JPH02103859A - Nickel electrode for alkaline battery and its manufacture - Google Patents

Nickel electrode for alkaline battery and its manufacture

Info

Publication number
JPH02103859A
JPH02103859A JP63255324A JP25532488A JPH02103859A JP H02103859 A JPH02103859 A JP H02103859A JP 63255324 A JP63255324 A JP 63255324A JP 25532488 A JP25532488 A JP 25532488A JP H02103859 A JPH02103859 A JP H02103859A
Authority
JP
Japan
Prior art keywords
nickel
active material
cobalt
electrode
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63255324A
Other languages
Japanese (ja)
Inventor
Keiichi Hasegawa
圭一 長谷川
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63255324A priority Critical patent/JPH02103859A/en
Publication of JPH02103859A publication Critical patent/JPH02103859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the utilization factor of active material and to prevent electrode swelling by making cobalthydroxide, existing at the surface of the pole plate of a nickel electrode, alpha-CO(OH)2. CONSTITUTION:Before filling nickel hydroxide being main ingredient active material, cobalthydroxide is filled singly, and next a specific amount of nickel hydroxide being main ingredient active material is filled, and then further cobalthydroxide existing at the surface of the pole plate of a nickel electrode wherein cobalthyhydroxide is filled singly is made alpha-CO(OH)2. By making cobalthyhydroxide alpha-CO(OH)2 so as to cover the nickel active material this way, the utilization factor of active material is improved, and also the place of action becomes uniform, and even before charge the generation of gamma-NiOOH being higher order oxide of nickel is suppressed, so electrode swelling attendant upon the crystal density change can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ニッケル電極及びその製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nickel electrode for alkaline storage batteries and a method for manufacturing the same.

従来技術とその問題点 ニッケルーカドミウム!油に代表されるアルカリ蓄wt
油に用いられるニッケルflEmは、周知のように、ニ
ッケルメッキした銅板上にニラナル粉末等を焼結して得
られる多孔性基板の細孔内に、ニッケル硝酸塩水溶液を
減圧含浸した後、化学的に水酸化ニッケルに変化させる
、いわゆる化学含浸法と呼ばれる方法で製造されている
Conventional technology and its problems Nickel-cadmium! Alkaline storage represented by oil wt.
As is well known, nickel flEm used in oil is produced by impregnating a nickel nitrate aqueous solution under reduced pressure into the pores of a porous substrate obtained by sintering niranal powder etc. on a nickel-plated copper plate, and then chemically It is manufactured using the so-called chemical impregnation method, which converts it into nickel hydroxide.

このニッケル電極の特性改善方法としてコバルト添加が
古くから行なわれてきた。従来の方法で添加されたコバ
ルトは水酸化二ソクルと固溶状態を形成し、充電特性を
改善する作用を有している。これに対して水酸化ニッケ
ルと固溶状態を形成していない、すなわち遊離状態で添
加されたコバルトが電極性能を改善する上で非常に興味
ある挙動をとることが明らかになってきた。この見地か
ら例えば、特公昭57−5018号公報に記載されてい
るように、コバルト塩の含有量がニッケル塩の含有量よ
り多い含浸液を用いて、ニッケルプラーク中に活物質で
ある水酸化ニッケルと遊離状態にある水酸化コバルト層
を形成させる方法が提案されている。
Addition of cobalt has been used for a long time as a method for improving the characteristics of nickel electrodes. Cobalt added by the conventional method forms a solid solution state with disocyl hydroxide and has the effect of improving charging characteristics. On the other hand, it has become clear that cobalt, which does not form a solid solution with nickel hydroxide, that is, is added in a free state, exhibits very interesting behavior in improving electrode performance. From this point of view, for example, as described in Japanese Patent Publication No. 57-5018, nickel hydroxide, which is an active material, is added to nickel plaque by using an impregnating solution containing more cobalt salt than nickel salt. A method of forming a cobalt hydroxide layer in a free state has been proposed.

しかしこの方法は、固溶限界にあるコバルトが遊離する
のであって、ニッケルに対し約20%程度のコバルトは
固溶限界内にあるため水酸化ニッケルと固溶体化する。
However, in this method, cobalt, which is at the solid solubility limit, is liberated, and since about 20% of cobalt relative to nickel is within the solid solubility limit, it becomes a solid solution with nickel hydroxide.

