KR100360493B1 - Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode - Google Patents

Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode Download PDF

Info

Publication number
KR100360493B1
KR100360493B1 KR1019950026486A KR19950026486A KR100360493B1 KR 100360493 B1 KR100360493 B1 KR 100360493B1 KR 1019950026486 A KR1019950026486 A KR 1019950026486A KR 19950026486 A KR19950026486 A KR 19950026486A KR 100360493 B1 KR100360493 B1 KR 100360493B1
Authority
KR
South Korea
Prior art keywords
nickel
electrode
nitrate
current collector
active material
Prior art date
Application number
KR1019950026486A
Other languages
Korean (ko)
Other versions
KR970013472A (en
Inventor
임찬
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1019950026486A priority Critical patent/KR100360493B1/en
Publication of KR970013472A publication Critical patent/KR970013472A/en
Application granted granted Critical
Publication of KR100360493B1 publication Critical patent/KR100360493B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A nickel electrode, its preparation method and an alkali secondary battery employing the nickel electrode are provided, to improve the charging efficiency by enabling an active material to be charged readily and to reduce the exhaustion of an electrolyte solution and to prevent the separation of an active material due to the generation of oxygen by inhibiting the generation of oxygen. CONSTITUTION: The nickel electrode comprises a porous nickel current collector, and an active material charged into the pores of the porous nickel current collector, wherein the active material is the nickel hydroxide containing 2-8 atom% of manganese and 2-8 atom% of zinc in solid state based on the amount of nickel. The method comprises the steps of coating the slurry containing nickel powder on a nickel substrate, and drying and sintering it to prepare a porous nickel current collector; and dipping the porous nickel current collector into the nickel nitrate aqueous solution containing 2-8 mol% of manganese nitrate and 2-8 mol% of zinc nitrate based on the amount of nickel nitrate, dipping it into 2-6 mol% of potassium hydroxide aqueous solution, and repeating the two dipping processes several times. Preferably the temperature of the potassium hydroxide aqueous solution is 40-80 deg.C.

Description

니켈 전극, 그 제조방법 및 이를 채용한 알칼리 2차전지Nickel electrode, manufacturing method thereof and alkaline secondary battery employing the same

본 발명은 니켈 전극, 그 제조방법 및 이를 채용한 알칼리 2차전지에 관한 것으로서, 상세하기로는 산소 발생이 억제되고 충전 효율이 향상된 니켈 전극, 그 제조방법 및 이를 채용한 알칼리 2차전지에 관한 것이다.The present invention relates to a nickel electrode, a method for manufacturing the same and an alkaline secondary battery employing the same, and more particularly, to a nickel electrode with reduced oxygen generation and improved charging efficiency, a method for manufacturing the same, and an alkaline secondary battery employing the same. .

알칼리 2차 전지의 니켈 전극은 다수의 구멍을 갖는 다공성 니켈 집전체와, 다공성 니켈 집진체의 기공들에 충전되는 활물질을 포함하여 된 것으로서, 일반적으로 소결식 방법에 의해 제조되었다. 이 방법은 구멍이 뚫린 니켈 도금 강판에 니켈 분말을 주성분으로 한 슬러리를 도포해서 건조, 소결하여 다공성 니켈 집전체를 만든 후, 여기에 화학적 함침법 또는 전기화학적 함침법을 사용하여 니켈 집전체의 기공내에 활물질 수산화니켈을 석출시키고 이를 알칼리 용액중에서 화성하여 전극을 제조하는 방법이다.The nickel electrode of the alkaline secondary battery includes a porous nickel current collector having a plurality of holes and an active material filled in pores of the porous nickel dust collector, and is generally manufactured by a sintering method. In this method, a porous nickel current collector is formed by applying a slurry containing nickel powder as a main component to a perforated nickel plated steel sheet, followed by drying and sintering, and then using the chemical impregnation method or the electrochemical impregnation method, the pores of the nickel current collector are used. A method of producing an electrode by depositing an active material nickel hydroxide in an alkali solution and converting it in an alkaline solution.

알칼리 2차전지에서 니켈 전극에서 충전반응이 진행되면 하기 반응식 (1)에서 알 수 있는 바와 같이, 활물질인 수산화 니켈이 과수산화니켈로 산화된다.In the alkaline secondary battery, when the charging reaction proceeds at the nickel electrode, nickel hydroxide as an active material is oxidized to nickel peroxide as shown in the following Reaction Formula (1).

