium negative electrode for an alkaline storage battery is characterized by carrying out negative electrolysis to continuously form a thin film layer of metallic nickel on the surface of a cadmium active material.

作用 密閉型アルカリ蓄電池におけるカドミウム負極による酸
素ガス吸収反応は次式で示される。
The oxygen gas absorption reaction by the cadmium negative electrode in a sealed alkaline storage battery is expressed by the following equation.

Cd + 1402+ H,、O−+ Cd (OH)
2.・曲(1)つまり、気相、液相1面相の3相界面に
おける反応であり、金属カドミウムと酸素ガスが多く接
触する程反応は活発である。ところが、ペースト式カド
ミウム負極は活物質の導電性が低く、充電反応は芯体近
傍から極板表面に向って徐々に進行す ′るため、金属
カドミウムは導電性芯体から離れた極板表面近傍に生成
され難くなって込る。これに対し、ペースト式カドミウ
ム負極の活物質層の表面に金属ニッケルの薄膜を設けた
電極では、導電性芯体を中心として生成する金属カドミ
ウムが活物質の導電性を有する金属ニッケルの薄膜層ま
で到達すると、その到達した部分から金属ニッケルに沿
って徐々に負極表面近傍全体に優先的に金属カドミウム
が析出し、その結果、酸素ガス吸収能が向上する。
Cd + 1402+ H,, O-+ Cd (OH)
2. - Song (1) In other words, it is a reaction at the three-phase interface of gas phase and liquid phase, and the more the metal cadmium and oxygen gas come into contact, the more active the reaction is. However, in paste-type cadmium negative electrodes, the active material has low conductivity, and the charging reaction progresses gradually from the vicinity of the core toward the surface of the plate. Therefore, metallic cadmium is charged near the surface of the plate, away from the conductive core. It becomes difficult to generate. In contrast, in a paste-type cadmium negative electrode in which a thin film of metallic nickel is provided on the surface of the active material layer, the metallic cadmium generated around the conductive core reaches the active material's conductive thin film of metallic nickel. Once reached, metal cadmium gradually precipitates preferentially in the entire vicinity of the negative electrode surface from the reached part along the metal nickel, and as a result, the oxygen gas absorption ability improves.

捷た、40℃以上の高温領域において負極を放?[t、
7’;場合放電生成物がカドミ酸イオンとして溶出し、
アルカリ電解液中を拡散し、次に充電した時に元に戻ら
ず析出する。これは充放電サイクルのくり返しにより促
進され、負極は著しく変形し利用率が低下したり、デン
ドライト等の成長によりセパレータ中を活物質が浸透し
短絡を引き起こしたり、寿命を短かくする原因となる。
Is the negative electrode released in a high temperature region of 40℃ or higher? [t,
7': If the discharge product is eluted as cadmate ion,
It diffuses in the alkaline electrolyte and precipitates without returning to its original state when it is next charged. This is accelerated by repeated charging and discharging cycles, and the negative electrode is significantly deformed, resulting in a decrease in utilization rate, and the growth of dendrites causes the active material to penetrate into the separator, causing short circuits and shortening the lifespan.

しかし、電極表面層に、極めて微細な金にニッケル粒子
を緻密な層として形成することにより、高温領域での放
電生成物の溶解、拡散を防止することが可能となり、電
池の充放電サイクル寿命が大幅に向上する。
However, by forming a dense layer of extremely fine gold and nickel particles on the electrode surface layer, it is possible to prevent the dissolution and diffusion of discharge products in high-temperature regions, thereby extending the charge-discharge cycle life of the battery. Significantly improved.

