JPH09293501A - Manufacture of hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode

Info

Publication number
JPH09293501A
JPH09293501A JP8106719A JP10671996A JPH09293501A JP H09293501 A JPH09293501 A JP H09293501A JP 8106719 A JP8106719 A JP 8106719A JP 10671996 A JP10671996 A JP 10671996A JP H09293501 A JPH09293501 A JP H09293501A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
alloy
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8106719A
Other languages
Japanese (ja)
Other versions
JP3387314B2 (en
Inventor
Koji Yamamura
康治 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10671996A priority Critical patent/JP3387314B2/en
Publication of JPH09293501A publication Critical patent/JPH09293501A/en
Application granted granted Critical
Publication of JP3387314B2 publication Critical patent/JP3387314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To manufacture a hydrogen storage alloy electrode with excellent characteristics as an alkaline storage battery by treating hydrogen storage alloy powder with an alkaline solution containing the specified amount of lithium hydroxide mono hydrate and cobalt ions, of the specified temperature. SOLUTION: Hydrogen storage alloy powder, for example ZrTi0.2 Mn0.6 V0.1 Cr0.3 Co0.1 Ni1.2 having a particle size of 45μm or less is immersed in an alkaline solution containing 5-150g/l lithium hydroxide mono hydrate and cobalt ions or copper ions, of 80-150 deg.C. The content of cobalt or copper ions is preferable to be equivalent to 10wt.% or less metallic cobalt or copper based on the weight of the hydrogen storage alloy. The alkaline solution is preferable to be an aqueouous solution containing about 31% NaOH, KOH, or RbOH. An electrode is manufactured with this treated hydrogen storage alloy powder. An alkaline storage battery negative electrode having excellent high rate discharge characteristics at low temperature and high corrosion resistance to an alkaline aqueous solution at high temperature is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素の吸蔵・放出を可
逆的に行うことのできる水素吸蔵合金を用いた水素吸蔵
合金電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池として、鉛蓄電池とアルカリ蓄電池がある。このうち
アルカリ蓄電池は高信頼性が期待でき、小形軽量化も可
能なことから小型蓄電池は各種ポータブル機器用に、大
型蓄電池は産業用として使われてきた。
2. Description of the Related Art Lead-acid batteries and alkaline batteries are widely used as various power sources. Of these, alkaline storage batteries can be expected to have high reliability and can be made compact and lightweight, so small storage batteries have been used for various portable devices, and large storage batteries have been used for industrial purposes.

【0003】このアルカリ蓄電池において、正極として
は一部空気極や酸化銀極なども取り上げられているが、
ほとんどの場合水酸化ニッケルを用いたニッケル極であ
る。アルカリ蓄電池のニッケル極がポケット式から焼結
式に代わって電池特性が向上し、さらに密閉化が可能に
なったことからアルカリ蓄電池の用途も広がった。
In this alkaline storage battery, an air electrode, a silver oxide electrode, and the like are partly taken up as a positive electrode.
In most cases, it is a nickel electrode using nickel hydroxide. The nickel electrode of the alkaline storage battery has changed from the pocket type to the sintered type, and the battery characteristics have improved, and since it has become possible to seal it, the applications of the alkaline storage battery have expanded.

【0004】一方、負極としてはカドミウムの他に亜
鉛、鉄、水素などが対象となっている。そして一層の高
エネルギー密度を達成するために金属水素化物、つまり
水素吸蔵合金を使ったニッケル−水素蓄電池が注目さ
れ、製法などに多くの提案がされている。
On the other hand, as the negative electrode, zinc, iron, hydrogen, etc. are targeted in addition to cadmium. In order to achieve a higher energy density, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy has been attracting attention, and many proposals have been made for its manufacturing method.

【0005】水素を可逆的に吸収・放出し得る水素吸蔵
合金を負極に使用するアルカリ蓄電池では、水素吸蔵合
金電極の理論容量密度がカドミウム極より大きいため、
高エネルギー密度を有するアルカリ蓄電池用負極として
期待できる。そのうえ、カドミウム極や亜鉛極のような
金属の酸化還元による溶解析出を伴わないため、極板の
変形やデンドライトの形成などが少ないことから、長寿
命が期待でき、かつ、無公害であるという特徴を有して
いる。
In an alkaline storage battery using a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen in the negative electrode, the theoretical capacity density of the hydrogen storage alloy electrode is larger than that of the cadmium electrode.
It can be expected as a negative electrode for alkaline storage batteries having a high energy density. In addition, since it does not cause dissolution and precipitation due to redox of metals such as cadmium electrode and zinc electrode, there is little deformation of electrode plates and formation of dendrites, so long life can be expected and there is no pollution. have.

【0006】このような水素吸蔵合金電極に用いられる
合金として、一般的にはTi−Ni系、Zr−Mn−N
i系およびLa(またはMm)−Ni系の多元系合金が
よく知られている。Ti−Ni系の多元系合金はABタ
イプ、Zr−Mn−Ni系合金はAB2 タイプとして分
類できるが、両タイプとも初期に高容量を示すが、寿命
特性が劣り、寿命特性を改善した合金では放電特性が非
常に劣るという問題を有している。
As an alloy used for such a hydrogen storage alloy electrode, generally, Ti--Ni system, Zr--Mn--N are used.
i-based and La (or Mm) -Ni based multi-component alloys are well known. Ti-Ni-based multi-component alloys can be classified as AB type, and Zr-Mn-Ni-based alloys can be classified as AB 2 type, but both types show high capacity at the initial stage, but have poor life characteristics and improved life characteristics. However, there is a problem that the discharge characteristics are very poor.

【0007】これら合金に対してAB5タイプとして分
類されるLa(またはMm)−Ni系合金はABタイプ
やAB2タイプに比べ若干容量は低下するが、寿命特
性、放電特性に優れていることから近年電極材料として
多くの開発が進められ、実用化されている。
La (or Mm) -Ni type alloys classified as AB 5 type with respect to these alloys have a slightly lower capacity than AB type and AB 2 type, but have excellent life characteristics and discharge characteristics. Therefore, in recent years, many developments have been made as electrode materials and put to practical use.

【0008】しかしながら、AB5タイプの合金を用い
たニッケル−水素蓄電池でもニッケル−カドミウム蓄電
池に比べ低温等での高率放電特性が劣ることからさらな
るAB5タイプの合金の特性改善が要望されている。ま
た、AB5タイプの合金より高容量が期待できるABタ
イプやAB2タイプの合金では寿命特性を改善した合金
組成での放電特性の改善が要望されている。
However, even nickel-hydrogen storage batteries using AB 5 type alloys are inferior to nickel-cadmium storage batteries in high rate discharge characteristics at low temperatures and the like, and therefore further improvement in the characteristics of AB 5 type alloys is demanded. . Further, in AB type and AB 2 type alloys, which can be expected to have higher capacities than AB 5 type alloys, there is a demand for improvement in discharge characteristics with an alloy composition having improved life characteristics.