即ち、遊離状態の水酸化コバルト層と、水酸化ニッケル
と固溶状態にある層が混在していることになる。この水
酸化コバルトと固溶状部にある水酸化ニッケル層は、大
きな放電電圧低下を招く欠点を有することが判明した。
That is, a cobalt hydroxide layer in a free state and a layer in a solid solution state with nickel hydroxide coexist. It has been found that this nickel hydroxide layer in a solid solution with cobalt hydroxide has a drawback that causes a large drop in discharge voltage.

従ってニッケル活物質層を、遊離した純粋なコバルト化
合物層のみで被覆することが必要であり、その一つの方
法として特開昭65−40255号公報に記載されてい
るような発明が提案されている。該公報によれば、焼結
式ニッケル基板上にコバルト単独層を形成させ、しかる
後ニッケル活物質を含浸し、さらに再びコバルト単独層
を形成させることで活物質を被覆することが記載されて
いる。
Therefore, it is necessary to cover the nickel active material layer with only a layer of free pure cobalt compound, and as one method for this, an invention as described in JP-A-65-40255 has been proposed. . According to this publication, it is described that a single layer of cobalt is formed on a sintered nickel substrate, then impregnated with a nickel active material, and then a single layer of cobalt is formed again to cover the active material. .

ところで、単独層のコバルトが添加剤として効果を持つ
のは、集電体と活物質粒子間、および活物質粒子相互を
接続する状態で析出したβ−Go(OH)2カベ充放電
により酸化され導電性を持つ0OOOH層を形成するこ
とによって利用率の向上をもたらすことが報告されてい
る。したがって、上記知見より、活物質である水酸化ニ
ッケル粒子を水酸化コバルトの遊離層で被覆すると、高
性能なニッケル電極が得られるといえる。
By the way, cobalt in a single layer is effective as an additive because the β-Go(OH)2 wall precipitated between the current collector and the active material particles and between the active material particles is oxidized by charging and discharging. It has been reported that the utilization rate can be improved by forming a conductive OOOOH layer. Therefore, based on the above findings, it can be said that a high-performance nickel electrode can be obtained by coating nickel hydroxide particles, which are active materials, with a free layer of cobalt hydroxide.

ところで、前記方法で製造したtV上に存在する水酸化
コバルトは空気中で酸化され易く、不活性な物質に変化
し易いことが判明した。これは、前記方法で生成する水
酸化コバルトが、前記文献に記載されるような、結晶学
的にβ−Co(OH)2として分類される、空気中で不
安定な物質であることに起因しており、このβ−Co(
OH)2は空気酸化を受けて不活性な導電性の低いC0
HO2に変化するためである。このため、添加したコバ
ルトが導電性の高い有効な0oOOHを形成できないこ
とから、高性能ニッケル電極を得る目的において、β−
CfO(OH)2の酸化を防止することは不可欠な因子
であるといえる。更に、導電性の低い0OHO2や00
304が集電体と活物質の間に介在すると、充放電反応
の場に不均一性が生じ、局部的に電流密度が大きくなる
ことから、電極膨潤の原因となる高次酸化物γ−NiO
OHを生成しやすくなる、といった欠点も併せて誘発す
る。
By the way, it has been found that the cobalt hydroxide present on the tV produced by the above method is easily oxidized in the air and easily converted into an inert substance. This is due to the fact that the cobalt hydroxide produced by the above method is a substance that is unstable in air and is crystallographically classified as β-Co(OH)2, as described in the above literature. and this β-Co(
OH)2 undergoes air oxidation to become inert, low conductive CO
This is because it changes to HO2. For this reason, the added cobalt cannot form highly conductive and effective 0oOOH, so for the purpose of obtaining high-performance nickel electrodes, β-
It can be said that preventing oxidation of CfO(OH)2 is an essential factor. Furthermore, 0OHO2 and 00, which have low conductivity,
When 304 is interposed between the current collector and the active material, non-uniformity occurs in the charging/discharging reaction field, and the current density locally increases.
This also induces the disadvantage that OH is more likely to be generated.

これらの理由によりコバルト添加剤の効果を十分得るに
は至っていないのが現状である。
For these reasons, at present, the effects of cobalt additives have not been fully obtained.