이러한 충전반응이 진행됨에 따라 전극의 전위가 상승하여 반응 (1)과 동시에 산소 기체 발생 반응 (2)도 일어난다.As this charging reaction proceeds, the potential of the electrode rises, and an oxygen gas generating reaction (2) occurs simultaneously with the reaction (1).

전지내부에 상기 반응 생성물인 산소가 존재하여 전지의 내압이 증가되는데, 이로 인하여 활물질에 기계적 힘이 가해져서 활물질이 탈락하게 되고 그 결과, 전지의 싸이클에 따른 전극의 용량 및 기계적 특성이 저하된다.Oxygen, which is the reaction product, is present in the battery to increase the internal pressure of the battery. As a result, mechanical force is applied to the active material to cause the active material to fall off. As a result, the capacity and mechanical properties of the electrode according to the cycle of the battery are reduced.

전지 충전시 발생하는 산소양을 감소시키기 위하여 활물질에 첨가제를 공침시키는 연구가 활발하게 진행되고 있는데, 미국 특허 제5,132, 177호에는 아연을 함유하고 있는 활물질이 개시되어 있다. 여기에서 아연은 산소과전압을 높여서 산소발생을 억제시키는 역할을 한다.In order to reduce the amount of oxygen generated during battery charging, studies are actively conducted to co-precipitate additives in active materials. US Patent Nos. 5,132 and 177 disclose an active material containing zinc. In this case, zinc serves to suppress oxygen generation by increasing oxygen overvoltage.

그러나, 상기 활물질은 산소 발생을 억제시키는 효과는 있지만 충전하기가 어려워 그 효과가 상쇄되는 단점을 가지고 있다.However, the active material has an effect of suppressing the generation of oxygen, but is difficult to charge, and has the disadvantage of canceling the effect.

한편, 문헌(Electrochim. Acta, 31, 1321, 1986)에는 망간을 함유하고 있는 활물질이 공지되어 있는데, 여기에서 망간은 활물질의 격자 구조를 변형시켜 활물질의 충전을 용이하게 하는 역할을 하는 것으로 알려져 있다.On the other hand, the active material containing manganese is known in the literature (Electrochim. Acta, 31, 1321, 1986), where manganese is known to play a role in modifying the lattice structure of the active material to facilitate the filling of the active material. .

그러나, 이 활물질은 충전이 용이한 반면에 산소기체 발생을 억제하지 못해 전지의 내압이 상승하는 문제점을 가지고 있다.However, the active material has a problem in that the internal pressure of the battery increases because charging of the active material is not easy while suppressing generation of oxygen gas.

상기 문제점을 해결하기 위하여 본 발명의 첫번째 및 두번째 목적은 산소 발생이 억제되고 충전 효율이 향상된 니켈 전극 및 그 제조방법을 제공하는 것이다.In order to solve the above problems, a first and second object of the present invention is to provide a nickel electrode with reduced oxygen generation and improved charging efficiency and a method of manufacturing the same.

본 발명의 세번째 목적은 상기 제조방법에 따라 제조된 니켈 전극을 채용한 알칼리 2차전지를 제공하는 것이다.A third object of the present invention is to provide an alkaline secondary battery employing a nickel electrode prepared according to the above manufacturing method.

상기 첫번째 목적을 달성하기 위하여 다공성 니켈 집전체와 다공성 니켈 집전체들의 기공들에 충전되는 활물질로 형성되어 있는 니켈 전극에 있어서,In the nickel electrode formed of an active material filled in the pores of the porous nickel current collector and the porous nickel current collectors to achieve the first object,

상기 활물질이 니켈을 기준으로 하여 2 내지 8원자%의 망간과 2내지 8원자%의 아연를 고용상태고 함유하고 있는 수산화니켈인 것을 특징으로 하는 니켈 전극이 제공된다.A nickel electrode is provided, wherein the active material is nickel hydroxide containing 2 to 8 atomic% manganese and 2 to 8 atomic% zinc in solid solution, based on nickel.