【0009】[0009]

【発明が解決しようとする課題】上記のような問題に対
処する方法の一つとして、水素吸蔵合金粉末もしくは水
素吸蔵合金電極をアルカリ溶液に浸漬して水素吸蔵合金
電極の放電特性を向上させる方法が提案されている。い
わゆるアルカリ処理と言われ、水素吸蔵合金粉末もしく
は水素吸蔵合金電極を水酸化カリウムを溶解したアルカ
リ水溶液に浸漬して処理する方法である。この処理によ
り合金表面のコバルト、マンガン、バナジウム、アルミ
ニウム、ミッシュメタル等のアルカリ水溶液に溶解し易
い金属元素が、アルカリ水溶液中に溶解し、このために
アルカリ水溶液に対して上記した金属元素より安定なニ
ッケルが合金の表面層に残り、相対的に表面層のニッケ
ル比率が高まり金属ニッケル微粒子が生成される。この
金属ニッケル微粒子は高活性な触媒としてよく知られて
いるラネ−ニッケル触媒と同等の活性を有していると考
えられている。このように、合金粉末もしくは合金電極
の電気化学的活性を向上させることにより、放電特性を
向上させていた。また、アルカリ水溶液に溶出する合金
粉末粒子表面や合金電極表面の成分元素を予め除去する
ことによって、電池寿命を向上させることが考えられて
いた。
As one of the methods for solving the above problems, a method of immersing a hydrogen storage alloy powder or a hydrogen storage alloy electrode in an alkaline solution to improve discharge characteristics of the hydrogen storage alloy electrode. Is proposed. The so-called alkali treatment is a method of treating by immersing the hydrogen storage alloy powder or the hydrogen storage alloy electrode in an alkaline aqueous solution in which potassium hydroxide is dissolved. By this treatment, metal elements such as cobalt, manganese, vanadium, aluminum, and misch metal on the surface of the alloy, which are easily dissolved in the alkaline aqueous solution, are dissolved in the alkaline aqueous solution, and therefore, more stable than the above-mentioned metallic elements in the alkaline aqueous solution. Nickel remains in the surface layer of the alloy, and the nickel ratio in the surface layer is relatively increased to produce metallic nickel fine particles. It is considered that the metal nickel fine particles have an activity equivalent to that of a Raney-nickel catalyst which is well known as a highly active catalyst. In this way, the discharge characteristics have been improved by improving the electrochemical activity of the alloy powder or the alloy electrode. Further, it has been considered that the battery life is improved by previously removing the component elements on the surfaces of the alloy powder particles and the surface of the alloy electrode which are eluted in the alkaline aqueous solution.

【0010】しかし、水素吸蔵合金粉末もしくは水素吸
蔵合金電極を上記のような水酸化カリウムだけを溶解し
たアルカリ水溶液を用いた処理を行っても、低温におけ
る放電特性の向上や、高温におけるアルカリ水溶液に対
する耐食性の向上ができない。
However, even if the hydrogen-absorbing alloy powder or the hydrogen-absorbing alloy electrode is treated with an alkaline aqueous solution in which only potassium hydroxide is dissolved as described above, the discharge characteristics at a low temperature are improved and the alkaline solution at a high temperature is improved. Cannot improve corrosion resistance.

【0011】本発明は以上に鑑み、低温における高率放
電特性の改善と、高温におけるアルカリ水溶液に対する
耐食性の改善によって、アルカリ蓄電池負極として優れ
た水素吸蔵合金電極を提供することを目的とする。
In view of the above, it is an object of the present invention to provide a hydrogen storage alloy electrode excellent as a negative electrode for an alkaline storage battery by improving high rate discharge characteristics at low temperature and improving corrosion resistance to an alkaline aqueous solution at high temperature.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するために、水素吸蔵合金粉末をコバルトイオンおよび
/または銅イオンを含み、かつ、水酸化リチウム・一水
塩を5〜150g/l含む水溶液中に80〜150℃の
アルカリ溶液中に浸漬する工程を有する。
In order to achieve the above object, the present invention comprises a hydrogen storage alloy powder containing cobalt ions and / or copper ions, and lithium hydroxide monohydrate of 5 to 150 g / l. The method has a step of immersing it in an aqueous solution containing it in an alkaline solution at 80 to 150 ° C.

【0013】また、水素吸蔵合金からなる電極をコバル
トイオンおよび/または銅イオンを含み、かつ、水酸化
リチウム・一水塩を5〜150g/l含む水溶液中に8
0〜150℃のアルカリ溶液中に浸漬する工程を有す
る。
Further, the electrode made of a hydrogen storage alloy is contained in an aqueous solution containing cobalt ions and / or copper ions and 5 to 150 g / l of lithium hydroxide monohydrate.
There is a step of immersing in an alkaline solution at 0 to 150 ° C.

【0014】コバルトイオンを含むアルカリ溶液は水酸
化コバルト、酸化コバルト、塩化コバルト、硝酸コバル
ト等をアルカリ溶液に添加して、また銅イオンを含むア
ルカリ溶液は水酸化銅、酸化銅、塩化銅、硝酸銅等をア
ルカリ水溶液に添加してそれぞれ調整するものである。
銅イオンを含むアルカリ水溶液は、酒石酸またはクエン
酸を加えることが好ましい。
For the alkaline solution containing cobalt ions, cobalt hydroxide, cobalt oxide, cobalt chloride, cobalt nitrate, etc. are added to the alkaline solution, and for the alkaline solution containing copper ions, copper hydroxide, copper oxide, copper chloride, nitric acid is used. Copper and the like are added to the alkaline aqueous solution to adjust the contents.
It is preferable to add tartaric acid or citric acid to the alkaline aqueous solution containing copper ions.

【0015】また、水素吸蔵合金粉末もしくは水素吸蔵
合金電極のアルカリ処理は、不活性ガス雰囲気中や大気
を遮断した状態など、アルカリ水溶液への酸素の溶解が
抑制された、実質的に酸素ガスとの接触を断たれた状態
において行われることが好ましい。
The alkali treatment of the hydrogen-absorbing alloy powder or the hydrogen-absorbing alloy electrode is carried out with substantially oxygen gas in which the dissolution of oxygen in the alkaline aqueous solution is suppressed, such as in an inert gas atmosphere or in a state where the atmosphere is shut off. Is preferably performed in a state where the contact between the two is cut off.

【0016】本発明に用いる水素吸蔵合金は、一般式L
nNixy(Lnはランタノイド元素の少なくとも2
種、AはMn,Co,Al,Fe,Si,Cr,および
Cuよりなる群から選択される少なくとも1種の元素で
あり、4.5<x+y<5.5、3.0<x、0<y<
2.5)で表される合金である。また、一般式Zr1.2-
aTiaMnwxNiyZ(ただし、MはB,Al,S
i,Cr,Fe,Co,Cu,Zn,Nb,Mo,Ta
およびWよりなる群から選択される少なくとも1種の元
素であり、0≦a<1.2,0.1≦w≦1.2,0≦
x≦0.4,0.8≦y≦1.6,0<z≦1.2、
1.7≦(v+w+x+y+z)≦2.7)で表される
合金であり、その合金相の主成分がC14(MgZ
2)およびC15(MgCu2)型ラーベス相である。
The hydrogen storage alloy used in the present invention has the general formula L
nNi x A y (Ln is at least two lanthanides
Species, A is at least one element selected from the group consisting of Mn, Co, Al, Fe, Si, Cr, and Cu, and 4.5 <x + y <5.5, 3.0 <x, 0 <Y <
It is an alloy represented by 2.5). In addition, the general formula Zr 1.2-
a Ti a Mn w V x Ni y M Z (where M is B, Al, S
i, Cr, Fe, Co, Cu, Zn, Nb, Mo, Ta
And at least one element selected from the group consisting of W and 0 ≦ a <1.2, 0.1 ≦ w ≦ 1.2, 0 ≦
x ≦ 0.4, 0.8 ≦ y ≦ 1.6, 0 <z ≦ 1.2,
1.7 ≦ (v + w + x + y + z) ≦ 2.7), in which the main component of the alloy phase is C14 (MgZ
n 2 ) and C15 (MgCu 2 ) type Laves phase.