発明の目的 本発明はコバルトの優れた効果により活物質の利用率の
高い、かつwt電極膨潤少ない、保存性に優れた、また
高容量でサイクル特性に優れたアルカリ蓄電池用ニッケ
ル電極及びその製造法を提供することを目的とする。
Purpose of the Invention The present invention provides a nickel electrode for alkaline storage batteries that has a high active material utilization rate due to the excellent effects of cobalt, has low wt electrode swelling, has excellent storage stability, has a high capacity, and has excellent cycle characteristics, and a method for producing the same. The purpose is to provide

発明の構成 本発明は上記目的を達成するべく、主成分活物質である
水酸化ニッケルの充填前に、水酸化コバルトを単独充填
し、次に前記主成分活物質の所定量を充填した後、さら
に水酸化コバルトを単独充填したニッケル電極の極板表
面に存在する水酸化コバルトがa−00(OH)2であ
ることを特徴とするアルカリ蓄電池用ニッケル電極であ
る。
Structure of the Invention In order to achieve the above-mentioned object, the present invention is to fill cobalt hydroxide alone before filling nickel hydroxide which is the main component active material, and then after filling a predetermined amount of the main component active material, Furthermore, the present invention is a nickel electrode for an alkaline storage battery characterized in that the cobalt hydroxide present on the surface of the electrode plate of the nickel electrode filled with cobalt hydroxide alone is a-00(OH)2.

又、上記ニッケル電極の製造において、コバルト塩水溶
液をニッケル焼結基板等に減圧含浸した後、pH9〜1
5の塩基性浴中で水酸化物に変換することを特徴とする
ものである。
In the production of the nickel electrode, after impregnating a cobalt salt aqueous solution into a nickel sintered substrate under reduced pressure, the pH is adjusted to 9 to 1.
It is characterized in that it is converted into a hydroxide in a basic bath in step 5.

弱アルカリ性領域で生成する(1−Go(OH)2は、
空気中でも酸化されにくく安定であり、一方アルカリ電
解液中で速かにβ−Co(OH)2に変化する特性を有
する。従って、a−Co(OH)2としてニッケル活物
質を被覆することにより、長期保存してもコバルト添加
剤が不活性な高次コバルト酸化物(30HO2に変化す
ることなく、有効な0o00Hの導電性層を形成するこ
とが可能である。
(1-Go(OH)2, which is generated in a weakly alkaline region, is
It is stable and difficult to oxidize even in the air, while rapidly changing to β-Co(OH)2 in an alkaline electrolyte. Therefore, by coating the nickel active material as a-Co(OH)2, the cobalt additive becomes an inert higher-order cobalt oxide (30HO2) that has an effective 0o00H conductivity even after long-term storage. It is possible to form layers.

0o00H層の形成されたニッケル電極は、その導電性
により放電末期のニッケル活物質問の電子移動を容易に
し、その結果酸化値の低い領域まで深放電が可能となる
The conductivity of the nickel electrode on which the 0o00H layer is formed facilitates the electron movement of the nickel active substance at the end of discharge, and as a result, deep discharge is possible to a region with a low oxidation value.