본 발명의 두번째 목적은 니켈 기판에 니켈 분말을 함유한 슬러리를 도포한 후, 건조, 소결하여 다공성 니켈 집전체를 형성하는 단계:The second object of the present invention is to apply a slurry containing nickel powder on a nickel substrate, and then drying and sintering to form a porous nickel current collector:

형성된 다공성 니켈 집전체를 질산니켈을 기준으로 하여 각각 2내지 8몰%의 질산망간과 질산아연을 함유하고 있는 질산니켈 수용액에 침적시킨 다음, 2내지 6몰%의 수산화칼륨 수용액에 침적시키는 과정을 반복하여 니켈 집전체의 기공내에 수산화 니켈을 충전시키는 단계를 포함하고 있는 것을 특징으로 하는 니켈 전극의 제조방법에 의해 달성된다.The porous nickel current collector thus formed was immersed in an aqueous nickel nitrate solution containing 2 to 8 mol% of manganese nitrate and zinc nitrate based on nickel nitrate, and then immersed in an aqueous solution of 2 to 6 mol% potassium hydroxide. It is achieved by a method for producing a nickel electrode, characterized in that it comprises repeatedly filling the nickel hydroxide into the pores of the nickel current collector.

바람직하기로는 상기 수산화칼륨 수용액의 온도는 40 내지 80℃이다.Preferably the temperature of the said potassium hydroxide aqueous solution is 40-80 degreeC.

본 발명의 세번째 목적은 상기 제조방법에 따라 제조된 니켈 전극을 채용한알칼리 2차전지에 의해서 달성된다.A third object of the present invention is achieved by an alkaline secondary battery employing a nickel electrode prepared according to the above production method.

본 발명에서는 아연과 망간을 동시에 고용상태로 함유하고 있는 수산화니켈 활물질을 사용하여 활물질의 충전효율을 향상시킴과 동시에 산소 발생을 억제시키고자 한 것이다.In the present invention, it is intended to improve the charging efficiency of the active material and to suppress the generation of oxygen by using a nickel hydroxide active material containing zinc and manganese at the same time in solid solution.

본 발명에서는 활물질 수산화니켈에서 니켈을 기준으로 하여 아연과 망간의 함량이 각각 2내지 8원자%인 것이 바람직하고, 그 이상을 초과하는 경우에는 산소발생 억제 효과 및 충전효율 향상 효과는 있지만 상대적으로 차지하는 수산화니켈의 양이 감소하여 전극 용량이 감소된다.In the present invention, it is preferable that the content of zinc and manganese in the active material nickel hydroxide based on nickel is 2 to 8 atomic%, respectively. The amount of nickel hydroxide is reduced to reduce the electrode capacity.

본 발명의 니켈 전극을 제조하는 방법을 상세히 설명하기로 한다.The method for producing the nickel electrode of the present invention will be described in detail.

니켈 기판에 니켈 분말을 함유한 슬러리를 도포한 후, 건조, 소결하여 다공성 니켈 집전체를 형성시킨다. 이렇게 얻어진 다공성 니켈 집전체를 질산니켈을 기준으로 하여 각각 2내지 8몰%의 질산망간과 질산아연을 함유하는 질산니켈 수용액에 침적시킨 후, 질산염을 수산화물로 변화시키기 위하여 상기 집전체를 2내지 6몰%의 수산화칼륨 수용액에 침적시킨다. 이러한 과정을 수차례 반복하여 집전체의 기공내에 수산화니켈을 충전시켜 니켈 전극을 제조하였다.A slurry containing nickel powder is applied to the nickel substrate, followed by drying and sintering to form a porous nickel current collector. The porous nickel current collector thus obtained was immersed in an aqueous nickel nitrate solution containing 2 to 8 mol% of manganese nitrate and zinc nitrate, respectively, based on nickel nitrate, and then the current collector was changed to 2 to 6 to change the nitrate to hydroxide. It is immersed in mol% potassium hydroxide aqueous solution. This process was repeated several times to fill nickel in the pores of the current collector to prepare a nickel electrode.

이하, 본 발명을 실시예를 들어 상세히 설명하기로 하되, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(실시예 1)(Example 1)

기공도 76%의 니켈 기판에 니켈 분말을 함유한 슬러리를 도포한 후, 건조, 소결하여 두께가 0.09cm이고 면적이 11x16.5㎠인 다공성 니켈 집전체를 제조하였다. 형성된 니켈 집전체를 질산니켈을 기준으로 하여 각각 5몰%의 Mn(NO3)2·6H2O와 Zn(NO3)2·6H2O을 함유한 Ni(NO3)2·6H2O 수용액에 침적시킨 다음, 2몰%의 수산화칼륨 수용액에 순차적으로 침적시켰다. 이러한 과정을 5회정도 반복하여 니켈 전극을 제조하였다.A slurry containing nickel powder was applied to a nickel substrate having a porosity of 76%, followed by drying and sintering to prepare a porous nickel current collector having a thickness of 0.09 cm and an area of 11 × 16.5 cm 2. Formed of 5 mol%, respectively, to the total nickel house, based on the nickel nitrate Mn (NO 3) 2 · 6H 2 O and Zn (NO 3) 2 · a Ni (NO 3) containing 6H 2 O 2 · 6H 2 O It was then deposited in an aqueous solution and then sequentially in 2 mol% aqueous potassium hydroxide solution. This process was repeated five times to prepare a nickel electrode.