【0017】合金に、Ln(ただし、Lnはランタノイ
ド元素の少なくとも1種)とNiを主成分とする合金相
を30重量%以下含有させた合金でもよい。
An alloy containing Ln (where Ln is at least one of lanthanoid elements) and an alloy phase containing Ni as the main component in an amount of 30% by weight or less may be used.

【0018】[0018]

【実施例】【Example】

(実施例1)水素吸蔵合金試料は、粒径45μm以下の
一般式ZrTi0.2Mn0.60.1Cr0.3Co0.1Ni1.2
で表される合金粉末を用いた。
(Example 1) A hydrogen storage alloy sample is a ZrTi 0.2 Mn 0.6 V 0.1 Cr 0.3 Co 0.1 Ni 1.2 with a grain size of 45 μm or less.
The alloy powder represented by

【0019】この合金粉末100gに対して1gの金属
コバルト量に相当する水酸化コバルトを含む31重量%
KOH水溶液200mlに所定量の水酸化リチウム・一
水塩を入れてアルカリ処理液とした。
31 wt% containing cobalt hydroxide corresponding to 1 g of metallic cobalt based on 100 g of this alloy powder
A predetermined amount of lithium hydroxide monohydrate was added to 200 ml of an aqueous KOH solution to prepare an alkaline treatment liquid.

【0020】上記アルカリ処理液を耐熱性の樹脂製容器
に入れ、120℃に加熱した。120℃のアルカリ処理
液中に合金粉末を投入し、蓋をして撹拌し、4時間処理
した。処理終了後、冷却、静置して上澄み液を除去後、
水洗、液のpHを下げ、ろ過、乾燥して合金粉末を作成
した。
The alkali treatment liquid was placed in a heat-resistant resin container and heated to 120 ° C. The alloy powder was put into an alkali treatment liquid at 120 ° C., the lid was stirred, and the mixture was treated for 4 hours. After the treatment, after cooling and standing to remove the supernatant,
The alloy powder was prepared by washing with water, lowering the pH of the liquid, filtering and drying.

【0021】今回の処理は120℃で行ったが、処理温
度を高くすることにより処理時間を短縮することができ
る。 (1)単電池試験 各合金試料についてアルカリ蓄電池用負極としての電極
特性、特に、0℃における放電特性を評価するために単
電池試験を行った。
Although the treatment this time was performed at 120 ° C., the treatment time can be shortened by raising the treatment temperature. (1) Single cell test Each alloy sample was subjected to a single cell test in order to evaluate the electrode characteristics as a negative electrode for alkaline storage batteries, particularly the discharge characteristics at 0 ° C.

【0022】上記の各処理条件で処理した合金試料粉末
3gについて結着剤のポリエチレン微粉末0.15gを
十分混合撹拌し、これにカルボキシメチルセルロースの
希釈水溶液(1重量%水溶液)と水を加えてペースト状
にし、平均ポアサイズ150μm、多孔度95%、縦4
0mm、横25mm、厚さ1.0mmの発泡状ニッケル
シートに充填した。これを130℃で真空乾燥し、総圧
100トンでプレス加工して試験用合金電極板を作成し
た。
With respect to 3 g of the alloy sample powder treated under each of the above treatment conditions, 0.15 g of polyethylene fine powder as a binder was thoroughly mixed and stirred, and to this was added a dilute aqueous solution of carboxymethyl cellulose (1% by weight aqueous solution) and water. Made into a paste, average pore size 150μm, porosity 95%, length 4
A foamed nickel sheet having a size of 0 mm, a width of 25 mm and a thickness of 1.0 mm was filled. This was vacuum dried at 130 ° C. and pressed at a total pressure of 100 tons to prepare a test alloy electrode plate.

【0023】これらの試験用合金電極板にニッケル線の
リードを取り付けて負極とし、正極として過剰の容量を
有する焼結式ニッケル電極を、セパレータとしてポリア
ミド不織布をそれぞれ用い、比重1.30の水酸化カリ
ウム水溶液を電解液として試験電池を作成した。
A nickel wire lead was attached to these test alloy electrode plates as a negative electrode, a sintered nickel electrode having an excessive capacity was used as a positive electrode, and a polyamide nonwoven fabric was used as a separator. A test battery was prepared using an aqueous potassium solution as an electrolytic solution.

【0024】まず、25℃において一定電流で充電と放
電サイクルを20〜50サイクル繰り返して試験用合金
電極の活性化を行った。なお、充放電条件は、水素吸蔵
合金1gあたり100mAの電流で5時間充電し、同様
に合金1gあたり50mAの電流で放電し、放電終止電
圧は0.8Vとした。
First, the alloy electrode for test was activated by repeating the charging and discharging cycle at a constant current at 25 ° C. for 20 to 50 cycles. The charging / discharging conditions were as follows: 1 g of hydrogen-absorbing alloy was charged with a current of 100 mA for 5 hours, and similarly, 1 g of alloy was discharged with a current of 50 mA, and the discharge end voltage was 0.8V.

【0025】活性化終了後、25℃において合金1gあ
たり20mAの電流で30時間充電し、合金1gあたり
50mAで放電し、0.8Vまでの放電容量を測定し
た。つぎに、再度、25℃において合金1gあたり20
mAの電流で30時間充電し、充電終了後、0℃におい
て合金1gあたり250mAの電流で放電し、放電容量
を測定した。図1に各試験用合金電極板の25℃、50
mA/合金1gの放電容量と0℃、250mA/合金1
gの放電容量比を示した。また、各試験用合金粉末の飽
和磁化を小型全自動振動試料型磁力計により求め、その
値より試料中の金属ニッケル量として換算した結果を図
2に示した。
After completion of activation, the alloy was charged at a current of 20 mA / g of alloy for 30 hours at 25 ° C., discharged at 50 mA / g of alloy, and the discharge capacity up to 0.8 V was measured. Then, again at 25 ° C., 20 g / g of alloy
After charging for 30 hours at a current of mA, the battery was discharged at a current of 250 mA per 1 g of the alloy at 0 ° C., and the discharge capacity was measured. Fig. 1 shows the test alloy electrode plates at 25 ° C and 50 ° C.
Discharge capacity of mA / alloy 1g and 0 ° C, 250mA / alloy 1
The discharge capacity ratio of g is shown. Further, the saturation magnetization of each test alloy powder was determined by a small fully-automatic vibration sample magnetometer, and the result was converted into the amount of metallic nickel in the sample, and the results are shown in FIG.