即ち、活物質利用率が向上する。また不活性なCoHO
2が形成されないことから反応の場が均一となり、充電
時においてもニッケルの高次酸化物であるγ−NiOO
Hの生成が抑制されるため、結晶密度変化に伴う電極膨
潤を防止し、極板の強度低下を抑える傾向が認められた
That is, the active material utilization rate is improved. Also, inert CoHO
2 is not formed, the reaction field becomes uniform, and even during charging, γ-NiOO, which is a higher order oxide of nickel,
Since the generation of H was suppressed, electrode swelling due to changes in crystal density was prevented, and there was a tendency to suppress a decrease in the strength of the electrode plate.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例1 多孔度綿80%の焼結式ニッケル基板に、比重約1.6
(20℃)の硝酸コバルト水溶液を減圧含浸した後、従
来の水酸化ナトリウム及び水酸化カリウム等の強アルカ
リ水溶液を使用せず、弱アルカリ性の水酸化アンモニウ
ム水溶液(pH−9)に浸漬し、湯洗、乾燥し水酸化コ
バルト層を形成した。次に比重約1゜6(20℃)の硝
酸ニッケル水溶液を減圧含浸した後、比重1.3(80
℃)の水酸化ナトリウム水溶液で中和し、湯洗、乾燥す
る工程を数回繰り返し所定量の水酸化ニッケル活物質を
充填した。さらに再度硝酸コバルト水溶液を減圧含浸し
、弱アルカリ性液に浸漬、湯洗、乾燥して水酸化ニラク
ル粒子を水酸化コバルトで被覆した。このようにして得
られた本発明極板を極板Aとした。
Example 1 A sintered nickel substrate with a porosity of 80% cotton and a specific gravity of approximately 1.6.
After impregnation with a cobalt nitrate aqueous solution (20℃) under reduced pressure, it was immersed in a weak alkaline ammonium hydroxide aqueous solution (pH -9) without using the conventional strong alkaline aqueous solutions such as sodium hydroxide and potassium hydroxide. It was washed and dried to form a cobalt hydroxide layer. Next, after impregnating under reduced pressure with a nickel nitrate aqueous solution with a specific gravity of approximately 1.3 (80 °C),
A predetermined amount of nickel hydroxide active material was filled by repeating the steps of neutralizing with an aqueous sodium hydroxide solution at a temperature of 30°F (°C), washing with hot water, and drying several times. Furthermore, the particles were again impregnated with a cobalt nitrate aqueous solution under reduced pressure, immersed in a weak alkaline solution, washed with hot water, and dried to coat the Niracle hydroxide particles with cobalt hydroxide. The thus obtained electrode plate of the present invention was designated as electrode plate A.

この極板を粉砕し、添加したコバルトの結晶状態をX!
回折特性ピークで確認したところ、主たる生成物はα−
00(OH)2であった。基板近傍の水酸化コバルトは
、水酸化ニラクル粒子によってX線解析が困難であるが
、可能性として次のように考えられる。水酸化ニッケル
活物質を充填する工程における高濃度アルカリ水溶液浴
は、さきに形成した水酸化コバルト層を空気酸化され易
いβ−Co(OH)2に変化させてしまうものと考えら
れるが、同水酸化コバルトの酸化は活物質層によって阻
止され、不活性なCf0HO2の生成を免れるものと考
えられる。もしもこの推定に立脚するならば、酸化を受
は不活性な00HO2に変化し易い水酸化コバルト層は
、ニッケル基板と活物質層間に存在する層ではなく、水
酸化ニッケル活物質層の表面にある層(最後に含浸した
水酸化コパル)りであり、後者の水酸化コバルト層がα
形態をとっていることが重要であるといえる。
This electrode plate is crushed and the crystalline state of the added cobalt is determined by X!
As confirmed by the diffraction characteristic peak, the main product is α-
It was 00(OH)2. Cobalt hydroxide near the substrate is difficult to perform X-ray analysis due to Niracle hydroxide particles, but the following possibilities can be considered. It is thought that the highly concentrated alkaline aqueous solution bath in the process of filling the nickel hydroxide active material changes the previously formed cobalt hydroxide layer to β-Co(OH)2, which is easily oxidized in the air. It is believed that the oxidation of cobalt oxide is inhibited by the active material layer and the generation of inactive Cf0HO2 is avoided. If this assumption is based on this assumption, the cobalt hydroxide layer, which is susceptible to oxidation and easily changes to inert 00HO2, is located on the surface of the nickel hydroxide active material layer, not in the layer between the nickel substrate and the active material layer. layer (copal hydroxide impregnated last), and the latter cobalt hydroxide layer is α
It can be said that the form it takes is important.