ところが、電解メツキにより、ペースト式カドミウム負
極の活物質表面に金属ニッケルの薄膜層を形成する場合
、活物質表面の導電性が低いため、ニッケル析出の過電
圧が高くなシ、活物質表面からH2ガスが発生する。そ
の結果、カドミウム活物質表面近傍がアルカリ性になり
、水酸化ニッケルなどのニッケル化合物が析出する。こ
のニッケル化合物が金属ニッケルの薄膜層に混入した場
合、ニッケル化合物の導電性が低いため、金属ニッケル
の析出反応が不均一になシやすく、金属ニッケルの薄膜
層が不均一になる。その結果、充電反応において負極表
面近傍に析出する金属カドミウムの分布が不均一となっ
てしまい、酸素ガス吸収能が低下してしまう。また、高
温領域における充放電サイクル寿命が十分に向上できな
いという欠点があった。
However, when a thin film layer of metallic nickel is formed on the active material surface of a paste-type cadmium negative electrode by electrolytic plating, the overvoltage for nickel deposition is high due to the low conductivity of the active material surface, and H2 gas is removed from the active material surface. occurs. As a result, the vicinity of the surface of the cadmium active material becomes alkaline, and nickel compounds such as nickel hydroxide are precipitated. When this nickel compound is mixed into a thin film layer of metallic nickel, the precipitation reaction of metallic nickel tends to be uneven because the nickel compound has low conductivity, and the thin film layer of metallic nickel becomes uneven. As a result, the distribution of metal cadmium deposited near the surface of the negative electrode during the charging reaction becomes uneven, resulting in a decrease in oxygen gas absorption ability. Further, there was a drawback that the charge/discharge cycle life in a high temperature region could not be sufficiently improved.

ところが、本発明ではカドミウム活物質塗布板を、ホウ
酸、硫酸もしくは塩酸のうち少なくとも1種を含む水溶
液に浸漬した後、電解メツキを行なうことにより、カド
ミウム活物質表面が酸性に保たれるため、水酸化ニッケ
ルの生成を抑制できる。また、活物質内部にもあらかじ
め水溶液が含浸されているため、活物質内部への水酸化
ニッケルの生成も抑制される。さらに、カドミウム活物
質塗布板への通電を、ホウ酸、硫酸もしくは塩酸のうち
少なくとも1種を含む水溶液中で、集成ローラーとの接
触によシ行なうことにより、集電ローラーの冷却効果と
新らたに添加工程を必要とせず、工程が非常に簡素化で
きる。またホウ酸、硫酸もしくは塩酸は、メツキ電解液
の組成成分に含まれるものであり、これらがメツキ電解
液に混入しても何ら影響がない。
However, in the present invention, the cadmium active material surface is kept acidic by electroplating after immersing the cadmium active material coated plate in an aqueous solution containing at least one of boric acid, sulfuric acid, or hydrochloric acid. The production of nickel hydroxide can be suppressed. Furthermore, since the inside of the active material is also impregnated with the aqueous solution in advance, the formation of nickel hydroxide inside the active material is also suppressed. Furthermore, by energizing the cadmium active material-coated plate in an aqueous solution containing at least one of boric acid, sulfuric acid, or hydrochloric acid, and by contacting it with the roller assembly, the cooling effect of the current collector roller and new No addition process is required, making the process extremely simple. Further, boric acid, sulfuric acid, or hydrochloric acid are included in the composition of the plating electrolyte, and even if they are mixed into the plating electrolyte, there will be no effect.

実施例 平均粒子径約1μの酸化カドミウム粉末にポリビニルア
ルコールのエチレンクリコール溶液ヲ加え、混練してペ
ースト状にする。このペーストを導電性支持体である厚
さ0.1調のニッケルメッキした開孔鋼板に塗着し、約
140℃で30分間乾燥し、厚さ約0.5簡のカドミウ
ム活物質塗布を得た。次に、このカドミウム活物質塗布
板1を第1図に示すような方法で、集電ローラー2で案
内しながら0.5モル/Eのホウ酸水溶液3に浸漬し、
続いて1モル/Eの硫酸ニッケル、0.1モル/lの塩
化ニッケル、0.6モル/βのホウ酸の水溶液から成る
ニッケルメッキ液6に浸漬し、一対のニッケル対極4の
間を通過させつつホウ酸水溶液中に浸漬されている集電
ローラー2により通電して、陰電解を行なった。なお、
陰電解条件は、カドミウム負極板の見掛は表面[1dm
 当たり10人の電流で2分間行なうように極板の送り
速度と、電流値を設定した。
EXAMPLE An ethylene glycol solution of polyvinyl alcohol is added to cadmium oxide powder having an average particle size of about 1 μm, and the mixture is kneaded to form a paste. This paste was applied to a conductive support, a nickel-plated perforated steel plate with a thickness of 0.1, and dried at about 140°C for 30 minutes to obtain a coating of cadmium active material with a thickness of about 0.5. Ta. Next, this cadmium active material coated plate 1 is immersed in a 0.5 mol/E boric acid aqueous solution 3 while being guided by a current collecting roller 2 in the manner shown in FIG.
Subsequently, it was immersed in a nickel plating solution 6 consisting of an aqueous solution of 1 mol/E nickel sulfate, 0.1 mol/l nickel chloride, and 0.6 mol/β boric acid, and passed between a pair of nickel counter electrodes 4. Negative electrolysis was carried out by applying current to the current collecting roller 2 immersed in the boric acid aqueous solution. In addition,
The negative electrolysis conditions were such that the apparent surface of the cadmium negative electrode plate was [1 dm
The plate feeding speed and current value were set so that the current was applied to 10 people per person for 2 minutes.

この方法により金属ニッケルの薄膜をカドミウム活物質
表面に形成した後、アルカリ溶液中で理論容量の約40
%充電し、水洗、乾燥してアルカリ蓄電池用カドミウム
負極を得た。この負極をaとする。
After forming a thin film of metallic nickel on the surface of the cadmium active material by this method, about 40% of the theoretical capacity is
%, washed with water, and dried to obtain a cadmium negative electrode for an alkaline storage battery. Let this negative electrode be a.

一方、電解メツキ法の比較例として、ホウ酸水溶液に浸
漬しないで、陰電解して得たカドミウム負極板をbとす
る。また、活物質表面層に金属ニッケル層を形成させな
い以外はaと同様の構成による比較例のカドミウム負極
をCとする。
On the other hand, as a comparative example of the electrolytic plating method, a cadmium negative electrode plate obtained by negative electrolysis without being immersed in a boric acid aqueous solution is designated as b. Further, C is a cadmium negative electrode of a comparative example having the same structure as a except that a metal nickel layer is not formed on the active material surface layer.

上記z、b、c3種類のカドミウム負極を焼結式ニッケ
ル正極と組み合わせて、密閉型蓄電池を試作し、過充電
時の電池内圧試験と、サイクル寿命試験を行なった。
A sealed storage battery was prototyped by combining the above three types of cadmium negative electrodes, z, b, and c, with a sintered nickel positive electrode, and a battery internal pressure test during overcharging and a cycle life test were conducted.

過充電時の電池内圧は、20℃でHa〜3C相当の電流
で過充電した時の電池内圧のピーク値で評価した。さら
にサイクル寿命特性は、s o’cで1/13C相当の
電流で4.5時間充電し、1G相当の抵抗負荷で完全放
電をくり返した。
The battery internal pressure during overcharging was evaluated by the peak value of the battery internal pressure when overcharging was performed at 20° C. with a current equivalent to Ha to 3C. Furthermore, the cycle life characteristics were determined by charging for 4.5 hours under SO'C at a current equivalent to 1/13C, and repeating complete discharge under a resistive load equivalent to 1G.