상기 제조된 니켈 전극을 사용하여 알칼리 2차전지를 제조하였다.An alkaline secondary battery was manufactured using the prepared nickel electrode.

(실시예 2)(Example 2)

실시예 1과 동일한 방법으로 실시하되, 질산니켈을 기준으로 하여 2몰%의 Mn(NO3)2· 6H2O와 8몰%의 Zn(NO3)2·6H2O을 함유한 Ni(NO3)2·6H2O 수용액을 사용하여 니켈 전극을 제조하였다.The same process as in Example 1, except that Ni (containing 2 mol% Mn (NO 3 ) 2 · 6H 2 O and 8 mol% Zn (NO 3 ) 2 · 6H 2 O based on nickel nitrate) A nickel electrode was prepared using NO 3 ) 2 .6H 2 O aqueous solution.

상기 제조된 니켈 전극을 사용하여 알칼리 2차전지를 제조하였다.An alkaline secondary battery was manufactured using the prepared nickel electrode.

(실시예 3)(Example 3)

실시예 1과 동일한 방법으로 실시하되, 질산니켈을 기준으로 하여 8몰%의 Mn(NO3)2·6H2O와 2몰%의 Zn(NO3)2·6H2O을 함유한 Ni(NO3)2·6H2O 수용액을 사용하여 니켈 전극을 제조하였다.The same method as in Example 1, except that Ni (containing 8 mol% Mn (NO 3 ) 2 .6H 2 O and 2 mol% Zn (NO 3 ) 2 .6H 2 O based on nickel nitrate) A nickel electrode was prepared using NO 3 ) 2 .6H 2 O aqueous solution.

상기 제조된 니켈 전극을 사용하여 알칼리 2차전지를 제조하였다.An alkaline secondary battery was manufactured using the prepared nickel electrode.

(비교예 1)(Comparative Example 1)

실시예 1와 동일한 방법으로 실시하되, 질산니켈을 기준으로 하여 10몰%의 Zn(NO3)2·6H2O만을 함유하는 Ni(NO3)2·6H2O 수용액를 사용하여 니켈 전극을 제조하였다.A nickel electrode was prepared using the same method as Example 1 except using Ni (NO 3 ) 2 .6H 2 O aqueous solution containing only 10 mol% of Zn (NO 3 ) 2 .6H 2 O based on nickel nitrate. It was.

상기 니켈 전극을 사용하여 알칼리 2차전지를 제조하였다.An alkaline secondary battery was manufactured using the nickel electrode.

(비교예 2)(Comparative Example 2)

실시예 1와 동일한 방법으로 실시하되, 질산니켈을 기준으로 하여 10몰%의 Mn(NO3)2·6H2O만을 함유하는 Ni(NO3)2·6H2O 수용액를 사용하여 니켈 전극을 제조하였다.A nickel electrode was prepared using the same method as Example 1 except using Ni (NO 3 ) 2 .6H 2 O aqueous solution containing only 10 mol% Mn (NO 3 ) 2 .6H 2 O based on nickel nitrate. It was.

상기 니켈 전극을 사용하여 알칼리 2차전지를 제조하였다.An alkaline secondary battery was manufactured using the nickel electrode.

상기 실시예 및 비교예에서 제조한 니켈 전극을 2M KOH 전해액에서 0.2C로 150% 충전한 후, 0.2C로 방전하여 전압이 0.1V(기준전극: Hg/HgO 전극)가 되었을 때 종료하였고, 이로부터 전극의 용량을 측정하였다. 실시예 및 비교예에 따라 제조된 니켈 전극의 용량은 모두 7.1Ah로 동일했다.The nickel electrode prepared in Example and Comparative Example was charged with 0.2C in 2M KOH electrolyte at 150C, and then discharged at 0.2C to terminate when the voltage became 0.1V (reference electrode: Hg / HgO electrode). The capacitance of the electrode was measured from. The capacities of the nickel electrodes prepared according to the examples and the comparative examples were all the same at 7.1 Ah.