実施例2 実施例1で用いたのと同じ焼結式ニッケル基板に、比重
約1.6(20℃)の硝酸コバルト水溶液を減圧含浸し
た後、比重約1.3(80℃)の水酸化す) IJウム
水溶液で中和し、湯洗、乾燥して水酸化コバルト層を形
成した。次に比重約1.6(20℃)の硝酸ニッケル水
溶液を減圧含浸した後、比重約1.3(80℃)の水酸
化ナトリウム水溶液で中和し、湯洗、乾燥する工程を数
回繰り返し水酸化ニラクル活物質層を形成した。さらに
再度硝酸コバルト水溶液を減圧含浸し、比重約1.3(
80℃)の水酸化ナトリウム水浴液で中和、湯洗、乾燥
して活物質層を水酸化コバルト層で被覆した。このよう
にして得られた比較コバルト添加極板を極板Bとした。
Example 2 The same sintered nickel substrate used in Example 1 was impregnated with a cobalt nitrate aqueous solution with a specific gravity of about 1.6 (20°C) under reduced pressure, and then hydroxylated with a specific gravity of about 1.3 (80°C). ) Neutralized with IJum aqueous solution, washed with hot water, and dried to form a cobalt hydroxide layer. Next, the process of impregnating under reduced pressure with a nickel nitrate aqueous solution with a specific gravity of approximately 1.6 (20°C), neutralizing with a sodium hydroxide aqueous solution having a specific gravity of approximately 1.3 (80°C), washing with hot water, and drying is repeated several times. A hydroxide niracle active material layer was formed. Furthermore, the cobalt nitrate aqueous solution was impregnated under reduced pressure, and the specific gravity was approximately 1.3 (
The active material layer was coated with a cobalt hydroxide layer by neutralizing with a sodium hydroxide water bath solution at 80° C., washing with hot water, and drying. The comparative cobalt-added electrode plate thus obtained was designated as electrode plate B.

この極板も極板Aと同様にしてX線回折ピークを調べた
ところ、主たるコバルト成生物はβ−Co(OH)2で
あった0 極板の保存安定性を調べるため、極板AS極板Bを温度
80%、40℃に5日間保存した後のX線回折ピークを
調べた結果を第2図に示す。
When the X-ray diffraction peak of this electrode plate was examined in the same manner as for electrode plate A, the main cobalt product was β-Co(OH)2. FIG. 2 shows the results of examining the X-ray diffraction peaks after Plate B was stored at 40° C. for 5 days at a temperature of 80%.

図から明白なように、本発明極板Aには不活性なコバル
ト高次酸化物C0HO2の生成は詔められないが、極板
BではほとんどのコバルトがC0HO2に変化している
。従って放置後の極板Bにおいてはコバルト添加の効果
が十分に得られないと考えられる。
As is clear from the figure, in the electrode plate A of the present invention, there is no generation of inert cobalt higher order oxide C0HO2, but in the electrode plate B, most of the cobalt is changed to C0HO2. Therefore, it is considered that the effect of cobalt addition cannot be sufficiently obtained in the electrode plate B after being left alone.

これを確認するため、これらの極板と第1図のように公
知のカドミウム極と組み合わせて得られた電池をそれぞ
れ電池A1電池Bとした。
In order to confirm this, batteries obtained by combining these electrode plates with a known cadmium electrode as shown in FIG. 1 were designated as Battery A and Battery B, respectively.

電池A1電池Bとも公称容量は1.OAhであり、カド
ミウム極の容量はニッケル極より十分大きくし電解液は
比重1.24(20℃)の水酸化カリウムを用いた。ま
た従来の焼結式ニッケル電極を用い、電池A1電池Bと
同様の電池Cを作製した。ここで参照極は水銀/酸化水
銀電極を用いた。
Both battery A and battery B have a nominal capacity of 1. The capacity of the cadmium electrode was sufficiently larger than that of the nickel electrode, and the electrolyte was potassium hydroxide with a specific gravity of 1.24 (at 20° C.). Further, a battery C similar to battery A and battery B was manufactured using a conventional sintered nickel electrode. Here, a mercury/mercury oxide electrode was used as the reference electrode.

これらの電池を0.1 OA(100mA)で14時間
充電した後、1.0 OA (1,OA )で放電し放
電終止電圧を参照[極に対し0.Ovとした時のサイク
ル特性を第3図に、放電特性を第4図に示す。
After charging these batteries at 0.1 OA (100 mA) for 14 hours, they were discharged at 1.0 OA (1, OA) and the end-of-discharge voltage was referenced [0. The cycle characteristics at Ov are shown in FIG. 3, and the discharge characteristics are shown in FIG. 4.

電池B1電池Cに較べ本発明電池Aは優れたサイクル特
性を示し、また放電特性においても電圧平坦性の高い、
かつ容重の大きい電池となっていることがわかる。
Battery A of the present invention exhibits superior cycle characteristics compared to Battery B1 and Battery C, and also has high voltage flatness in discharge characteristics.
It can also be seen that the battery has a large capacity and weight.

ここで電池A1電池Bの放電電圧が電池Oに比較して低
くなっているのは、硝酸コバルト水溶液を再度含浸する
際、活物質層の溶出−再析出が起こりニッケルとコバル
トの固溶体を形成しているためと考えられる。
Here, the discharge voltage of Battery A1 and Battery B is lower than that of Battery O because, when impregnated again with the cobalt nitrate aqueous solution, the active material layer elutes and re-precipitates, forming a solid solution of nickel and cobalt. This is thought to be due to the fact that

充放電を200サイクル終了した後の電池を解体し、ニ
ッケル正極の厚みの変化を調べたものが第1表である。
Table 1 shows the results of disassembling the battery after 200 cycles of charging and discharging and examining changes in the thickness of the nickel positive electrode.

電mAの極板は厚みの変化がほとんどなく、これに対し
電池B1電池Cの極板は膨潤して部分的にはいわゆるブ
リスターを発生し、脱落を引き起こしている部分さえあ
った。そこでこれらの極板のX線回折を調べたところ、
γ−NiOOHが多量に生成していることがわかった。
There was almost no change in the thickness of the electrode plates of battery B1 and battery C, whereas the electrode plates of battery B1 and battery C swelled, causing so-called blisters in some parts, and even causing some parts to fall off. So, when we investigated the X-ray diffraction of these electrode plates, we found that
It was found that a large amount of γ-NiOOH was produced.

この現象を考察すると、極板Bにおいては添加されたコ
バルトが有効な導電性の0o00H層を形成することが
出来ず、前述のように充放電反応の場の不均一性が生じ
、局部的に電流密度が大きくなってγ−NiOOHが多
量に生成したものと考えられる。そのため、1−Ni0
OHの生成にともなう結晶密度変化による応力が焼結ニ
ッケル基板中に生じ、その応力歪により極板の脱落を引
ぎ起こしたものと考えられる。従って、強度の弱い、多
孔度の高いニッケル基板を用いて高密度充填を行なう場
合、本発明による方法は、極板強度向上のために非常に
有効な手段となり得ることがわかる。
Considering this phenomenon, in the electrode plate B, the added cobalt cannot form an effective conductive 0o00H layer, and as mentioned above, non-uniformity of the charging/discharging reaction field occurs, causing local It is considered that the current density increased and a large amount of γ-NiOOH was generated. Therefore, 1-Ni0
It is thought that stress was generated in the sintered nickel substrate due to a change in crystal density due to the generation of OH, and the stress strain caused the electrode plate to fall off. Therefore, it can be seen that when high-density packing is performed using a nickel substrate with low strength and high porosity, the method according to the present invention can be a very effective means for improving the strength of the electrode plate.

膨潤率:充放電前の極板厚みに対する200サイクル終
了後の極板厚み 充放電時におりるニッケル正極の酸化値の変化を調べた
ものが第2表である。本発明電池Aは、充電末期の酸化
値が低く、このことからも1− Ni0OHの生成が抑
制されていることを示しており、また放電末期の酸化値
も低いためより深い放電が可能となっていることがわか
る。このため本発明Kmは高密度充填をすることなく、
高容量化をはかることが出来る。
Swelling rate: Plate thickness after 200 cycles relative to the plate thickness before charging and discharging Table 2 shows the changes in the oxidation value of the nickel positive electrode during charging and discharging. Inventive battery A has a low oxidation value at the end of charging, which also indicates that the generation of 1-Ni0OH is suppressed, and the oxidation value at the end of discharge is also low, making deeper discharge possible. You can see that Therefore, Km of the present invention does not require high-density packing.
It is possible to increase the capacity.

第  2  表 酸化値: NiOxのX値 ここでも電池Btこ泌加したコバルトは前述の如く空気
中で酸化されてGOHO2に変化しているため、添加剤
として有効な0oOOH層となり得ることが出来ず、従
ってコバルト無添加の電池Cとほぼ同様の挙動を示した
ものと思われる。
Table 2 Oxidation value: X value of NiOx Here again, since the cobalt added to the battery Bt is oxidized in the air and changed to GOHO2 as described above, it cannot become an 0oOOH layer that is effective as an additive. Therefore, it seems that the behavior was almost the same as that of Battery C without cobalt added.