【0026】図1および図2中の黒点は水酸化リチウム
・一水塩と水酸化コバルトだけを溶解した水溶液で処理
した場合の結果である。この結果より水酸化リチウム・
一水塩と水酸化コバルトだけを溶解した水溶液では合金
粉末を十分に活性化することはできなかった。合金を処
理するアルカリ溶液は水酸化カリウム、水酸化ナトリウ
ム、水酸化ルビジウム等を溶解させておく必要があるこ
とがわかった。
The black dots in FIGS. 1 and 2 are the results when treated with an aqueous solution in which only lithium hydroxide monohydrate and cobalt hydroxide are dissolved. From this result, lithium hydroxide
The alloy powder could not be sufficiently activated by an aqueous solution in which only monohydrate and cobalt hydroxide were dissolved. It has been found that the alkaline solution for treating the alloy needs to dissolve potassium hydroxide, sodium hydroxide, rubidium hydroxide and the like.

【0027】図1および図2の結果より合金粉末のアル
カリ処理水溶液に水酸化リチウムを溶解することにより
合金表面の磁性を有する金属ニッケルやコバルトの生成
量が増加し、合金電極の高率放電特性が向上することが
わかった。これは水酸化リチウムが存在することにより
合金の溶存酸素、または水酸化コバルトによる酸化溶解
が促進され、合金表面に活性な金属ニッケルやコバルト
が生成されるためであると推測される。しかし、水酸化
リチウム・一水塩の溶解量が100gを越える領域は放
電特性は低下傾向であった。これは合金表面の腐食が大
きくなり過ぎて合金粒子間の接触抵抗が増大したためで
ある。 (2)密閉形電池試験 次に、電池特性を調べるために密閉形電池を試作した。
From the results shown in FIGS. 1 and 2, when lithium hydroxide is dissolved in an alkaline treatment aqueous solution of alloy powder, the amount of metallic nickel or cobalt having magnetism on the alloy surface is increased, and the high rate discharge characteristics of the alloy electrode are obtained. Was found to improve. It is presumed that this is because the presence of lithium hydroxide promotes the dissolved oxygen of the alloy or the oxidative dissolution by cobalt hydroxide, and active metal nickel or cobalt is generated on the alloy surface. However, the discharge characteristics tended to deteriorate in the region where the amount of lithium hydroxide monohydrate dissolved exceeded 100 g. This is because the corrosion of the alloy surface became too large and the contact resistance between the alloy particles increased. (2) Sealed battery test Next, a sealed battery was prototyped in order to investigate battery characteristics.

【0028】上記のアルカリ処理を施した合金試料粉末
にカルボキシメチルセルロースの希水溶液(1重量%水
溶液)と水を加え、混合撹拌してペースト状にし、平均
ポアサイズ150μm、多孔度95%、厚さ1.0mm
の発泡状ニッケルシートに充填した。これを120℃で
乾燥し、ローラプレスで加圧し、さらにその表面にフッ
素樹脂粉末をコーティングして電極を作成した。
A dilute aqueous solution of carboxymethyl cellulose (1% by weight aqueous solution) and water were added to the above-mentioned alkali-treated alloy sample powder, and the mixture was mixed and stirred to form a paste. The average pore size was 150 μm, the porosity was 95%, and the thickness was 1 0.0 mm
Was filled in the foamed nickel sheet. This was dried at 120 ° C., pressed by a roller press, and the surface thereof was coated with fluororesin powder to prepare an electrode.

【0029】これらの電極を幅3.5cm、長さ14c
m、厚さ0.4mmに調整し、リード板を所定の2カ所
に取り付けた。そして、正極(容量1.5Ah)および
セパレータと組み合わせて渦巻状に捲回して4/5Aサ
イズの電池ケースに収納した。これら電池の正極には公
知の発泡式ニッケル電極を用い、セパレータには親水性
を付与したポリプロピレン不織布を用いた。比重1.3
の水酸化カリウム水溶液に水酸化リチウムを30g/l
溶解した電解液を注入後、電池ケースを封口して密閉形
電池を作成した。
These electrodes have a width of 3.5 cm and a length of 14 c.
m, and the thickness was adjusted to 0.4 mm, and lead plates were attached at two predetermined places. Then, the positive electrode (capacity: 1.5 Ah) and the separator were combined and wound into a spiral shape and housed in a 4/5 A size battery case. A known foaming nickel electrode was used for the positive electrode of these batteries, and a polypropylene nonwoven fabric imparted with hydrophilicity was used for the separator. Specific gravity 1.3
30g / l lithium hydroxide to the potassium hydroxide aqueous solution
After injecting the dissolved electrolytic solution, the battery case was sealed to prepare a sealed battery.

【0030】このようにして作成した電池を25℃にお
いて0.1C(10時間率)で150%まで充電し、
0.2Cで終止電圧0.8Vまで放電する充放電を10
サイクル行い、電池化成を行った。電池化成後、20
℃、1Cで120%充電後、0.2Cで0.8Vまで放
電し、0.8Vまでの放電容量を測定した。再度、20
℃、1Cで120%充電し、0℃における1C放電、
0.8Vまでの放電容量を測定した。図3に0℃、1C
における放電容量の20℃、0.2Cにおける放電容量
に対する比率を示した。
The battery thus prepared was charged at 25 ° C. to 150% at 0.1 C (10 hour rate),
Charge and discharge at a final voltage of 0.8 V at 0.2 C
A battery was formed by cycling. 20 after battery formation
After charging 120% at 1C and 0.2C, the battery was discharged to 0.8V at 0.2C, and the discharge capacity up to 0.8V was measured. Again, 20
120% charge at 1 ° C, 1C discharge at 0 ° C,
The discharge capacity up to 0.8 V was measured. 3 ° C and 1C
The ratio of the discharge capacity at 20 ° C. to the discharge capacity at 0.2 C is shown.

【0031】図2と図3より合金中の飽和磁化換算ニッ
ケル量が約2%以上で電池の0℃,1C放電特性が大き
く向上することがわかった。この結果から、本実施例に
よる処理により特性に優れた電極を得ることができるこ
とがわかった。
From FIGS. 2 and 3, it was found that the 0 ° C. and 1 C discharge characteristics of the battery were greatly improved when the saturated magnetization equivalent nickel content in the alloy was about 2% or more. From this result, it was found that an electrode having excellent characteristics can be obtained by the treatment of this example.

【0032】(実施例2)水素吸蔵合金試料は、粒径4
5μm以下の一般式ZrMn0.550.15Cr0.2Co0.1
Ni1.15で表される合金粉末を用い、銅イオンを含むア
ルカリ水溶液で処理を行った。このアルカリ水溶液は合
金粉末100gに対して1gの金属銅量に相当する水酸
化銅を含む31重量%KOH水溶液200mlに所定量
の水酸化リチウム一水塩を入れたものである。
(Example 2) The hydrogen storage alloy sample had a particle size of 4
General formula of 5 μm or less ZrMn 0.55 V 0.15 Cr 0.2 Co 0.1
An alloy powder represented by Ni 1.15 was used and treated with an alkaline aqueous solution containing copper ions. This alkaline aqueous solution is obtained by adding a predetermined amount of lithium hydroxide monohydrate to 200 ml of a 31 wt% KOH aqueous solution containing copper hydroxide corresponding to 1 g of metallic copper per 100 g of alloy powder.

【0033】上記アルカリ処理液を耐熱性の樹脂製容器
に入れ、120℃に加熱した。120℃のアルカリ処理
液中に合金粉末を投入し、蓋をして撹拌し、6時間処理
した。処理終了後、冷却、静置して上澄み液を除去後、
水洗、液のpHを下げ、ろ過、乾燥して合金粉末を得
た。 (1)単電池試験 実施例1と同様に試験用合金電極板を作成し、同様の試
験をおこなった。図4に各試験用合金電極板の25℃、
50mA/合金1gの放電容量と0℃、250mA/合
金1gの放電容量比を示した。また、各試験用合金粉末
の飽和磁化を測定し、その値より試料中の金属ニッケル
としての換算量を求めた。その結果を図5に示した。
The alkali treatment liquid was placed in a heat-resistant resin container and heated to 120 ° C. The alloy powder was put into an alkali treatment liquid at 120 ° C., the lid was covered, and the mixture was stirred and treated for 6 hours. After the treatment, after cooling and standing to remove the supernatant,
The alloy powder was obtained by washing with water, lowering the pH of the liquid, filtering and drying. (1) Single cell test A test alloy electrode plate was prepared in the same manner as in Example 1, and the same test was performed. Fig. 4 shows the temperature of each test alloy electrode plate at 25 ° C.
A discharge capacity ratio of 50 mA / alloy 1 g and a discharge capacity ratio of 0 ° C. and 250 mA / alloy 1 g are shown. Further, the saturation magnetization of each test alloy powder was measured, and the converted amount as metallic nickel in the sample was obtained from the value. The results are shown in FIG.

【0034】金属銅は、実施例1の金属コバルトに比べ
触媒としての活性が低いことから図4の結果は図1に比
べ低い値を示した。また、図5の合金中の飽和磁化換算
ニッケル量も金属銅が磁性を有していないことから図2
に比べ低い値を示した。しかし、合金粉末を処理する銅
イオンを溶解したアルカリ水溶液に、さらに水酸化リチ
ウム・一水塩を溶解することで合金電極の放電特性を向
上させることができた。
Since the activity of metallic copper as a catalyst is lower than that of metallic cobalt of Example 1, the result of FIG. 4 shows a lower value than that of FIG. In addition, the amount of nickel equivalent to the saturation magnetization in the alloy of FIG. 5 is also as shown in FIG.
Showed a lower value than However, the discharge characteristics of the alloy electrode could be improved by further dissolving lithium hydroxide / monohydrate in an alkaline aqueous solution in which copper ions were treated to treat the alloy powder.

【0035】銅の場合はアルカリ処理により生成した合
金表面の金属ニッケルによる活性化と合金の腐食により
還元された金属銅による各合金粒子間の接触抵抗が減少
したことにより放電特性が向上した。
In the case of copper, the discharge characteristics were improved because the activation of the surface of the alloy produced by the alkali treatment with metallic nickel and the contact resistance between the alloy particles due to the metallic copper reduced by the corrosion of the alloy decreased.

【0036】水酸化リチウム・一水塩の溶解量が100
gを越える領域では合金電極の放電特性および飽和磁化
換算ニッケル量も向上しなかった。 (2)密閉形電池試験 次に、電池特性を調べるために密閉形電池を試作した。
The amount of lithium hydroxide monohydrate dissolved is 100
In the region exceeding g, neither the discharge characteristics of the alloy electrode nor the amount of nickel equivalent to saturation magnetization were improved. (2) Sealed battery test Next, a sealed battery was prototyped in order to investigate battery characteristics.

【0037】上記のアルカリ処理を施した合金試料粉末
を用いて実施例1と同様に密閉型電池を作成した。
A sealed battery was prepared in the same manner as in Example 1 using the alloy sample powder subjected to the above alkali treatment.

【0038】このようにして作成した電池を25℃にお
いて0.1C(10時間率)で150%まで充電し、
0.2Cで終止電圧0.8Vまで放電する充放電を10
サイクル行い、電池化成を行った。電池化成後、20
℃、1Cで120%充電後、0.2Cで0.8Vまで放
電し、0.8Vまでの放電容量を測定した。再度、20
℃、1Cで120%充電し、0℃における1C放電、
0.8Vまでの放電容量を測定した。図6に0℃、1C
における放電容量の20℃、0.2Cにおける放電容量
に対する比率を示した。
The battery thus produced was charged at 25 ° C. to 150% at 0.1 C (10 hour rate),
Charge and discharge at a final voltage of 0.8 V at 0.2 C
A battery was formed by cycling. 20 after battery formation
After charging 120% at 1C and 0.2C, the battery was discharged to 0.8V at 0.2C, and the discharge capacity up to 0.8V was measured. Again, 20
120% charge at 1 ° C, 1C discharge at 0 ° C,
The discharge capacity up to 0.8 V was measured. 6 ° C and 1C
The ratio of the discharge capacity at 20 ° C. to the discharge capacity at 0.2 C is shown.

【0039】図6の結果より水酸化リチウム・一水塩と
水酸化銅を溶解したアルカリ処理水溶液で合金粉末を処
理することにより0℃,1C放電特性が向上することが
わかった。この結果から、本実施例による処理により特
性に優れた電極を得ることができる。
From the results shown in FIG. 6, it was found that by treating the alloy powder with an alkaline treatment aqueous solution in which lithium hydroxide / monohydrate and copper hydroxide were dissolved, the 0 ° C., 1 C discharge characteristics were improved. From this result, an electrode having excellent characteristics can be obtained by the treatment according to this embodiment.

【0040】(実施例3)水素吸蔵合金試料は、粒径7
5μm以下の一般式MmNi3.6Co0.65Mn0.4Al
0.2Cr0.15で表される合金粉末を用いた。
(Example 3) The hydrogen storage alloy sample had a particle size of 7
General formula of 5 μm or less MmNi 3.6 Co 0.65 Mn 0.4 Al
An alloy powder represented by 0.2 Cr 0.15 was used.

【0041】上記の合金粉末にポリエチレン微粉末5重
量%を添加し、平均ポアサイズ150μm、多孔度95
%、縦40mm、横25mm、厚さ1.0mmの発泡状
ニッケルシートに充填した。このシートを総圧100ト
ンでプレスした後真空乾燥機中において130℃で熱処
理して合金2g含む電極を作成した。
5% by weight of polyethylene fine powder was added to the above alloy powder to obtain an average pore size of 150 μm and a porosity of 95.
%, 40 mm in length, 25 mm in width, and 1.0 mm in thickness. This sheet was pressed at a total pressure of 100 tons and then heat-treated at 130 ° C. in a vacuum dryer to prepare an electrode containing 2 g of the alloy.

