JPH0471311B2 - - Google Patents

Info

Publication number
JPH0471311B2
JPH0471311B2 JP59107147A JP10714784A JPH0471311B2 JP H0471311 B2 JPH0471311 B2 JP H0471311B2 JP 59107147 A JP59107147 A JP 59107147A JP 10714784 A JP10714784 A JP 10714784A JP H0471311 B2 JPH0471311 B2 JP H0471311B2
Authority
JP
Japan
Prior art keywords
nickel
storage battery
alkali
cadmium storage
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59107147A
Other languages
Japanese (ja)
Other versions
JPS60250556A (en
Inventor
Masahiko Oshitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP59107147A priority Critical patent/JPS60250556A/en
Publication of JPS60250556A publication Critical patent/JPS60250556A/en
Publication of JPH0471311B2 publication Critical patent/JPH0471311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ペースト式ニツケル極板を用いたニ
ツケルカドミウム蓄電池の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a nickel-cadmium storage battery using paste-type nickel electrode plates.

従来例の構成とその問題点 従来ニツケルカドミウム蓄電池用ニツケル正極
板としては、ニツケル粉末を穿孔鋼板あるいはニ
ツケルネツト等に焼結させた多孔体基板に、活物
質を充填させた焼結式極板がよく知られている。
Structure of conventional examples and their problems Conventional nickel positive electrode plates for nickel cadmium storage batteries are often sintered plates in which active material is filled in a porous substrate made by sintering nickel powder into a perforated steel plate or nickel net. Are known.

この多孔体基板は、ニツケル粉末を単に穿孔鋼
板あるいは、ニツケルネツト等に焼結させたもの
であり、ニツケル粉末粒子間の結合が弱く、高多
孔度にすると脱落が生じるために、実用上多孔度
80%程度が限界である。
This porous substrate is made by simply sintering nickel powder into a perforated steel plate or nickel net, and the bond between the nickel powder particles is weak and falling off occurs when the porosity is increased.
The limit is about 80%.

又、これらの多孔体基板はニツケル粉末粒子間
結合が弱いため、常に穿孔鋼板、ニツケルネツト
等の芯金を必要とし、単位体積あたりの活物質充
填量が芯金体積分だけ少なくなる欠点を有してい
る。
In addition, since these porous substrates have weak bonds between nickel powder particles, they always require a core metal such as a perforated steel plate or nickel net, and have the disadvantage that the amount of active material filled per unit volume is reduced by the volume of the core metal. ing.

さらに多孔体細孔が10μ以下と小さいために、
充填方法は繁雑な工程を繰返す溶液含浸法に限定
されている。これらの欠点を改良する試みとし
て、例えば芯金をもたないニツケルメツキ鉄繊維
焼結体、ニツケル繊維焼結体等に直接固体活物質
を充填させる、いわゆるペースト式充填方法等が
行われている。その他、直接固体活物質を充填さ
せたものには、ポケツト式極板があるが、このも
のは穿孔鋼板を加工し、ポケツト部を作り、その
中に活物質を充填する構造のため、ポケツト部の
穿孔鋼板の占める体積が大きく、単位体積あたり
の充填密度はかなり低いものである。
Furthermore, since the pores of the porous material are as small as 10μ or less,
The filling method is limited to the solution impregnation method, which involves repeated complicated steps. In an attempt to improve these drawbacks, a so-called paste filling method has been carried out, in which a solid active material is directly filled into a nickel-plated iron fiber sintered body, a nickel fiber sintered body, or the like without a core metal. Another type of electrode plate that is directly filled with a solid active material is a pocket type electrode plate, but this type has a structure in which a perforated steel plate is processed to create a pocket part and the active material is filled in the pocket part. The perforated steel plate occupies a large volume, and the packing density per unit volume is quite low.

これまで金属繊維の製造方法として、安価なも
のとして切削加工法あるいは金属粉末を繊維状に
加工焼結させたもの等がある。
Hitherto, inexpensive methods for manufacturing metal fibers include cutting methods and methods in which metal powder is processed and sintered into fibers.