なお、本実施例においては、pH9の中和液を用いてα
−(3o(OH)2を新田させたが、pH7〜15の範
囲においてα−Co(OH)2を析出させることが出来
る。しかしながらpH9〜15の範囲で中和工程を行な
うと効率よくα−Co(OH)2が得られる。
In this example, α
-(3o(OH)2), α-Co(OH)2 can be precipitated in the pH range of 7 to 15. However, if the neutralization step is performed in the pH range of 9 to 15, α-Co(OH)2 can be precipitated efficiently. -Co(OH)2 is obtained.

発明の効果 上述した如く、本発明はコバルトの優れた効果により活
物質の利用率の高い、かつ電極膨潤の少ない、保存性に
優れた、また高容量でサイクル特性に優れたアルカリ蓄
電池用ニッケル電極及びその製造法を提供することが出
来るので、その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention provides a nickel electrode for alkaline storage batteries that has a high utilization rate of active material due to the excellent effects of cobalt, has low electrode swelling, has excellent storage stability, and has high capacity and excellent cycle characteristics. Since it is possible to provide a method for producing the same and a method for producing the same, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験電池の断面図、第2図は極板のX線回折の
比較図、第3図は充放電サイクル特性の比較図、第4図
は放電特性の比較図である。
FIG. 1 is a cross-sectional view of the test battery, FIG. 2 is a comparison of X-ray diffraction of the electrode plates, FIG. 3 is a comparison of charge/discharge cycle characteristics, and FIG. 4 is a comparison of discharge characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)主成分活物質である水酸化ニッケルの充填前に、
水酸化コバルトを単独充填し、次に前記主成分活物質の
所定量を充填した後、さらに水酸化コバルトを単独充填
したニッケル電極の極板表面に存在する水酸化コバルト
がα−Co(OH)_2であることを特徴とするアルカ
リ蓄電池用ニッケル電極。
(1) Before filling with nickel hydroxide, which is the main active material,
Cobalt hydroxide present on the electrode plate surface of a nickel electrode filled with cobalt hydroxide alone, then filled with a predetermined amount of the main component active material, and then filled with cobalt hydroxide alone becomes α-Co(OH). A nickel electrode for an alkaline storage battery characterized by being _2.
(2)請求項1記載のアルカリ蓄電池用ニッケル電極の
水酸化コバルトの充填工程において、コバルト塩水溶液
をニッケル焼結基板等に減圧含浸した後、pH9〜15
の塩基性浴中で水酸化物に変換することを特徴とするア
ルカリ蓄電池用ニッケル電極の製造法。
(2) In the cobalt hydroxide filling step of the nickel electrode for an alkaline storage battery according to claim 1, after impregnating the cobalt salt aqueous solution into the nickel sintered substrate or the like under reduced pressure, the pH is 9 to 15.
A method for producing a nickel electrode for an alkaline storage battery, characterized by converting it into a hydroxide in a basic bath.
JP63255324A 1988-10-11 1988-10-11 Nickel electrode for alkaline battery and its manufacture Pending JPH02103859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255324A JPH02103859A (en) 1988-10-11 1988-10-11 Nickel electrode for alkaline battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255324A JPH02103859A (en) 1988-10-11 1988-10-11 Nickel electrode for alkaline battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH02103859A true JPH02103859A (en) 1990-04-16

Family

ID=17277200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255324A Pending JPH02103859A (en) 1988-10-11 1988-10-11 Nickel electrode for alkaline battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH02103859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297758A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297758A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above

Similar Documents

Publication Publication Date Title
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JPH0247824B2 (en)
JPH02103859A (en) Nickel electrode for alkaline battery and its manufacture
JPH0221098B2 (en)
US7226693B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP3188000B2 (en) Non-sintered nickel positive electrode
JPH0514382B2 (en)
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPH0410181B2 (en)
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2966497B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3030032B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP2810460B2 (en) Positive plate for alkaline storage battery
KR100360493B1 (en) Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode
JPH09147857A (en) Manufacture of positive electrode active material for alkaline storage battery
JPH03159064A (en) Nickel-cadmium storage battery