【0042】この電極を合金に対して0.6重量%の金
属コバルト量に相当する水酸化コバルトを含む31重量
%KOH水溶液200mlに所定量の水酸化リチウム・
一水塩を入れた水溶液中に浸漬してアルカリ処理を行っ
た。アルカリ処理は100℃で1時間行った。処理後、
アルカリ処理液より取り出し、水洗、乾燥して各試験用
合金電極板を作成した。 (1)単電池試験 実施例1と同様の単電池試験を行った。図7に各試験用
合金電極板の25℃、50mA/合金1gの放電容量と
0℃、250mA/合金1gの放電容量比を示した。ま
た、各試験用合金電極より合金粉末を取り出し、その飽
和磁化を測定し、その値より試料中の金属ニッケルとし
ての換算量を求めた。その結果を図8に示した。
This electrode was mixed with 200 ml of a 31% by weight KOH aqueous solution containing cobalt hydroxide corresponding to the amount of metallic cobalt of 0.6% by weight based on the alloy.
The sample was immersed in an aqueous solution containing monohydrate to perform alkali treatment. The alkali treatment was carried out at 100 ° C. for 1 hour. After treatment,
It was taken out from the alkaline treatment liquid, washed with water, and dried to prepare alloy electrode plates for each test. (1) Single Cell Test The same single cell test as in Example 1 was performed. FIG. 7 shows the discharge capacity ratio of each test alloy electrode plate at 25 ° C., 50 mA / g alloy and 0 ° C., 250 mA / g alloy. Further, alloy powder was taken out from each test alloy electrode, its saturation magnetization was measured, and the converted amount as metallic nickel in the sample was obtained from the value. The result is shown in FIG.

【0043】図7の結果より水酸化リチウム・一水塩と
水酸化コバルトを溶解したアルカリ水溶液でよりするこ
とにより合金電極の放電特性が向上することがわかっ
た。図8の結果で合金中の飽和磁化換算ニッケル量が図
2に比べ少ないのは、極板状態でアルカリ水溶液での活
性化処理を行っているために極板内部の合金腐食がほと
んど起こっていないためである。
From the results shown in FIG. 7, it was found that the discharge characteristics of the alloy electrode were improved by using an alkaline aqueous solution in which lithium hydroxide monohydrate and cobalt hydroxide were dissolved. According to the result of FIG. 8, the amount of nickel equivalent to the saturation magnetization in the alloy is smaller than that of FIG. 2 because the activation treatment with the alkaline aqueous solution is performed in the electrode plate state, so that the alloy corrosion inside the electrode plate hardly occurs. This is because.

【0044】極板による活性化は粉末状態での活性化処
理に比べ特性は低いが、過度の処理条件による特性の低
下が少ない。 (2)密閉形電池試験 次に、電池特性を調べるために密閉形電池を試作した。
The activation by the electrode plate has lower characteristics than the activation treatment in the powder state, but the deterioration of the characteristics due to excessive treatment conditions is small. (2) Sealed battery test Next, a sealed battery was prototyped in order to investigate battery characteristics.

【0045】上記の合金試料粉末にカルボキシメチルセ
ルロースの希水溶液を加え、混合撹拌してペースト状に
し、平均ポアサイズ150μm、多孔度95%、厚さ
1.0mmの発泡状ニッケルシートに充填した。これを
120℃で乾燥し、ローラプレスで加圧して電極を作成
した。この電極板を上記電極板処理と同様の処理を行っ
た。電極板処理後、電極板表面にフッ素樹脂粉末をコー
ティングした。
A dilute aqueous solution of carboxymethyl cellulose was added to the above alloy sample powder, mixed and stirred to form a paste, and filled into a foamed nickel sheet having an average pore size of 150 μm, a porosity of 95% and a thickness of 1.0 mm. This was dried at 120 ° C. and pressed with a roller press to form an electrode. This electrode plate was treated in the same manner as the above electrode plate treatment. After the electrode plate treatment, the surface of the electrode plate was coated with fluororesin powder.

【0046】これらの電極を用いて実施例1と同様の密
閉型電池を作成した。このようにして作成した電池を2
5℃において0.1C(10時間率)で150%まで充
電し、0.2Cで終止電圧0.8Vまで放電する充放電
を10サイクル行い、電池化成を行った。電池化成後、
20℃、1Cで120%充電後、0.2Cで0.8Vま
で放電し、0.8Vまでの放電容量を測定した。再度、
20℃、1Cで120%充電し、0℃における1C放
電、0.8Vまでの放電容量を測定した。図9に0℃、
1Cにおける放電容量の20℃、0.2Cにおける放電
容量に対する比率を示した。図9の結果より水酸化リチ
ウム・一水塩と水酸化コバルトを溶解したアルカリ処理
水溶液で合金電極板を処理することにより0℃、1C放
電特性が向上することがわかった。この結果から、本実
施例による処理により特性に優れた電極を得ることがで
きる。
A sealed battery similar to that of Example 1 was prepared using these electrodes. The battery created in this way is
A battery was formed by performing 10 cycles of charging and discharging at 5 ° C. to 150% at 0.1 C (10 hour rate) and discharging to a final voltage of 0.8 V at 0.2 C. After forming the battery,
After charging 120% at 20 ° C. and 1 C, it was discharged to 0.8 V at 0.2 C, and the discharge capacity up to 0.8 V was measured. again,
After charging 120% at 20 ° C. and 1 C, 1 C discharge at 0 ° C. and discharge capacity up to 0.8 V were measured. In Figure 9, 0 ℃,
The ratio of the discharge capacity at 1C to the discharge capacity at 20 ° C and 0.2C is shown. From the results shown in FIG. 9, it was found that by treating the alloy electrode plate with an alkaline treatment aqueous solution in which lithium hydroxide / monohydrate and cobalt hydroxide were dissolved, 0 ° C. and 1 C discharge characteristics were improved. From this result, an electrode having excellent characteristics can be obtained by the treatment according to this embodiment.

【0047】(実施例4)水素吸蔵合金試料は、粒径7
5μm以下の一般式MmNi3.2Co0.85Mn0.6Al
0.2Cr0.15で表される合金粉末を用いた。
Example 4 The hydrogen storage alloy sample had a particle size of 7
General formula of 5 μm or less MmNi 3.2 Co 0.85 Mn 0.6 Al
An alloy powder represented by 0.2 Cr 0.15 was used.

【0048】上記の合金粉末を用いて実施例3と同様の
方法で合金2gを含む電極板を作成した。この試験電極
を合金に対して0.6重量%の金属銅量に相当する水酸
化銅を含む31重量%KOH水溶液200mlに所定量
の水酸化リチウム・一水塩を入れた水溶液中に浸漬して
アルカリ処理を行った。アルカリ処理は100℃で1時
間行った。処理後、アルカリ処理液より取り出し、水
洗、乾燥して各試験用合金電極板を作成した。 (1)単電池試験 実施例1と同様の単電池試験を行った。図10に各試験
用合金電極板の25℃、50mA/合金1gの放電容量
と0℃、250mA/合金1gの放電容量比を示した。
また、各試験用合金電極より合金粉末を取り出し、その
飽和磁化を測定し、その値より試料中の金属ニッケルと
しての換算量を求めた。その結果を図11に示した。
An electrode plate containing 2 g of alloy was prepared in the same manner as in Example 3 using the above alloy powder. This test electrode was dipped in an aqueous solution containing a predetermined amount of lithium hydroxide / monohydrate in 200 ml of a 31% by weight KOH aqueous solution containing copper hydroxide corresponding to the amount of metallic copper of 0.6% by weight with respect to the alloy. Alkali treatment was performed. The alkali treatment was carried out at 100 ° C. for 1 hour. After the treatment, it was taken out from the alkaline treatment liquid, washed with water and dried to prepare each test alloy electrode plate. (1) Single Cell Test The same single cell test as in Example 1 was performed. FIG. 10 shows the discharge capacity ratio of each test alloy electrode plate at 25 ° C., 50 mA / g of alloy 1 g and the discharge capacity ratio of 0 ° C., 250 mA / g of alloy 1 g.
Further, alloy powder was taken out from each test alloy electrode, its saturation magnetization was measured, and the converted amount as metallic nickel in the sample was obtained from the value. The results are shown in FIG.

【0049】図10の結果より水酸化リチウム・一水塩
と水酸化銅を溶解したアルカリ水溶液で合金電極板を活
性化することにより合金電極の放電特性は向上した。 (2)密閉形電池試験 次に、電池特性を調べるために密閉形電池を試作した。
From the results shown in FIG. 10, the discharge characteristics of the alloy electrode were improved by activating the alloy electrode plate with an alkaline aqueous solution in which lithium hydroxide monohydrate and copper hydroxide were dissolved. (2) Sealed battery test Next, a sealed battery was prototyped in order to investigate battery characteristics.

【0050】上記の合金試料粉末にカルボキシメチルセ
ルロースの希水溶液を加え、混合撹拌してペースト状に
し、平均ポアサイズ150μm、多孔度95%、厚さ
1.0mmの発泡状ニッケルシートに充填した。これを
120℃で乾燥し、ローラプレスで加圧して電極を作成
した。この電極板を上記電極板処理と同様の処理を行っ
た。電極板処理後、電極板表面にフッ素樹脂粉末をコー
ティングした。
A dilute aqueous solution of carboxymethyl cellulose was added to the above alloy sample powder, mixed and stirred to form a paste, and filled into a foamed nickel sheet having an average pore size of 150 μm, a porosity of 95% and a thickness of 1.0 mm. This was dried at 120 ° C. and pressed with a roller press to form an electrode. This electrode plate was treated in the same manner as the above electrode plate treatment. After the electrode plate treatment, the surface of the electrode plate was coated with fluororesin powder.

【0051】これらの電極を用いて実施例1と同様の密
閉型電池を作成した。このようにして作成した電池を2
5℃において0.1C(10時間率)で150%まで充
電し、0.2Cで終止電圧0.8Vまで放電する充放電
を10サイクル行い、電池化成を行った。電池化成後、
20℃、1Cで120%充電後、0.2Cで0.8Vま
で放電し、0.8Vまでの放電容量を測定した。再度、
20℃、1Cで120%充電し、0℃における1C放
電、0.8Vまでの放電容量を測定した。図12に0
℃、1Cにおける放電容量の20℃、0.2Cにおける
放電容量に対する比率を示した。図12の結果より水酸
化リチウム・一水塩と水酸化銅を溶解したアルカリ処理
水溶液で合金電極板を処理することにより0℃、1C放
電特性が向上することがわかった。この結果から、本実
施例による処理により特性に優れた電極を得ることがで
きる。
A sealed battery similar to that of Example 1 was prepared using these electrodes. The battery created in this way is
A battery was formed by performing 10 cycles of charging and discharging at 5 ° C. to 150% at 0.1 C (10 hour rate) and discharging to a final voltage of 0.8 V at 0.2 C. After forming the battery,
After charging 120% at 20 ° C. and 1 C, it was discharged to 0.8 V at 0.2 C, and the discharge capacity up to 0.8 V was measured. again,
After charging 120% at 20 ° C. and 1 C, 1 C discharge at 0 ° C. and discharge capacity up to 0.8 V were measured. 0 in FIG.
The ratio of the discharge capacity at 1 ° C. to 20 ° C. and 0.2 C is shown. From the results shown in FIG. 12, it was found that by treating the alloy electrode plate with an alkaline treatment aqueous solution in which lithium hydroxide monohydrate and copper hydroxide were dissolved, 0 ° C. and 1 C discharge characteristics were improved. From this result, an electrode having excellent characteristics can be obtained by the treatment according to this embodiment.

【0052】以上、本実施例ではアルカリ水溶液として
水酸化カリウムを溶解したものについて述べたが、水酸
化ナトリウム、水酸化ルビジウムを溶解したアルカリ水
溶液についても同様の効果を得ることができる。
In this embodiment, the alkaline aqueous solution in which potassium hydroxide is dissolved has been described above, but the same effect can be obtained also in the alkaline aqueous solution in which sodium hydroxide and rubidium hydroxide are dissolved.

【0053】さらに、アルカリ処理した合金粉末を用い
て電極を形成し、これをアルカリ処理しても同様の効果
を得ることができる。
Further, the same effect can be obtained by forming an electrode using an alkali-treated alloy powder and subjecting it to alkali treatment.

【0054】[0054]

【発明の効果】本発明によれば、アルカリ処理を高温で
できるため、作業高率が向上し、また低温における放電
容量の電極特性に優れた水素吸蔵合金電極を得ることが
できる。
According to the present invention, since the alkali treatment can be performed at a high temperature, it is possible to obtain a hydrogen storage alloy electrode having an improved working efficiency and excellent electrode characteristics of discharge capacity at a low temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による水酸化リチウム・一水
塩の溶解量に対する低温における高率放電容量比を示す
FIG. 1 is a graph showing a high rate discharge capacity ratio at a low temperature with respect to a dissolved amount of lithium hydroxide / monohydrate according to Example 1 of the present invention.

【図2】本発明の実施例1による水酸化リチウム・一水
塩の溶解量に対する電極中の金属ニッケルの重量比を示
す図
FIG. 2 is a graph showing the weight ratio of metallic nickel in the electrode to the dissolved amount of lithium hydroxide monohydrate according to Example 1 of the present invention.

【図3】本発明の実施例1による水酸化リチウム・一水
塩の溶解量に対する低温における放電容量比を示す図
FIG. 3 is a graph showing the discharge capacity ratio at low temperature to the amount of lithium hydroxide monohydrate dissolved according to Example 1 of the present invention.

【図4】本発明の実施例2による水酸化リチウム・一水
塩の溶解量に対する低温における高率放電容量比を示す
FIG. 4 is a diagram showing a high rate discharge capacity ratio at a low temperature with respect to a dissolved amount of lithium hydroxide / monohydrate according to Example 2 of the present invention.

【図5】本発明の実施例2による水酸化リチウム・一水
塩の溶解量に対する電極中の金属ニッケルの重量比を示
す図
FIG. 5 is a diagram showing the weight ratio of metallic nickel in the electrode to the amount of dissolved lithium hydroxide monohydrate according to Example 2 of the present invention.

【図6】本発明の実施例2による水酸化リチウム・一水
塩の溶解量に対する低温における放電容量比を示す図
FIG. 6 is a graph showing a discharge capacity ratio at a low temperature with respect to a dissolution amount of lithium hydroxide / monohydrate according to Example 2 of the present invention.

【図7】本発明の実施例3による水酸化リチウム・一水
塩の溶解量に対する低温における高率放電容量比を示す
FIG. 7 is a graph showing a high rate discharge capacity ratio at low temperature with respect to a dissolution amount of lithium hydroxide / monohydrate according to Example 3 of the present invention.

【図8】本発明の実施例3による水酸化リチウム・一水
塩の溶解量に対する電極中の金属ニッケルの重量比を示
す図
FIG. 8 is a graph showing the weight ratio of metallic nickel in the electrode to the dissolved amount of lithium hydroxide monohydrate according to Example 3 of the present invention.

【図9】本発明の実施例3による水酸化リチウム・一水
塩の溶解量に対する低温における放電容量比を示す図
FIG. 9 is a graph showing a discharge capacity ratio at low temperature with respect to a dissolution amount of lithium hydroxide / monohydrate according to Example 3 of the present invention.

【図10】本発明の実施例4による水酸化リチウム・一
水塩の溶解量に対する低温における高率放電容量比を示
す図
FIG. 10 is a diagram showing a high rate discharge capacity ratio at low temperature to the amount of dissolved lithium hydroxide / monohydrate according to Example 4 of the present invention.

【図11】本発明の実施例4による水酸化リチウム・一
水塩の溶解量に対する電極中の金属ニッケルの重量比を
示す図
FIG. 11 is a diagram showing the weight ratio of metallic nickel in the electrode to the dissolved amount of lithium hydroxide monohydrate according to Example 4 of the present invention.

【図12】本発明の実施例4による水酸化リチウム・一
水塩の溶解量に対する低温における放電容量比を示す図
FIG. 12 is a graph showing the discharge capacity ratio at low temperature to the amount of dissolved lithium hydroxide monohydrate according to Example 4 of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末を、水酸化リチウム・
一水塩を5〜150g/l含み、かつコバルトイオンを
存在させた温度80〜150℃のアルカリ溶液中に浸漬
する工程と、前記の処理を施した水素吸蔵合金粉末を用
いて電極を形成する工程を有する水素吸蔵合金電極の製
造方法。
1. A hydrogen storage alloy powder is prepared from lithium hydroxide.
An electrode is formed using a step of immersing in an alkaline solution containing 5 to 150 g / l of monohydrate and containing cobalt ions at a temperature of 80 to 150 ° C., and the hydrogen storage alloy powder subjected to the above treatment. A method of manufacturing a hydrogen storage alloy electrode having a step.
【請求項2】 水素吸蔵合金粉末を用いて形成した電極
を、水酸化リチウム・一水塩を5〜150g/l含み、
かつコバルトイオンを存在させた温度80〜150℃の
アルカリ溶液中に浸漬する工程を有する水素吸蔵合金電
極の製造方法。
2. An electrode formed using a hydrogen storage alloy powder, containing 5-150 g / l of lithium hydroxide monohydrate,
A method for producing a hydrogen storage alloy electrode, which comprises a step of immersing the electrode in an alkaline solution in which cobalt ions are present and at a temperature of 80 to 150 ° C.
【請求項3】 水素吸蔵合金に対して10重量%以下の
金属コバルトに相当するコバルトイオンを用いて前記の
処理がなされる請求項1または2記載の水素吸蔵合金電
極の製造方法。
3. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the treatment is carried out using cobalt ions corresponding to 10% by weight or less of metallic hydrogen cobalt with respect to the hydrogen storage alloy.
【請求項4】 水素吸蔵合金粉末を、水酸化リチウム・
一水塩を5〜150g/l含み、かつ銅イオンを存在さ
せた温度80〜150℃のアルカリ溶液中に浸漬する工
程と、前記の処理を施した水素吸蔵合金粉末を用いて電
極を形成する工程を有する水素吸蔵合金電極の製造方
法。
4. A hydrogen storage alloy powder is prepared from lithium hydroxide.
An electrode is formed using a step of immersing in an alkaline solution containing 5-150 g / l of monohydrate and containing copper ions at a temperature of 80 to 150 ° C., and the hydrogen storage alloy powder that has been subjected to the above treatment. A method of manufacturing a hydrogen storage alloy electrode having a step.
【請求項5】 水素吸蔵合金粉末を用いて形成した電極
を、水酸化リチウム・一水塩を5〜150g/l含み、
かつ銅イオンを存在させた温度80〜150℃のアルカ
リ溶液中に浸漬する工程を有する水素吸蔵合金電極の製
造方法。
5. An electrode formed using a hydrogen storage alloy powder, containing 5-150 g / l of lithium hydroxide monohydrate,
And a method for producing a hydrogen storage alloy electrode, which comprises a step of immersing the electrode in an alkaline solution containing copper ions at a temperature of 80 to 150 ° C.
【請求項6】 水素吸蔵合金に対して10重量%以下の
金属銅に相当する銅イオンを用いて前記処理がなされる
請求項4または5記載の水素吸蔵合金電極の製造方法。
6. The method for producing a hydrogen storage alloy electrode according to claim 4, wherein the treatment is carried out using copper ions corresponding to 10% by weight or less of metallic copper with respect to the hydrogen storage alloy.
【請求項7】 アルカリ処理溶液が水酸化カリウム、水
酸化ナトリウムおよび水酸化ルビジウムのうちの少なく
とも1つを溶解したものである請求項1〜6記載の水素
吸蔵合金電極の製造方法。
7. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the alkaline treatment solution is a solution in which at least one of potassium hydroxide, sodium hydroxide and rubidium hydroxide is dissolved.
JP10671996A 1996-04-26 1996-04-26 Manufacturing method of hydrogen storage alloy electrode Expired - Lifetime JP3387314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10671996A JP3387314B2 (en) 1996-04-26 1996-04-26 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10671996A JP3387314B2 (en) 1996-04-26 1996-04-26 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH09293501A true JPH09293501A (en) 1997-11-11
JP3387314B2 JP3387314B2 (en) 2003-03-17

Family

ID=14440771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10671996A Expired - Lifetime JP3387314B2 (en) 1996-04-26 1996-04-26 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3387314B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
US6440292B2 (en) * 2000-03-17 2002-08-27 Tokyo Institute Of Technology Method for forming a thin film
JP2003526508A (en) * 2000-03-13 2003-09-09 オヴォニック バッテリー カンパニー インコーポレイテッド Finely divided metal catalyst and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2003526508A (en) * 2000-03-13 2003-09-09 オヴォニック バッテリー カンパニー インコーポレイテッド Finely divided metal catalyst and method for producing the same
JP5010791B2 (en) * 2000-03-13 2012-08-29 オヴォニック バッテリー カンパニー インコーポレイテッド Finely divided metal catalyst and method for producing the same
US6440292B2 (en) * 2000-03-17 2002-08-27 Tokyo Institute Of Technology Method for forming a thin film

Also Published As

Publication number Publication date
JP3387314B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
JP5119577B2 (en) Nickel metal hydride battery
US5879429A (en) Method for producing hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3189361B2 (en) Alkaline storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH08222210A (en) Metal oxide/hydrogen storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2003173772A (en) Hydrogen storage alloy powder for electrode and its manufacturing method
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3322449B2 (en) Method for producing metal hydride electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH09231969A (en) Nickel-hydrogen storage battery
JPS63175342A (en) Manufacture of hydrogen absorption electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

EXPY Cancellation because of completion of term