第2図は充電レートと電池内圧のピーク値との関係を示
す。本発明によるカドミウム負極を用いた電池aは、b
、cと比較して酸素ガス吸収能力が向上している。これ
は、カドミウム負極の活物質表面に金属ニッケル層を形
成することにより、負極表面近傍全体に優先的に析出し
た金属カドミウムにより酸素ガス吸収能力が向上したこ
とと、カドミウム活物質表面層に金属ニッケルが、水酸
化ニッケルなどのニッケル化合物の形成なしに、微細な
粒子として均一な形で析出しており、負極表面近傍に析
出する金属カドミウムの分布が均一となるため比較例す
よりもガス吸収能力が向上しているものと考えられる。
FIG. 2 shows the relationship between the charging rate and the peak value of the battery internal pressure. Battery a using a cadmium negative electrode according to the present invention is b
, c has improved oxygen gas absorption ability. This is due to the fact that by forming a metallic nickel layer on the surface of the active material of the cadmium negative electrode, the oxygen gas absorption ability is improved due to the metallic cadmium precipitated throughout the vicinity of the negative electrode surface, and the metallic nickel layer is formed on the surface layer of the cadmium active material. However, the metal cadmium is precipitated in a uniform form as fine particles without the formation of nickel compounds such as nickel hydroxide, and the distribution of metal cadmium precipitated near the negative electrode surface is uniform, so the gas absorption capacity is higher than that of the comparative example. It is thought that this has improved.

第3図は、1サイクル目の容量を1Q○とした場合の容
量維持率と、充放電サイクル数との関゛係を示す。この
結果から明らかなように、カドミウム活物質表面に金属
ニッケル層を設けたカドミウム負極を用いた場合a、b
では、大幅にサイクル寿命特性が向上している。さらに
、本発明によるカドミウム負極を用いた場合aは、従来
例すよりもサイクル寿命が向上している。これは先に述
べたと同様に電極表面に微細な粒子として均一に金属ニ
ッケルが層を形成しているため、高温での充放電サイク
ルにおける活物質の溶解析出によるカドミウム活物質の
著しい変形を防止できるためと考えられる。
FIG. 3 shows the relationship between the capacity retention rate and the number of charge/discharge cycles when the capacity at the first cycle is 1Q○. As is clear from these results, when using a cadmium negative electrode with a metal nickel layer on the surface of the cadmium active material, a and b
The cycle life characteristics have been significantly improved. Furthermore, when the cadmium negative electrode according to the present invention is used, the cycle life is improved compared to the conventional example. This is because, as mentioned above, a layer of metallic nickel is uniformly formed as fine particles on the electrode surface, which prevents significant deformation of the cadmium active material due to dissolution deposition of the active material during charge/discharge cycles at high temperatures. It is thought that this is because of this.

なお、本実施例では、ホウ酸水溶液を用いたが、硫酸あ
るいは塩酸水溶液を用いても同様の効果が得られる。
In this example, a boric acid aqueous solution was used, but the same effect can be obtained by using a sulfuric acid or hydrochloric acid aqueous solution.

発明の効果 以上のように、本発明によれば、非常に簡素化した工程
で均一な金属ニッケルの薄膜層を得ることにより、ガス
吸収特性に優れ、高温領域でも長寿命を有するアルカリ
蓄電池用カドミウム負極を得ることができる。
Effects of the Invention As described above, according to the present invention, by obtaining a uniform thin film layer of metallic nickel through a very simple process, cadmium for alkaline storage batteries has excellent gas absorption characteristics and has a long life even in high temperature regions. A negative electrode can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で使用した電解メツキ装置4の概
略図、第2図は電池内圧のピーク値と充電レートとの関
係を示す図、第3図は容量維持率と充放電サイクル数と
の関係を示す図である。 1・・・・・・活物質塗布板、2・・・・・・集電ロー
ラー、3・・・・・ホウ酸水溶液、4・・・・・・ニッ
ケル対極、5・・・・・・ニッケルメッキ液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
活安買#J7板 2−−−itフローラ −−一−ズへり瞭メくA硝舅グ 4− ニッケ)Lガ輸 5− ニッケ九ノソ干j蒼 第Jllliff ? 第2図 充電レート(CmA) 第3図 充 放電プイク)L/放
Figure 1 is a schematic diagram of the electrolytic plating device 4 used in the method of the present invention, Figure 2 is a diagram showing the relationship between the peak value of battery internal pressure and charging rate, and Figure 3 is a diagram showing the relationship between the capacity retention rate and the number of charge/discharge cycles. FIG. 1... Active material coated plate, 2... Current collector roller, 3... Boric acid aqueous solution, 4... Nickel counter electrode, 5... Nickel plating liquid. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
Cheap Buy #J7 Board 2 --- It Flora --- One's Heri Meku A Glass 4- Nikke) L Ga Import 5- Nikke Nine So Hanji Aodai Jlliff? Figure 2 Charging rate (CmA) Figure 3 Charging/discharging rate (CmA)

Claims (1)

【特許請求の範囲】[Claims] 酸化カドミウムまたは水酸化カドミウムを主体とする活
物質粉末をペースト状もしくはシート状として導電性支
持体の両側に塗布、乾燥し、カドミウム活物質塗布板を
得る工程と、このカドミウム活物質塗布板をホウ酸、硫
酸もしくは塩酸のうち少なくとも1種を含む水溶液に浸
漬すると同時に、上記水溶液中で集電ローラーと接触さ
せた後、引続いて硫酸ニッケル、塩化ニッケル及びホウ
酸を含む水溶液に浸漬し、前記集電ローラーに通電を行
なうことにより陰電解して、カドミウム活物質表面に金
属ニッケルの薄膜層を連続的に形成する工程を有するこ
とを特徴とするアルカリ蓄電池用カドミウム負極の製造
法。
A step of applying an active material powder mainly composed of cadmium oxide or hydroxide in paste or sheet form to both sides of a conductive support and drying it to obtain a cadmium active material coated plate; After being immersed in an aqueous solution containing at least one of acid, sulfuric acid or hydrochloric acid and at the same time being brought into contact with a current collecting roller in the aqueous solution, successively immersing in an aqueous solution containing nickel sulfate, nickel chloride and boric acid, 1. A method for producing a cadmium negative electrode for an alkaline storage battery, comprising the step of carrying out negative electrolysis by energizing a current collecting roller to continuously form a thin film layer of metallic nickel on the surface of a cadmium active material.
JP63009825A 1988-01-20 1988-01-20 Manufacture of cadmium negative electrode for alkaline storage battery Pending JPH01187767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009825A JPH01187767A (en) 1988-01-20 1988-01-20 Manufacture of cadmium negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009825A JPH01187767A (en) 1988-01-20 1988-01-20 Manufacture of cadmium negative electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH01187767A true JPH01187767A (en) 1989-07-27

Family

ID=11730912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009825A Pending JPH01187767A (en) 1988-01-20 1988-01-20 Manufacture of cadmium negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH01187767A (en)

Similar Documents

Publication Publication Date Title
JPH01187767A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3456092B2 (en) Hydrogen storage alloy and method for producing the same
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2002343349A (en) Hydrogen storage alloy electrode
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPH0799690B2 (en) Method for manufacturing hydrogen storage electrode
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPH0410176B2 (en)
JP2937165B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPH0410181B2 (en)
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JPS61259456A (en) Manufacture of negative cadmium electrode
JP2754800B2 (en) Nickel cadmium storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
CN114927676A (en) Three-dimensional cluster antimony material and preparation method and application thereof
JP3249324B2 (en) Nickel active material for alkaline storage battery and its manufacturing method
JPS63310561A (en) Manufacture of paste type cadmium negative electrode
RU2050635C1 (en) Process of manufacture of cadmium electrode for chemical source of electric energy
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS63158748A (en) Manufacture of paste type cadmium negative electrode