0.2C의 충전전류에서 충전시간에 따른 실시예 1 및 비교예 1에 따라 제조된 전극의 충전전압을 제1도에 나타냈다. 여기에서 (a)는 질산니켈을 기준으로 하여 5몰%의 질산망간 및 질산아연을 함유한 전극(실시예 1)의 경우이고 (b)는 질산니켈을 기준으로 하여 10몰%의 아연을 함유한 전극(비교예 1)의 경우에 대한 것이다.The charging voltage of the electrode prepared according to Example 1 and Comparative Example 1 according to the charging time at a charging current of 0.2C is shown in FIG. (A) is the case of an electrode containing 5 mol% of manganese nitrate and zinc nitrate (Example 1) based on nickel nitrate, and (b) contains 10 mol% of zinc based on nickel nitrate This is for the case of one electrode (Comparative Example 1).

제1도에서 알 수 있듯이, 충전 말기 전압은 상기 두 경우가 거의 동일하였으나, 충전 중간 전압은 5몰%의 질산아연 및 질산망간을 함유한 전극의 경우가 보다 작은 것으로 나타났다. 그 결과 본 발명의 조건을 만족하는 전극의 산소과전압이 보다 커서 충전중 발생하는 산소양이 보다 작다는 것을 알 수 있다.As can be seen from FIG. 1, the terminal charge voltage was almost the same in the above two cases, but the intermediate charge voltage was smaller in the case of the electrode containing 5 mol% zinc nitrate and manganese nitrate. As a result, it can be seen that the oxygen overvoltage of the electrode satisfying the condition of the present invention is larger, so that the amount of oxygen generated during charging is smaller.

상기 실시예 1-3에 따라 제조된 니켈 전극을 1C로 7Ah의 전하량을 충전한 후, 0.2C로 방전하여 전압이 0.1V(기준전극: Hg/HgO 전극)가 되었을 때 종료하였다. 이로부터 질산아연 및 질산망간의 함량에 대한 각 전극의 충전효율을 측정하여 그 결과를 제2도에 나타냈다.The nickel electrode prepared according to Example 1-3 was charged with a charge amount of 7 Ah at 1 C, and then discharged at 0.2 C to terminate the voltage when the voltage became 0.1 V (reference electrode: Hg / HgO electrode). From this, the filling efficiency of each electrode with respect to the contents of zinc nitrate and manganese nitrate was measured, and the results are shown in FIG.

상기 도면으로부터 알 수 있듯이, 질산아연 및 질산망간의 함량이 각각 2내지 8몰%인 전극이 질산아연이 10몰%인 전극이나 질산망간이 10몰%인 경우보다 충전 효율이 높다는 것을 알 수 있다. 특히 질산아연 및 질산망간의 함량이 각각 5몰%인 전극의 경우가 가장 충전효율이 높다.As can be seen from the figure, it can be seen that the electrode having a content of 2 to 8 mol% of zinc nitrate and manganese nitrate, respectively, has higher charging efficiency than the case of 10 mol% of zinc nitrate or 10 mol% of manganese nitrate. . In particular, the electrode having a 5 mol% content of zinc nitrate and manganese nitrate is the highest charging efficiency.

본 발명의 활물질을 사용하여 제조된 니켈 전극 .및 이를 채용한 알칼리 전지는 다음과 같은 효과를 나타낸다.The nickel electrode manufactured using the active material of the present invention, and an alkaline battery employing the same had the following effects.

첫째, 활물질의 충전반응이 용이하여 충전효율이 증가된다.First, the charging reaction of the active material is easy to increase the charging efficiency.

둘째, 산소발생 억제 효과가 있어서 산소발생으로 인한 전지의 전해액 고갈 현상이 적어지고 활물질 탈락이 방지된다. 그 결과 기계적 특성의 저하 현상이 방지된다.Second, since the oxygen generation suppression effect is reduced the electrolyte depletion of the battery due to the generation of oxygen and the active material is prevented from falling off. As a result, deterioration of mechanical properties is prevented.

제1도는 본 발명의 실시예 및 비교예에 따라 제조된 전지의 시간에 따른 충전전압을 나타내고,1 shows the charging voltage with time of a battery manufactured according to Examples and Comparative Examples of the present invention,

제2도는 본 발명의 실시예 및 비교예에 따라 제조된 전지의 질산아연 및 질산망간 함량에 따른 충전효율을 나타낸다.Figure 2 shows the charging efficiency according to the zinc nitrate and manganese nitrate content of the battery prepared according to the Examples and Comparative Examples of the present invention.