切削加工法には固定されたバイト上を線径数mm
の金属線を移動させることによつて繊維を切削す
る場合と、旋削加工における自励振動を利用す
る、いわゆるびびり振動切削加工による2種類が
ある。金属繊維の径は4μ程度より製造可能であ
り、繊維径が細ければ細い程、表面積が増大する
ので活物質利用率は向上する。一方繊維径が太く
なれば表面積が減少し、確実に活物質利用率が低
下するために、50μ以上の繊維はメリツトが少な
い。実用上の活物質の充填しやすい基板の細孔分
布、引張強度、活物質利用率を考慮した場合、4
〜50μ程度が望ましい。この繊維をエアーレード
方法やその他の方法によつて均一分布させた後、
約1000℃前後の高温還元雰囲気下で焼結すると、
多孔体基板が得られる。多孔体基板は、繊維量、
焼結温度、時間等をコントロールすることによつ
て、多孔度85〜98%程度の実用強度を満足するも
のが得られる。なおこの多孔体基板が鉄繊維であ
る場合、アルカリ電解液中での腐蝕を防止するた
めに10〜20%のニツケルメツキを必要とする。
In the cutting method, the wire diameter is several mm on a fixed tool.
There are two types of cutting: one is cutting fibers by moving a metal wire, and the other is so-called chatter vibration cutting, which utilizes self-excited vibration in turning. Metal fibers can be manufactured with a diameter of about 4 μm, and the thinner the fiber diameter, the greater the surface area and the better the utilization of the active material. On the other hand, as the fiber diameter increases, the surface area decreases and the active material utilization rate definitely decreases, so fibers with a diameter of 50μ or more have little merit. Considering the pore distribution, tensile strength, and active material utilization rate of the substrate that is easy to fill with active material in practical use, 4.
~50μ is desirable. After uniformly distributing the fibers by airlaid method or other methods,
When sintered in a high temperature reducing atmosphere around 1000℃,
A porous substrate is obtained. The porous substrate has a fiber content,
By controlling the sintering temperature, time, etc., it is possible to obtain a material that satisfies practical strength with a porosity of about 85 to 98%. Note that if this porous substrate is made of iron fiber, nickel plating of 10 to 20% is required to prevent corrosion in an alkaline electrolyte.

従来これらの多孔体基板に水酸化ニツケルを主
成分とする活物質を充填した場合、例えば焼結式
極板に比べ活物質利用率が低くなる欠点を有し
た。
Conventionally, when these porous substrates are filled with an active material containing nickel hydroxide as a main component, the active material utilization rate is lower than that of, for example, a sintered electrode plate.

発明の目的 本発明はペースと式ニツケル極板の活物質利用
率を向上させ高性能でかつ生産性の高いニツケル
カドミウム蓄電池を製造することを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to improve the active material utilization rate of PACE type nickel electrode plates and to manufacture a nickel-cadmium storage battery with high performance and high productivity.

発明の構成 すなわち、本発明は上記目的を達成するため、
多孔体基板にあらかじめコバルトメツキを施す事
により活物質利用率が向上することを見い出した
が、さらにこの正極板を一度充放電した後卑な電
位に放置するものである。本発明によればまず多
孔体基板に1〜2μ程度のコバルトメツキを施こ
す。このコバルトメツキされた多孔体基板に、水
酸化ニツケルを主成分とし少量の水酸化カドミウ
ム、あるいは水酸化コバルトを共晶状態で含有す
る活物質を水等でスラリー状として充填後乾燥す
る。これを厚味調節して正極板とした後、負極板
と組合わせて電池とし、少なくとも1サイクル充
放電し短絡放置等過放電をさせた後、回復充電を
行つて電池として完成させるものである。
Structure of the invention That is, in order to achieve the above object, the present invention has the following features:
It has been found that the active material utilization rate can be improved by applying cobalt plating to the porous substrate in advance, but the positive electrode plate is left at a base potential after being charged and discharged once. According to the present invention, a porous substrate is first plated with cobalt to a thickness of about 1 to 2 microns. This cobalt-plated porous substrate is filled with an active material containing nickel hydroxide as a main component and a small amount of cadmium hydroxide or cobalt hydroxide in a eutectic state in the form of a slurry with water or the like, and then dried. After adjusting the thickness and making a positive electrode plate, this is combined with a negative electrode plate to form a battery, which is charged and discharged for at least one cycle, over-discharged such as by being left short-circuited, and then recovered and charged to complete the battery. .

実施例の説明 以下本発明の一実施例について詳述する。Description of examples An embodiment of the present invention will be described in detail below.

びびり振動切削加工法によつて得たにニツケル
繊維をエアーレード法で分布した後、還元性雰囲
気下1050℃で約30分間焼結させ、厚み2mm、多孔
度95%の多孔体基板を得た。しかる後、硫酸コバ
ルトアンモニウム、酢酸アンモニウム、酢酸、ホ
ルマリン、硫酸カドミウム等からなるメツキ浴で
1〜2μのコバルトメツキをほどこした。
After distributing the nickel fibers obtained by the chatter vibration cutting method using the air lading method, they were sintered at 1050°C for about 30 minutes in a reducing atmosphere to obtain a porous substrate with a thickness of 2 mm and a porosity of 95%. . Thereafter, cobalt plating with a thickness of 1 to 2 μm was applied in a plating bath containing cobalt ammonium sulfate, ammonium acetate, acetic acid, formalin, cadmium sulfate, etc.

このコバルトメツキされた多孔体に、水酸化ニ
ツケル94モル%、水酸化コバルト5モル%、水酸
化カドミウム1モル%からなる共晶物質に約10重
量%のニツケル粉末を加えてよく混合し、さらに
約40重量%の水および約2重量%のカルボキシメ
チルセルローズを加えてスラリー状にしたものを
充填した。その後乾燥、厚味調節して0。7mmの
正極板とした。活物質の充填密度は約1。8g/
c.c.である。この正極板を4cm×4cmに切断し、こ
の正極板と正極よりも容量大なる負極板および比
重1。20の水酸化カリウム電解液を用いてニツケ
ルカドミウム蓄電池を作成した。これを充放電し
て正極板の活物質利用率を測定した。なお比較の
ために同一寸法のコバルトメツキをしていない正
極板を用いた電池についても同様に測定した。
To this cobalt-plated porous body, about 10% by weight of nickel powder is added to a eutectic material consisting of 94% by mole of nickel hydroxide, 5% by mole of cobalt hydroxide, and 1% by mole of cadmium hydroxide, and then mixed well. A slurry made by adding about 40% by weight of water and about 2% by weight of carboxymethyl cellulose was filled. Thereafter, it was dried and the thickness was adjusted to obtain a 0.7 mm positive electrode plate. The packing density of the active material is approximately 1.8g/
cc. This positive electrode plate was cut to 4 cm x 4 cm, and a nickel-cadmium storage battery was prepared using this positive electrode plate, a negative electrode plate whose capacity was larger than that of the positive electrode, and a potassium hydroxide electrolyte having a specific gravity of 1.20. This was charged and discharged to measure the active material utilization rate of the positive electrode plate. For comparison, a battery using a positive electrode plate with the same dimensions but not plated with cobalt was also measured in the same manner.

第1図はこれらの結果を示したものである。
0。1C電流で15時間充電した後、0。2C電流で
0V VS.Hg/HgOまで放電させた時の正極板
の活物質利用率を比較した。
FIG. 1 shows these results.
After charging at 0.1C current for 15 hours, at 0.2C current
The active material utilization rate of the positive electrode plate when discharged to 0V VS.Hg/HgO was compared.

第1図のはコバルトメツキをしていない正極
板を用いた電池、はコバルトメツキをした正極
板を用いた電池であり、コバルトメツキの効果が
顕著である。はコバルトメツキをした正極板を
用いた電池であり、初期1サイクル目の放電末で
短絡放置した電池である。2サイクル目より活物
質利用率が大巾に向上している。の電池で9サ
イクル放電終了後、短絡放置させて再度充放電さ
せたところ10サイクル目に示す如く活物質利用率
が向上した。Iの電池でも同様の操作を実施した
が効果は認められなかつた。
The battery shown in FIG. 1 uses a positive electrode plate without cobalt plating, and the battery shown in FIG. 1 uses a positive electrode plate plated with cobalt, and the effect of cobalt plating is remarkable. This is a battery using a positive electrode plate plated with cobalt, and the battery was left short-circuited at the end of the initial first cycle of discharge. From the second cycle onwards, the active material utilization rate has significantly improved. After completing 9 cycles of discharge, the battery was left short-circuited and then charged and discharged again. As shown in the 10th cycle, the active material utilization rate improved. A similar operation was performed on the battery No. I, but no effect was observed.

なお、これらのことについてはどの種類の多孔
体基板をもちいても同様な傾向が認められた。か
つこの短絡放置は一回で充分であり、再度繰返し
てもほとんど効果はなかつた。
Note that similar trends were observed regardless of the type of porous substrate used. Moreover, it was enough to leave the short circuit once, and repeating it again had almost no effect.

この理由は明確ではないが、これらのことから
集電体である多孔体基板と活物質との接触面が、
活物質利用率に対し重要な役割をもつているもの
と推定される。すなわちメツキされたコバルトは
アルカリ電解液中アノード方向にて、HC0O2
イオン等になり一度溶解した後コバルト酸化物あ
るいは水酸化物として再度沈殿し、そのため集電
体表面と活物質の接触が改善され、このことから
活物質利用率が向上するものと考えられる。コバ
ルトの溶解は−0.4〜−0.8Vvs.Hg/HgO付近で
起こり、+0.3Vvs.Hg/HgOより貴な電位では酸
化物あるいは水酸化物として不働態化する。した
がつて第1回目の充電で充分な溶解ができなかつ
た場合は、集電体表面と活物質が不完全な接触に
なると推定される。この不働態化した酸化物もし
くは水酸化物は通常の正極充放電々位0.6〜
0Vvs.Hg/HgOでは還元されず−0.4Vvs.Hg/H
gO付近より卑な電位で一部還元されていく。
The reason for this is not clear, but from these reasons, the contact surface between the porous substrate, which is the current collector, and the active material,
It is estimated that it plays an important role in the active material utilization rate. In other words, the plated cobalt is HC 0 O 2  ̄ in the alkaline electrolyte in the anode direction.
It is thought that after it becomes ions and dissolves, it precipitates again as cobalt oxide or hydroxide, which improves the contact between the current collector surface and the active material, thereby improving the active material utilization rate. Dissolution of cobalt occurs around −0.4 to −0.8 V vs. H g/HgO, and it becomes passivated as an oxide or hydroxide at a potential more noble than +0.3 V vs. H g/HgO. Therefore, if sufficient dissolution is not achieved during the first charging, it is presumed that the current collector surface and the active material will come into incomplete contact. This passivated oxide or hydroxide has a normal positive electrode charge/discharge level of 0.6~
0V vs.H g/HgO is not reduced -0.4V vs.H g/H
Part of it is reduced at a potential more base than near gO.

負極容量大なるニツケルカドミウム電池におい
て、正極と負極を短絡した場合、正極は負極電位
である−0.9Vvs.Hg/HgO付近に到達する。そ
のためコバルト酸化物もしくは水酸化物の不働態
が一部やぶれ金属コバルトが再度露出して溶解可
能になるためと思われる。
In a nickel cadmium battery with a large negative electrode capacity, when the positive electrode and negative electrode are short-circuited, the positive electrode reaches a negative electrode potential of -0.9 V vs. H g/HgO. This seems to be because the passive state of the cobalt oxide or hydroxide is partially destroyed, and the metal cobalt is exposed again and becomes soluble.

なお同様な効果は短絡放置以外に過放電によつ
て卑な電位にしても同様な効果が得られる。
Note that the same effect can be obtained not only by leaving the battery short-circuited but also by making the potential less noble by over-discharging.

発明の効果 このように本発明は、コバルトメツキした耐ア
ルカリ性金属多孔体基板に、水酸化ニツケルを主
成分とする活物質を充填した正極板を用いた電池
において充放電した後、短絡放置もしくは過放電
することにより、従来よりも高いエネルギー密度
の正極板が得られ、電池のコンパクト化が要求さ
れる今日、本発明の工業的価値は極めて大であ
る。
Effects of the Invention As described above, the present invention provides a battery using a positive electrode plate filled with an active material mainly composed of nickel hydroxide on a cobalt-plated alkali-resistant porous metal substrate. By discharging, a positive electrode plate with a higher energy density than before can be obtained, and in today's world where batteries are required to be more compact, the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の効果を示したものであり、
はコバルトメツキした正極板を用いた電池、は
コバルトメツキをしていない正極板を用いた電
池、は本発明による電池である。
FIG. 1 shows the effect of the present invention,
A battery using a positive electrode plate plated with cobalt and a battery using a positive electrode plate not plated with cobalt are batteries according to the present invention.

Claims (1)

【特許請求の範囲】 1 コバルトメツキした耐アルカリ性金属多孔体
基板に、水酸化ニツケルを主成分とする活物質を
充填した正極を用いたニツケルカドミウム蓄電池
において少なくとも1サイクル充放電した後短絡
放置もしくは過放電することを特徴とするニツケ
ルカドミウム蓄電池の製造法。 2 耐アルカリ性金属多孔体基板が、鉄線の切削
による繊維を焼結後ニツケルメツキしたものであ
る特許請求の範囲第1項記載のニツケルカドミウ
ム蓄電池の製造法。 3 耐アルカリ性金属多孔体基板が、鉄インゴツ
トのびびり振動切削による繊維を焼結後ニツケル
メツキしたものである特許請求の範囲第1項記載
のニツケルカドミウム蓄電池の製造法。 4 耐アルカリ性金属多孔体基板が、ニツケルイ
ンゴツトのびびり振動切削による繊維を焼結した
ものである特許請求の範囲第1項記載のニツケル
カドミウム蓄電池の製造法。 5 耐アルカリ性金属多孔体基板が、ニツケル粉
末あるいは酸化ニツケル粉末を加工した繊維を焼
結したものである特許請求の範囲第1項記載のニ
ツケルカドミウム蓄電池の製造法。 6 耐アルカリ性金属多孔体基板が、ニツケルの
無電解メツキおよび電解メツキによつて作成され
たスポンジ状金属多孔体である特許請求の範囲第
1項記載のニツケルカドミウム蓄電池の製造法。
[Claims] 1. In a nickel-cadmium storage battery using a positive electrode filled with an active material mainly composed of nickel hydroxide on a cobalt-plated alkali-resistant porous substrate, the battery is charged and discharged for at least one cycle and then left short-circuited or overheated. A method for manufacturing a nickel cadmium storage battery characterized by discharging. 2. The method for manufacturing a nickel-cadmium storage battery according to claim 1, wherein the alkali-resistant porous metal substrate is made by sintering fibers cut from iron wire and then plating them with nickel. 3. The method for producing a nickel-cadmium storage battery according to claim 1, wherein the alkali-resistant porous metal substrate is made by sintering fibers produced by chatter vibration cutting of iron ingots and then plating them with nickel. 4. The method for manufacturing a nickel-cadmium storage battery according to claim 1, wherein the alkali-resistant porous metal substrate is obtained by sintering fibers obtained by chatter vibration cutting of a nickel ingot. 5. The method for manufacturing a nickel-cadmium storage battery according to claim 1, wherein the alkali-resistant porous metal substrate is made by sintering fibers processed from nickel powder or nickel oxide powder. 6. The method for manufacturing a nickel-cadmium storage battery according to claim 1, wherein the alkali-resistant porous metal substrate is a sponge-like porous metal body prepared by electroless plating and electrolytic plating of nickel.
JP59107147A 1984-05-25 1984-05-25 Production of nickel-cadmium storage battery Granted JPS60250556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107147A JPS60250556A (en) 1984-05-25 1984-05-25 Production of nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107147A JPS60250556A (en) 1984-05-25 1984-05-25 Production of nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPS60250556A JPS60250556A (en) 1985-12-11
JPH0471311B2 true JPH0471311B2 (en) 1992-11-13

Family

ID=14451700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107147A Granted JPS60250556A (en) 1984-05-25 1984-05-25 Production of nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPS60250556A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831337B2 (en) * 1986-06-10 1996-03-27 松下電器産業株式会社 Manufacturing method of sealed nickel cadmium battery
JP2609911B2 (en) * 1988-10-19 1997-05-14 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JPS60250556A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
JPH02112165A (en) Alkaline storage battery
JPH10241697A (en) Alkaline storage battery electrode and manufacture thereof
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH0471311B2 (en)
JPH0855618A (en) Sealed alkaline storage battery
JPH0517661B2 (en)
JP3575196B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS62285360A (en) Negative electrode for alkaline storage battery
JP2001283902A (en) Alkaline battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP2589750B2 (en) Nickel cadmium storage battery
JP2562669B2 (en) Alkaline storage battery
JPH0430713B2 (en)
JP2735887B2 (en) Zinc active material for alkaline storage battery and method for producing the same
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3384109B2 (en) Nickel plate
JPH0232750B2 (en)
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JPH0410181B2 (en)
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees