JPS6340255A - Sintered nickel electrode for alkaline storage battery - Google Patents

Sintered nickel electrode for alkaline storage battery

Info

Publication number
JPS6340255A
JPS6340255A JP61184705A JP18470586A JPS6340255A JP S6340255 A JPS6340255 A JP S6340255A JP 61184705 A JP61184705 A JP 61184705A JP 18470586 A JP18470586 A JP 18470586A JP S6340255 A JPS6340255 A JP S6340255A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
active material
layer
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61184705A
Other languages
Japanese (ja)
Other versions
JPH0677453B2 (en
Inventor
Kazuhiro Oota
和宏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61184705A priority Critical patent/JPH0677453B2/en
Publication of JPS6340255A publication Critical patent/JPS6340255A/en
Publication of JPH0677453B2 publication Critical patent/JPH0677453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity and cycle performance of an electrode by covering a nickel active material layer with a cobalt compound or metallic cobalt. CONSTITUTION:A layer 1 of a cobalt compound or metallic cobalt alone is formed between a porous sintered nickel substrate 3 and a cathode active material layer 2 mainly comprising nickel hydroxide. Thereby, oxygen overvoltage in charge is decreased and charging reaction easily proceeds. A layer 5 of a cobalt compound or metallic cobalt alone is formed between the cathode active material layer 2 and an electrolyte layer 4 to cover the nickel active material layer 2. By synergetic effect of two cobalt layers, the retarding effect on theta-NiOOH is heightened and cycle performance is increased.

Description

【発明の詳細な説明】 (()  産業上の利用分計 本発明はニッケルーカドミウム電池、ニッケルー亜鉛電
池などの陽罹として用いられるアルカリ蓄電池用焼結式
ニッケル極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (() Industrial Applicability) The present invention relates to a sintered nickel electrode for alkaline storage batteries, which is used as a positive electrode for nickel-cadmium batteries, nickel-zinc batteries, and the like.

1口)従来の技術 従来アルカリ蓄電池に用いられるニッケル極はカーボニ
ルニッケル粉末と高分子糊料とより々るスラリーを芯体
にコーティングし、これを還元性雰囲気下で焼結して得
た多孔性ニッケル基板を硝酸ニッケルを主成分とした含
浸液に浸漬し、次いでアルカリ処理を行い、基板の孔中
ば水酸化ニッケル活物質を充填するという一連の工程を
数回操り返すという方法によって型造されてシリ、この
ニッケル極を用い六アルカリ蓄電池の電池特性を向上さ
せるために種々の研究がなされている。
1) Conventional technology The nickel electrode used in conventional alkaline storage batteries is a porous material obtained by coating a core with a slurry of carbonyl nickel powder, polymer paste, and sintering this in a reducing atmosphere. The nickel substrate is immersed in an impregnating solution containing nickel nitrate as its main component, then treated with alkali, and the pores of the substrate are filled with nickel hydroxide active material.The process is repeated several times. Various studies have been conducted to improve the battery characteristics of hexa-alkaline storage batteries using this nickel electrode.

この電池特性の向上、特に電池の容1アップを行なう喪
めには単位体積あ九りのエネルギー密度の大きなニッケ
ル極を開発する必要があり、その念めの基本的方法とし
て活物質の利用率を向上させ高いエネルギー密度を得る
ことが種々提案されに記載されているように硝酸溶液か
ら水酸化物と八 してニッケルとコバルトとを同時に析出させたものを用
いる方法や、特公昭57−5018号公報に記載さねぇ
ように活物質の含浸中和工uにおいてコバルト含有量が
ニッケル含有量よりも多い含浸液を用いてコバルト単独
層を設ける方法が提案されている。しかしながら、上記
方法ではコノ(ルトの添加効果がまだまだ不十分であり
サイクル進行と共にで板強度が低下し、サイクル性能の
低下を招くという問題があつ念。
In order to improve this battery characteristic, especially to increase the battery capacity by 1, it is necessary to develop a nickel electrode with a high energy density per unit volume, and the basic method for this purpose is to improve the utilization rate of the active material. Various methods have been proposed to improve energy density and obtain high energy density, including a method using hydroxide and nickel and cobalt simultaneously precipitated from a nitric acid solution, as described in Japanese Patent Publication No. 57-5018. Although not described in the publication, a method has been proposed in which a single layer of cobalt is provided using an impregnating liquid in which the cobalt content is higher than the nickel content in an active material impregnation neutralization process u. However, the above method has the problem that the effect of adding Konoruto is still insufficient, and as the cycle progresses, the plate strength decreases, leading to a decrease in cycle performance.

(ハ)発明が解決しようとする問題点 本発明はニッケル極の利用率を向上させることによって
電極容量を大きくするものであり、しかも極板強度の大
きい、サイクル特性の優れたアルカリ蓄電池用焼結式ニ
ッケル極を提供するものである。
(c) Problems to be Solved by the Invention The present invention increases the electrode capacity by improving the utilization rate of the nickel electrode, and also provides a sintered material for alkaline storage batteries that has high electrode plate strength and excellent cycle characteristics. nickel electrode.

に)問題点を解決する走めの手段 本発明は、多孔性ニッケル基板とニッケル活物質層との
間にコバルト化合物あるいは金4コバルトが単独で存在
する層を設けると共に、前記ニッケル活物質層と電解液
層との間にコバルト化合物あるいは金属コバルトが単独
で存在する層を設けることにより前記ニッケル活物質】
をコバルト化合物あるいは金属コバルトで被覆したこと
を特徴とするアルカリ蓄電池用焼結式ニッケル極にある
(ii) A means for solving the problem The present invention provides a layer in which a cobalt compound or gold-cobalt exists alone between a porous nickel substrate and a nickel active material layer, and also provides By providing a layer in which a cobalt compound or metallic cobalt exists alone between the electrolyte layer and the electrolyte layer, the above-mentioned nickel active material]
A sintered nickel electrode for an alkaline storage battery characterized by being coated with a cobalt compound or metal cobalt.

尚、コバルト化合物もしくは金属コバルトが単独で存在
する層を形成する方法として、化学含浸法によるもの、
熱分解法によるもの、電着によるものなどいずれの方法
であっても良い。またコバルト化合物は水酸化物もしく
は酸化物が好ましい。
Note that methods for forming a layer in which a cobalt compound or metallic cobalt exists alone include chemical impregnation methods;
Any method such as a thermal decomposition method or an electrodeposition method may be used. Further, the cobalt compound is preferably a hydroxide or an oxide.

(ホ)作 用 焼結式多孔性ニッケル基板と水酸化ニッケルを主成分と
する陽極活物質層との間にコバルト化合物あるいけ金属
コバルトが単独で存在する層を設けることで、充電時に
おける酸素過電圧が下がり充電反応が進行しやすくなる
。更に前記コバルト1と、陽極活物質層と電解液層との
間にコバルト化合物あるいは金属コバルトが単独で存在
する層を設はニッケル活物質層を被覆することによって
これら2ケ所のコバルト層の相乗効果に基きγ−Nio
oHの抑制効果がより一層向上し、γ−NiooHの生
成がほとんどなくなり、β−Nioo!!だけが生成す
るものであり、又、2ケ所のコバルト層の存在により充
放電反応が一層進行しやすくなり、サイクル特性の優れ
たニッケル極が得られる。
(e) Function By providing a layer in which a cobalt compound or metallic cobalt exists alone between the sintered porous nickel substrate and the anode active material layer containing nickel hydroxide as a main component, oxygen The overvoltage decreases and the charging reaction progresses more easily. Furthermore, by providing a layer in which a cobalt compound or metallic cobalt exists alone between the cobalt 1, the anode active material layer, and the electrolyte layer, the synergistic effect of these two cobalt layers can be achieved by coating the nickel active material layer. Based on γ-Nio
The suppressing effect of oH is further improved, the generation of γ-NioH is almost eliminated, and β-NioO! ! Furthermore, the presence of the two cobalt layers makes it easier for the charge/discharge reaction to proceed, resulting in a nickel electrode with excellent cycle characteristics.

ま六本発明の多孔性ニッケル基板の表面がコバルト化合
物あるいは金属コバルトが単独で存在すへ 向上する。
Sixth, the surface of the porous nickel substrate of the present invention is improved to the extent that a cobalt compound or metallic cobalt exists alone.

(へ)実施例 本発明の実施例を第1図を用い以下江詳述する。(f) Example An embodiment of the present invention will be described in detail below with reference to FIG.

多孔度80チの焼結式多孔性ニッケル基板3を比重L3
8の硝酸コバルト水溶液に浸漬後、空気中80℃で乾燥
後、空気中210℃で熱処理することによって基板の表
面及び孔内表面に第1のコバルト酸化物層1を形成させ
る。ついでこの基板に硝酸ニッケル水溶液を含浸させア
ルカリ処理してニッケル活物質を充填するという工程を
6回繰り返して所定量の活物質層2を形成した後、比重
L38の硝酸コバルト水溶液だ再浸漬し、空気中80℃
で乾燥後80℃の水酸化す) IJウム水溶液でアルカ
リ処理し、ニッケル活物質を覆う第2の水酸化コバルト
層5を形成させ企ものを、公知のカドミウム極と組み合
わせて公称容@L、2 A Hのニッケルーカドミウム
電池を得、本発明電池人とし念。
A sintered porous nickel substrate 3 with a porosity of 80 cm and a specific gravity of L3
After being immersed in the aqueous cobalt nitrate solution of No. 8, it is dried in air at 80° C. and then heat treated in air at 210° C. to form the first cobalt oxide layer 1 on the surface of the substrate and the inner surface of the pores. Next, the process of impregnating this substrate with an aqueous nickel nitrate solution, treating it with alkali, and filling it with a nickel active material was repeated six times to form a predetermined amount of active material layer 2, and then it was re-immersed in an aqueous cobalt nitrate solution with a specific gravity of L38. 80℃ in air
After drying with hydroxide at 80° C.), alkali treatment is performed with an aqueous IJ solution to form a second cobalt hydroxide layer 5 covering the nickel active material, which is combined with a known cadmium electrode to a nominal volume of @L, 2 AH's nickel-cadmium battery, and the invention of the battery.

比較例1 実施例1で用い六のと同じ基板を比重L38の硝酸コバ
ルト水溶液に浸漬後、空気中80℃で乾燥後、空気中2
10℃で熱処理することてよってコバルト酸化物層を形
成させ虎ものに実施例1と同様にニッケル活物質を充填
し喪のみのニッケル極を用い、実施例1と同様にして組
み立て比較電池Bを得九。
Comparative Example 1 The same substrate as No. 6 used in Example 1 was immersed in a cobalt nitrate aqueous solution with a specific gravity of L38, dried in air at 80°C, and then immersed in air at 2
A cobalt oxide layer was formed by heat treatment at 10° C., and a comparative battery B was assembled in the same manner as in Example 1, using a nickel active material filled with a nickel active material in the same manner as in Example 1, and using only nickel electrodes. Nine points.

比較例2 実施例1で用い企同じ基板に直接、実施例1と同様にニ
ッケル活物質を充填し、ついで比重L38の硝酸コバル
ト水溶液に浸漬し、空気中80℃で乾燥後、80℃の水
酸化ナトリウム水溶液でアルカリ処理し、水酸化コバル
ト層を形成させ喪ものをニッケル極とし実施例1と同様
にして組み立て比較電池Cを得喪。
Comparative Example 2 The same substrate used in Example 1 was directly filled with a nickel active material in the same manner as in Example 1, then immersed in an aqueous cobalt nitrate solution with a specific gravity of L38, dried in air at 80°C, and then soaked in water at 80°C. Comparative battery C was obtained by performing alkali treatment with an aqueous sodium oxide solution to form a cobalt hydroxide layer, and assembling the battery in the same manner as in Example 1, using a nickel electrode as the base.

比較例3 実施例1で用い念同じ基板に直接実施例1と同様にニッ
ケル活物質を充填し、コバルト層を−切形成しないニッ
ケル極を用い、実施例1と同様にして組み立て比較電池
りを得々。
Comparative Example 3 The same substrate used in Example 1 was directly filled with nickel active material in the same manner as in Example 1, and a comparative battery was assembled in the same manner as in Example 1 using a nickel electrode without cutting the cobalt layer. Good deal.

第2図はX線回折の分析結果であって、明白なるように
本発明によるニッケル極ムは放電され難い充電生成物γ
−Ni OOHの生成がほとんど無いものであり、放電
されやすいβ−NiOOHのみが生成し、利用率の向上
が計れることがわかる。
FIG. 2 shows the results of X-ray diffraction analysis, and it is clear that the nickel electrode according to the present invention has a charge product γ that is difficult to discharge.
It can be seen that almost no -Ni OOH is generated, and only β-NiOOH, which is easily discharged, is generated, and the utilization rate can be improved.

更に、第1表に本発明電池A1比較電池B、 C。Furthermore, Table 1 shows the present invention battery A1 and comparative batteries B and C.

Dの充放電前後のニッケル価数と価数変化ならびKXm
回折(7) γ−Ni0OHとβ−NiOOHとノヒー
ク高さ比を生成比と考え、グーN100H/43−Ni
0OHとして表わしである。
Nickel valence and valence change before and after charging and discharging D, and KXm
Diffraction (7) Considering the height ratio of γ-Ni0OH, β-NiOOH and Nohik as the production ratio, the
Expressed as 0OH.

第1表 この結果より本発明電池Aのニッケル価数変化が1.2
と1)も大きく、充放電反応がより一層進行しているも
のであることがわかる。更に、γ−NiOOHトβ−N
iOOHノ生Fi2 比γ−LNiOOH//3−Ni
0OHをみると本発明電池Aのニラクール極洗おいては
β型のみ生成している。
Table 1 From the results, the change in nickel valence of battery A of the present invention was 1.2.
and 1) are also large, indicating that the charge/discharge reaction is progressing even further. Furthermore, γ-NiOOH and β-N
iOOH raw Fi2 ratio γ-LNiOOH//3-Ni
Looking at 0OH, only the β type was produced in the battery A of the present invention, which was washed with Niracool.

ま走用31列は前記電池A、  B、  C,IIのニ
ッケル極を用い、対極をニッケル板として電解液比重L
23のKOH溶液を用い、充電電流1201Aで16時
間充電し九後、放電電流1200yxAで終止電圧を参
照極(Hg/111qO) K対して一1vとするサイ
クル試験の結果を表したものである。これより本発明の
電極は二ケ所のコバルト層の相乗効果で優れたサイクル
特性を有するものであることがわかる。
The 31st row for masu uses the nickel electrodes of the batteries A, B, C, and II, and the counter electrode is a nickel plate, and the electrolyte specific gravity L
The graph shows the results of a cycle test using a KOH solution of No. 23 and charging at a charging current of 1201 A for 16 hours, followed by a discharge current of 1200 yxA and a final voltage of -1 V with respect to the reference electrode (Hg/111 qO) K. This shows that the electrode of the present invention has excellent cycle characteristics due to the synergistic effect of the two cobalt layers.

また一方、第4図は前記電池A、  B、  C,Dを
25℃において0. I C(120%A)で16時間
充電し念後、25℃ておいてI C(1200%A)で
放電した時の放電特性を示すグラフであり、本発明電池
人は放電時間が長く、ニッケル活物質の利用率が高いの
で、高容量化が計られている。
On the other hand, FIG. 4 shows the batteries A, B, C, and D at a temperature of 0. This is a graph showing the discharge characteristics when the battery was charged with IC (120% A) for 16 hours and then discharged with IC (1200% A) at 25°C. Since the utilization rate of nickel active material is high, high capacity is being achieved.

更に1第5図は前記電池A、  B、  C,Dを用い
25℃においてQ、Icで16時間充電した後、嶋Cで
放電し走時のサイクル特性を比較したものであり、本発
明によるニッケル極は電池として組み立てても優ねぇサ
イクル特性を発揮しつるものである。
Furthermore, Fig. 5 shows a comparison of the cycle characteristics during running using the batteries A, B, C, and D, which were charged at 25°C for 16 hours at Q and Ic, and then discharged at Shima C. Nickel electrodes exhibit excellent cycle characteristics and are durable even when assembled into batteries.

尚、実施例において基板表面に形成するコバルト層を酸
化物の形態として構成しているが、水酸化コパル)1で
も本発明の要旨とする効果において劣るものではない。
In the examples, the cobalt layer formed on the substrate surface is in the form of an oxide, but even hydroxide (copal) 1 is not inferior in terms of the effects of the present invention.

ただし、活物質含浸時のニッケルアタックを防止する効
果においては酸化物層の方が水酸化物層よりも強力であ
って、優れるものである。
However, the oxide layer is stronger and superior to the hydroxide layer in terms of the effect of preventing nickel attack during impregnation with the active material.

(ト)発明の効果 本発明によればγ−NiOOHの生成をきわめて効果的
に抑制できるので、サイクル特性に優れ、且高容1のア
ルカリ蓄電池用焼結式ニッケル極が提供でき、工業的価
値はきわめて大きい。
(G) Effects of the Invention According to the present invention, since the generation of γ-NiOOH can be suppressed very effectively, a sintered nickel electrode for alkaline storage batteries with excellent cycle characteristics and high capacity 1 can be provided, which has industrial value. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ニッケル極の要部拡大断面図、第2図は
X線回折1・η、筆31i4はニッケル極のサイクル特
性比較図、第4図は放電特性比校図、筆5図は電池のサ
イクル特性比較mを示す。 A・・・本発明電池、B、C,D・・・比較電池、1゜
5・・・コバルト層、2・・・ニッケル活物質層、3・
・・焼結式多孔性ニッケル基板、4・・・電解液層。
Figure 1 is an enlarged cross-sectional view of the main part of the nickel electrode of the present invention, Figure 2 is X-ray diffraction 1·η, brush 31i4 is a cycle characteristic comparison diagram of nickel electrodes, Figure 4 is a discharge characteristic ratio diagram, brush 5 is indicates a comparison of battery cycle characteristics m. A...Battery of the present invention, B, C, D...Comparison battery, 1°5...Cobalt layer, 2...Nickel active material layer, 3.
... Sintered porous nickel substrate, 4... Electrolyte layer.

Claims (1)

【特許請求の範囲】[Claims] (1)多孔性ニッケル基板とニッケル活物質層との間に
コバルト化合物あるいは金属コバルトが単独で存在する
層を設けると共に、前記ニッケル活物質層と電解液層と
の間にコバルト化合物あるいは金属コバルトが単独で存
在する層を設けることにより前記ニッケル活物質層をコ
バルト化合物あるいは金属コバルトで被覆したことを特
徴とするアルカリ蓄電池用焼結式ニッケル極。
(1) A layer in which a cobalt compound or metallic cobalt exists alone is provided between the porous nickel substrate and the nickel active material layer, and a cobalt compound or metallic cobalt is provided between the nickel active material layer and the electrolyte layer. A sintered nickel electrode for an alkaline storage battery, characterized in that the nickel active material layer is coated with a cobalt compound or metal cobalt by providing a layer that exists alone.
JP61184705A 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery Expired - Lifetime JPH0677453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184705A JPH0677453B2 (en) 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184705A JPH0677453B2 (en) 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6340255A true JPS6340255A (en) 1988-02-20
JPH0677453B2 JPH0677453B2 (en) 1994-09-28

Family

ID=16157929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184705A Expired - Lifetime JPH0677453B2 (en) 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0677453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878858A1 (en) * 1997-05-15 1998-11-18 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699588A2 (en) * 1978-06-02 1979-11-25 Ленинградский Ордена Трудового Красного Знамени Технологический Институт Им. Ленсовета Method of manufacturing positive electrode of alkaline storage battery
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS59163753A (en) * 1983-03-08 1984-09-14 Sanyo Electric Co Ltd Manufacture of anode plate for alkali storage battery
JPS62103972A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699588A2 (en) * 1978-06-02 1979-11-25 Ленинградский Ордена Трудового Красного Знамени Технологический Институт Им. Ленсовета Method of manufacturing positive electrode of alkaline storage battery
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS59163753A (en) * 1983-03-08 1984-09-14 Sanyo Electric Co Ltd Manufacture of anode plate for alkali storage battery
JPS62103972A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878858A1 (en) * 1997-05-15 1998-11-18 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same
US6120937A (en) * 1997-05-15 2000-09-19 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0677453B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
CN1230034A (en) Electrode for alkaline storage battery, method for making the same, and alkaline storage battery
JPH0221098B2 (en)
JPH0247824B2 (en)
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery
JPH0410181B2 (en)
JP3691281B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPH1079246A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP2000311680A (en) Sintered type positive electrode plate for nickel- hydrogen battery, its manufacture and nickel-hydrogen battery
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
US20030104278A1 (en) Nickel electrode for alkaline storage battery, process for the production thereof, alkaline storage battery comprising same and process for the production thereof
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP4301778B2 (en) Method for producing sintered nickel positive electrode for alkaline secondary battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
KR100360493B1 (en) Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode
JPH05225971A (en) Manufacture of nickel electrode
JPS63158750A (en) Zink electrode for alkaline storage battery
JPS6129068A (en) Production of sintered cadmium negative electrode plate
JPS60216449A (en) Manufacture of paste type cadmium negative plate
JPH02103859A (en) Nickel electrode for alkaline battery and its manufacture
JPH04345756A (en) Manufacture of lead storage battery electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term