Claims (4)

다공성 니켈 집전체와 다공성 니켈 집전체들의 기공들에 충전되는 활물질로 형성되어 있는 니켈 전극에 있어서,In a nickel electrode formed of an active material filled in the pores of the porous nickel current collector and the porous nickel current collectors, 상기 활물질이 니켈을 기준으로 하여 2내지 8원자%의 망간과 2내지 8원자%의 아연을 고용상태로 함유하고 있는 수산화니켈인 것을 특징으로 하는 니켈 전극.The nickel electrode, characterized in that the active material is nickel hydroxide containing 2 to 8 atomic% manganese and 2 to 8 atomic% zinc in the solid solution state based on nickel. 니켈 기판에 니켈 분말을 함유한 슬러리를 도포한 후, 건조, 소결하여 다공성 니켈 집전체를 형성하는 단계:Applying a slurry containing nickel powder to the nickel substrate, and then drying and sintering to form a porous nickel current collector: 형성된 다공성 니켈 집전체를 질산니켈을 기준으로 하여 각각 2내지 8몰%의 질산망간과 질산아연을 함유하고 있는 질산니켈 수용액에 침적시킨 다음, 2내지 6몰%의 수산화칼륨 수용액에 침적시키는 과정을 수차례 반복하여 니켈 집전체의 기공내에 수산화 니켈을 충전시키는 단계를 포함하고 있는 것을 특징으로 하는 니켈 전극 제조방법.The porous nickel current collector thus formed was immersed in an aqueous nickel nitrate solution containing 2 to 8 mol% of manganese nitrate and zinc nitrate based on nickel nitrate, and then immersed in an aqueous solution of 2 to 6 mol% potassium hydroxide. A method of manufacturing a nickel electrode, the method comprising repeating a number of times filling the nickel hydroxide into the pores of the nickel current collector. 제2항에 있어서, 상기 수산화칼륨 수용액의 온도가 40내지 80℃인 것을 특징으로 하는 니켈 전극의 제조방법.The method of claim 2, wherein the temperature of the potassium hydroxide aqueous solution is 40 to 80 ℃. 제2항 또는 제3항에 따라 제조된 니켈 전극을 채용한 알칼리 2차전지.An alkaline secondary battery employing a nickel electrode prepared according to claim 2.
KR1019950026486A 1995-08-24 1995-08-24 Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode KR100360493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950026486A KR100360493B1 (en) 1995-08-24 1995-08-24 Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950026486A KR100360493B1 (en) 1995-08-24 1995-08-24 Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode

Publications (2)

Publication Number Publication Date
KR970013472A KR970013472A (en) 1997-03-29
KR100360493B1 true KR100360493B1 (en) 2003-01-24

Family

ID=37490520

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950026486A KR100360493B1 (en) 1995-08-24 1995-08-24 Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode

Country Status (1)

Country Link
KR (1) KR100360493B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230061A (en) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd Nickel electrode active material, and nickel electrode and alkaline battery using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230061A (en) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd Nickel electrode active material, and nickel electrode and alkaline battery using same

Also Published As

Publication number Publication date
KR970013472A (en) 1997-03-29

Similar Documents

Publication Publication Date Title
KR100360493B1 (en) Nickel electrode, preparation method thereof, and alkali secondary battery employing the electrode
US6946222B2 (en) Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery
JP2003503821A (en) Nickel positive electrode plate for alkaline storage battery and method for producing the same
JP3745583B2 (en) Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
KR100331434B1 (en) Nickel electrode, method for producing the same, and secondary battery applying the same
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
CN1186832C (en) Method for making nickel electrode of alkaline storage battery
JP3495576B2 (en) Method for producing nickel electrode for alkaline storage battery
KR100331435B1 (en) Nickel electrode, preparation method thereof and second battery using the same
JP2966497B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP3606123B2 (en) Manufacturing method of nickel positive electrode plate for alkaline storage battery
JP2002164047A (en) Method of manufacturing nickel electrode for alkali storage battery
JP3108144B2 (en) Method for producing nickel positive electrode plate for alkaline storage battery
KR19980026469A (en) Nickel electrode and its manufacturing method
JPS63158750A (en) Zink electrode for alkaline storage battery
JPS6129068A (en) Production of sintered cadmium negative electrode plate
JPH0560222B2 (en)
JPH02103859A (en) Nickel electrode for alkaline battery and its manufacture
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery
JPH09237626A (en) Hydrogen storage alloy electrode and manufacture thereof
KR19980030975A (en) Nickel electrode, its manufacturing method and alkaline secondary battery employing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee