JP2009059598A - Alkaline accumulator - Google Patents

Alkaline accumulator Download PDF

Info

Publication number
JP2009059598A
JP2009059598A JP2007226167A JP2007226167A JP2009059598A JP 2009059598 A JP2009059598 A JP 2009059598A JP 2007226167 A JP2007226167 A JP 2007226167A JP 2007226167 A JP2007226167 A JP 2007226167A JP 2009059598 A JP2009059598 A JP 2009059598A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
alloy electrode
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007226167A
Other languages
Japanese (ja)
Other versions
JP5127369B2 (en
Inventor
Shuhei Yoshida
周平 吉田
Kazuaki Tamura
和明 田村
Yoshinobu Katayama
吉宣 片山
Teruhito Nagae
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007226167A priority Critical patent/JP5127369B2/en
Publication of JP2009059598A publication Critical patent/JP2009059598A/en
Application granted granted Critical
Publication of JP5127369B2 publication Critical patent/JP5127369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode in which adhesive strength between a core body and negative electrode active materials (hydrogen storage alloy powders), and adhesive strength between the negative electrode active materials are improved. <P>SOLUTION: This alkaline storage battery is equipped with a spirally wound electrode group in which a separator 13 is interposed between the hydrogen storage alloy electrode 11 wherein the hydrogen storage alloy is made as the negative electrode active material and a nickel electrode 12 wherein nickel hydroxide is made as the main positive electrode active material together with an alkaline electrolytic solution in an armoring can 17. Then, the hydrogen storage alloy electrode 11 contains a non-water soluble polymer and an anion based water-soluble polymer as a binder, and as for the anion based water-soluble polymer, the content existing on the surface part of the hydrogen storage alloy electrode 11 is arranged to be more than that existing in the interior of the hydrogen storage alloy electrode 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、HEV(ハイブリッド車)やPEV(電気自動車)等の大電流放電を要する用途に適したアルカリ蓄電池に係わり、特に、水素吸蔵合金を負極活物質とする水素吸蔵合金電極と水酸化ニッケルを主正極活物質とするニッケル電極との間にセパレータを介在させて渦巻状に巻回させた電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery suitable for applications requiring high current discharge such as HEV (hybrid vehicle) and PEV (electric vehicle), and in particular, a hydrogen storage alloy electrode and nickel hydroxide using a hydrogen storage alloy as a negative electrode active material. The present invention relates to an alkaline storage battery in which an electrode group wound in a spiral shape with a separator interposed between a nickel electrode having a main positive electrode active material together with an alkaline electrolyte in an outer can.

近年、二次電池(蓄電池)の用途が拡大して、携帯電話、ノートパソコン、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(PEV)など広範囲にわたって用いられるようになった。このうち、特に、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(PEV)などの高出力が求められる機器の電源用としては、従来の範囲を遥かに超える高出力が求められているとともに、更なる高信頼性も求められるようになった。   In recent years, the use of secondary batteries (storage batteries) has expanded, and has come to be used in a wide range such as mobile phones, notebook computers, electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (PEV). Among these, especially for power supplies for devices that require high output such as electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (PEV), high output far exceeding the conventional range is required. At the same time, higher reliability has been demanded.

ところで、この種の高出力が求められる電源用にニッケル−水素蓄電池などのアルカリ蓄電池が用いられるが、このようなアルカリ蓄電池を高出力化する手法が、例えば、特許文献1(特開2000−82491号公報)にて提案されるようになった。ここで、特許文献1にて提案された高出力化手法においては、電極群を構成している正・負極の対向面積を増大化させることが提案されている。この場合、電極の厚みをできる限り薄くして、電極群を構成する際に、幾重にも捲回することで正・負極の対向面積を増大化させるようにしている。   Incidentally, an alkaline storage battery such as a nickel-hydrogen storage battery is used for a power source that requires this type of high output. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-82491) discloses a technique for increasing the output of such an alkaline storage battery. Issue). Here, in the high output method proposed in Patent Document 1, it is proposed to increase the facing area between the positive and negative electrodes constituting the electrode group. In this case, the electrode is made as thin as possible to increase the opposing area of the positive and negative electrodes by winding the electrode group several times.

しかしながら、電極の厚みを薄くして巻回後の電極群における電極の層数を多くすると、電極の強度低下を招いて巻回時にワレや亀裂などが発生するようになる。なお、電極の強度向上の手法として電極に添加する結着剤の含有率を増大させることが、特許文献2(特開昭61−66366号公報)等が提案されている。ところが、この特許文献2にて提案された手法においては、結着剤の含有率が高いため、反応性が低下して高出力が得られないこととなる。このように、電極の強度向上と高出力を両立させることは困難なこととなる。
特開2000−82491号公報 特開昭61−66366号公報
However, if the thickness of the electrode is reduced and the number of electrode layers in the electrode group after winding is increased, the strength of the electrode is reduced, and cracks and cracks occur during winding. Patent Document 2 (Japanese Patent Laid-Open No. 61-66366) proposes increasing the content of the binder added to the electrode as a technique for improving the strength of the electrode. However, in the technique proposed in Patent Document 2, since the content of the binder is high, the reactivity is lowered and a high output cannot be obtained. Thus, it is difficult to achieve both improvement in electrode strength and high output.
JP 2000-82491 A JP-A 61-66366

ところで、電極群の外径や高さが一定であると仮定すると、正・負極の対向面積を増大させるためには、電極の強度低下を招来しない程度に芯体の厚みを低減させたり、あるいはセパレータの目付を低減させる必要がある。ところが、大電流用途における電流密度の均一化の必要性の観点に基づくと、芯体の厚みを一定値以上に確保する必要がある。また、短絡防止の観点においては、セパレータの目付を一定値以上に確保する必要がある。このため、電極群における正・負極の対向面積を増大させるためには、必然的に電極群の構成圧を増加させることが必要となる。   By the way, assuming that the outer diameter and height of the electrode group are constant, in order to increase the opposing area of the positive and negative electrodes, the thickness of the core is reduced to such an extent that the strength of the electrode is not reduced, or It is necessary to reduce the basis weight of the separator. However, based on the viewpoint of the necessity of equalizing the current density in a large current application, it is necessary to secure the thickness of the core body to a certain value or more. Further, from the viewpoint of preventing a short circuit, it is necessary to secure the basis weight of the separator above a certain value. For this reason, in order to increase the opposing area of the positive and negative electrodes in the electrode group, it is inevitably necessary to increase the constituent pressure of the electrode group.

しかしながら、電極群の構成圧を増加させる工程においては、負極の表面に存在する水素吸蔵合金粉末とセパレータとの間に摩擦が生じて、水素吸蔵合金粉末が負極から脱落するようになる。ここで、水素吸蔵合金粉末が負極から脱落すると、脱落した水素吸蔵合金粉末を介して正・負極間をショートさせるという問題を生じる。また、ショートを発生させるまでに至らずとも、当該脱落した水素吸蔵合金粉末により電池電圧のバラツキを発生させるようになる。  However, in the step of increasing the constituent pressure of the electrode group, friction occurs between the hydrogen storage alloy powder existing on the surface of the negative electrode and the separator, and the hydrogen storage alloy powder falls off the negative electrode. Here, when the hydrogen storage alloy powder falls off the negative electrode, there arises a problem that the positive and negative electrodes are short-circuited through the dropped hydrogen storage alloy powder. Further, even if the short circuit is not generated, the dropped hydrogen storage alloy powder causes the battery voltage to vary.

ところで、特に、HEVやPEVなどの高出力が求められる電源用途などのアルカリ蓄電池を複数個を直列に接続して構成される組電池に用いられる場合、各電池の電池電圧のバラツキにより充放電時の電池容量の差が生じるようになって、組電池としての寿命が更に短くなるという問題が生じるようになる。このため、従来の範囲を越える高出力が求められる電源用途などのアルカリ蓄電池に用いられる負極においては、芯体と負極活物質(水素吸蔵合金粉末)との密着強度だけではなく、負極活物質問の密着強度の向上が必要となる。   By the way, especially when used for an assembled battery configured by connecting a plurality of alkaline storage batteries such as HEV and PEV, which are required for high output such as power supply, in series, the battery voltage varies depending on the battery. As a result, a difference in battery capacity is caused, resulting in a problem that the lifetime of the assembled battery is further shortened. For this reason, in negative electrodes used in alkaline storage batteries such as power supplies that require high output exceeding the conventional range, not only the adhesion strength between the core and the negative electrode active material (hydrogen storage alloy powder), but also the negative electrode active material It is necessary to improve the adhesion strength.

本発明は上記知見に基づいてなされたものであって、芯体と負極活物質(水素吸蔵合金粉末)との密着強度、および負極活物質問の密着強度が向上した水素吸蔵合金電極を提供するとともに、このような水素吸蔵合金電極を用いて、従来の範囲を越える高出力特性を有するアルカリ蓄電池を提供することを目的とするものである。   The present invention has been made based on the above findings, and provides a hydrogen storage alloy electrode in which the adhesion strength between the core and the negative electrode active material (hydrogen storage alloy powder) and the adhesion strength of the negative electrode active material question are improved. In addition, an object of the present invention is to provide an alkaline storage battery having such a high output characteristic that exceeds the conventional range using such a hydrogen storage alloy electrode.

本発明は水素吸蔵合金を負極活物質とする水素吸蔵合金電極と水酸化ニッケルを主正極活物質とするニッケル電極との間にセパレータを介在させて渦巻状に巻回させた電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池に関する。そして、上記目的を達成するため、水素吸蔵合金電極は結着剤として非水溶性高分子とアニオン系水溶性高分子とを含有しているとともに、アニオン系水溶性高分子は水素吸蔵合金電極の内部に存在する含有量よりも水素吸蔵合金電極の表面部に存在する含有量の方を多くしたことを特徴とする。   In the present invention, a group of electrodes wound in a spiral shape with a separator interposed between a hydrogen storage alloy electrode having a hydrogen storage alloy as a negative electrode active material and a nickel electrode having nickel hydroxide as a main positive electrode active material are subjected to alkaline electrolysis. The present invention relates to an alkaline storage battery provided in an outer can together with a liquid. In order to achieve the above object, the hydrogen storage alloy electrode contains a water-insoluble polymer and an anionic water-soluble polymer as a binder, and the anionic water-soluble polymer is a component of the hydrogen storage alloy electrode. The present invention is characterized in that the content present on the surface portion of the hydrogen storage alloy electrode is made larger than the content present inside.

ここで、結着剤として非水溶性高分子(例えば、SBR)とアニオン系水溶性高分子(例えば、CMC)とを用いるようにすると、水素吸蔵合金粉末の粒子表面に非水溶性高分子を点在させることができる。これにより、水素吸蔵合金粉末の粒子表面に三相界面(固体−液体−気体の界面)を形成することが可能となる。ところが、非水溶性高分子は被覆性が乏しいため、セパレータとの摩擦により水素吸蔵合金粉末の脱落が生じ易くなる。そこで、本発明においては、展延性や被覆性が優れているアニオン系水溶性高分子(例えば、CMC)を水素吸蔵合金電極の内部よりも表面部に多く含有させるようにしている。これにより、水素吸蔵合金粉末の脱落を抑制することが可能となるだけではなく、水素吸蔵合金電極内部への補液性を向上させることが可能となり、出力特性が向上する。   Here, when a water-insoluble polymer (for example, SBR) and an anionic water-soluble polymer (for example, CMC) are used as the binder, the water-insoluble polymer is attached to the particle surface of the hydrogen storage alloy powder. Can be interspersed. This makes it possible to form a three-phase interface (solid-liquid-gas interface) on the particle surface of the hydrogen storage alloy powder. However, since the water-insoluble polymer has poor coating properties, the hydrogen storage alloy powder easily falls off due to friction with the separator. Therefore, in the present invention, an anionic water-soluble polymer (for example, CMC) excellent in spreadability and covering property is contained in the surface portion more than in the hydrogen storage alloy electrode. As a result, it is possible not only to suppress the dropping of the hydrogen storage alloy powder, but also to improve the liquid replenishment property inside the hydrogen storage alloy electrode, thereby improving the output characteristics.

そして、水素吸蔵合金電極の内部のアニオン系水溶性高分子(例えば、CMC)の水素吸蔵合金粉末に対する含有量をX(質量部)とし、水素吸蔵合金電極の表面部のアニオン系水溶性高分子(例えば、CMC)の水素吸蔵合金粉末に対する含有量をY(質量部)とした場合、Y/Xを3以上で13以下(3≦Y/X≦13)になるようにすると、活物質間強度および芯体−活物質間強度を両立させることができるという実験結果が得られた。また、このときの水素吸蔵合金電極の表面部のアニオン系水溶性高分子(例えば、CMC)の含有量Yは0.14質量部以上で0.63質量部以下(0.14質量部≦Y≦0.63質量部)であった。   Then, the content of the anionic water-soluble polymer (for example, CMC) in the hydrogen storage alloy electrode with respect to the hydrogen storage alloy powder is X (part by mass), and the anionic water-soluble polymer on the surface of the hydrogen storage alloy electrode When the content of the hydrogen storage alloy powder (for example, CMC) is Y (parts by mass), if Y / X is 3 or more and 13 or less (3 ≦ Y / X ≦ 13), the active material The experimental result that the strength and the strength between the core and the active material can be made compatible was obtained. Further, the content Y of the anionic water-soluble polymer (for example, CMC) in the surface portion of the hydrogen storage alloy electrode at this time is 0.14 parts by mass or more and 0.63 parts by mass or less (0.14 parts by mass ≦ Y ≦ 0.63 parts by mass).

このようにY/XおよびYを規定すると、結着剤の添加量を増加させなくても電極群の構成圧の増加に耐えうる強度を確保することが可能となる。この結果、水素吸蔵合金粉末の脱落に起因する電池電圧のバラツキが抑制されるだけではなく、出力特性も向上させることが可能となる。この場合、水素吸蔵合金電極の表面部は、水素吸蔵合金電極の厚みをt1とし、この水素吸蔵合金電極の芯体の厚みをt2としたとき、水素吸蔵合金電極の表面より(t1−t2)×0.15までの範囲と定義することができる。   When Y / X and Y are defined in this way, it is possible to ensure the strength that can withstand the increase in the component pressure of the electrode group without increasing the amount of binder added. As a result, it is possible not only to suppress the variation in battery voltage due to the dropping of the hydrogen storage alloy powder, but also to improve the output characteristics. In this case, the surface portion of the hydrogen storage alloy electrode has a thickness (t1-t2) from the surface of the hydrogen storage alloy electrode, where the thickness of the hydrogen storage alloy electrode is t1, and the thickness of the core of the hydrogen storage alloy electrode is t2. X can be defined as a range up to 0.15.

なお、上述のような水素吸蔵合金電極を構成する水素吸蔵合金は、少なくともA519型構造の結晶構造を有し、少なくとも希土類元素、ニッケル、マグネシウム、アルミニウムを含有するものが望ましい。これは、A519型構造は、従来のAB2型構造とAB5型構造とが3層を周期として積み重なりあった結晶構造で、AB5型構造より結晶格子のa軸,c軸が短い。このため、格子体積が小さく、単位結晶格子当たりのニッケルの含有比率を増加させることができる。このため、活性度の高い構造を形成することが可能であって、本発明の電極設計において、三相界面での電荷移動抵抗を低減させることが可能である。 The hydrogen storage alloy constituting the hydrogen storage alloy electrode as described above preferably has at least an A 5 B 19 type crystal structure and contains at least a rare earth element, nickel, magnesium, and aluminum. This is because the A 5 B 19 type structure is a crystal structure in which the conventional AB 2 type structure and the AB 5 type structure are stacked with a period of three layers, and the a-axis and c-axis of the crystal lattice are higher than the AB 5 type structure. short. For this reason, the lattice volume is small, and the content ratio of nickel per unit crystal lattice can be increased. For this reason, it is possible to form a structure with high activity, and in the electrode design of the present invention, it is possible to reduce the charge transfer resistance at the three-phase interface.

また、少なくともA519型構造の結晶構造を有し、少なくとも希土類元素、ニッケル、マグネシウム、アルミニウムを含有する水素吸蔵合金は、一般式がLnl-xMgxNiy-a-bAlabと表され、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2の条件を満たす必要がある。これは、x>0.2であるとマグネシウムの偏析が生じ、a>0.3であるとアルミニウムの偏析が生じるようになって、それぞれ耐食性の低下をもたらすようになるからである。また、y<3.5であったり、y>3.9であったりすると、A519型構造をそれぞれ構成することが困難となるからである。 A hydrogen storage alloy having a crystal structure of at least an A 5 B 19 type structure and containing at least a rare earth element, nickel, magnesium, and aluminum is represented by a general formula Ln lx Mg x Ni yab Al a M b , The conditions of 0.1 ≦ x ≦ 0.2, 3.5 ≦ y ≦ 3.9, 0.1 ≦ a ≦ 0.3, and 0 ≦ b ≦ 0.2 must be satisfied. This is because magnesium is segregated when x> 0.2, and aluminum is segregated when a> 0.3, resulting in a decrease in corrosion resistance. Further, if y <3.5 or y> 3.9, it is difficult to form the A 5 B 19 type structure.

また、このような水素吸蔵合金において、その平均粒径が30μmより小さい場合、セパレータとの接触面積が増加するようになり、これに伴い摩擦係数が増加し、水素吸蔵合金粉末が脱落しやすくなる。このため、水素吸蔵合金電極の表面からの水素吸蔵合金粉末の脱落を抑制するためには、水素吸蔵合金粉末の平均粒径は30μm以上が望ましいが、本発明の水素吸蔵合金電極を用いることにより、平均粒径が30μm以下の水素吸蔵合金粉末を用いることが可能になる。   Further, in such a hydrogen storage alloy, when the average particle size is smaller than 30 μm, the contact area with the separator increases, and accordingly, the friction coefficient increases and the hydrogen storage alloy powder easily falls off. . For this reason, in order to suppress the dropping of the hydrogen storage alloy powder from the surface of the hydrogen storage alloy electrode, the average particle diameter of the hydrogen storage alloy powder is preferably 30 μm or more, but by using the hydrogen storage alloy electrode of the present invention. It becomes possible to use hydrogen storage alloy powder having an average particle size of 30 μm or less.

この場合、アニオン系水溶性高分子の含有量を水素吸蔵合金電極の内部よりも表面部の方を多くすると、表面部と内部で等しい場合よりも活物質間強度が向上する。そして、アニオン系水溶性高分子の含有量を水素吸蔵合金電極の内部よりも表面部の方を多くした水素吸蔵合金電極を用いると、セパレータの目付量を35g/m2に低減しても、表面部と内部とでアニオン系水溶性高分子の含有量を等しくした水素吸蔵合金電極を用い、目付量が55g/m2のセパレータを用いた場合よりも、活物質間強度が向上した実験結果が得られた。このことから、本発明の水素吸蔵合金電極を用いることにより、セパレータの目付量を低減することも可能となり、目付量が35〜55g/m2のセパレータを用いることが可能になる。 In this case, when the content of the anionic water-soluble polymer is increased in the surface portion than in the hydrogen storage alloy electrode, the strength between the active materials is improved as compared with the case where the surface portion and the inside are equal. And, when using a hydrogen storage alloy electrode in which the content of the anionic water-soluble polymer is greater on the surface portion than in the interior of the hydrogen storage alloy electrode, even if the basis weight of the separator is reduced to 35 g / m 2 , Experimental results in which the strength between active materials is improved compared to the case of using a hydrogen storage alloy electrode in which the content of an anionic water-soluble polymer is equal between the surface and the interior, and using a separator having a basis weight of 55 g / m 2 was gotten. For this reason, by using the hydrogen storage alloy electrode of the present invention, it is possible to reduce the basis weight of the separator, and it is possible to use a separator having a basis weight of 35 to 55 g / m 2 .

本発明においては、水素吸蔵合金電極の表面部のアニオン系水溶性高分子の含有量を水素吸蔵合金電極の内部の含有量よりも多くしているので、水素吸蔵合金粉末の脱落を抑制することが可能となる。また、水素吸蔵合金電極内部への補液性を向上させることも可能となるので、出力特性が向上し、従来の範囲を越えた対向面積設計の水素吸蔵合金電極において、高信頼性および高出力特性を有するアルカリ蓄電池を提供することが可能となる。   In the present invention, since the content of the anionic water-soluble polymer in the surface portion of the hydrogen storage alloy electrode is larger than the content in the hydrogen storage alloy electrode, it is possible to suppress the dropping of the hydrogen storage alloy powder. Is possible. In addition, since it is possible to improve the fluid replenishment inside the hydrogen storage alloy electrode, the output characteristics are improved, and the hydrogen storage alloy electrode with the opposed area design that exceeds the conventional range has high reliability and high output characteristics. It becomes possible to provide the alkaline storage battery which has this.

ついで、本発明の実施の形態を図1から図3に基づいて以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のアルカリ蓄電池を模式的に示す断面図である。図2は水素吸蔵合金電極の内部に対する表面部のCMCの含有量の比Y/Xに対する活物質間強度および芯体−活物質間強度の関係を示す図である。図3はセパレータの目付量(g/m2)に対する活物質間強度の関係を示す図である。 Next, embodiments of the present invention will be described in detail below with reference to FIG. 1 to FIG. 3. However, the present invention is not limited to these embodiments, and may be appropriately modified and implemented without departing from the scope of the present invention. be able to. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention. FIG. 2 is a graph showing the relationship between the strength between the active materials and the strength between the core and the active material with respect to the ratio Y / X of the CMC content in the surface portion relative to the inside of the hydrogen storage alloy electrode. FIG. 3 is a diagram showing the relationship between the active material strength and the basis weight (g / m 2 ) of the separator.

1.水素吸蔵合金
La,Ce,Pr,Nd,Sm,Mg,Ni,Al,Co,Mn,Znなどの金属元素を所定のモル比となるように混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させた後、合金鋳塊になるように溶湯急冷して、水素吸蔵合金a〜eを作製した。この場合、組成式がNd0.9Mg0.1Ni3.2Al0.2Co0.1で表されるものを水素吸蔵合金aとした。
1. Hydrogen storage alloy After mixing metal elements such as La, Ce, Pr, Nd, Sm, Mg, Ni, Al, Co, Mn, and Zn so as to have a predetermined molar ratio, these mixtures are mixed with a high frequency in an argon gas atmosphere. After being charged into an induction furnace and melted, the molten metal was quenched to form an alloy ingot to produce hydrogen storage alloys a to e. In this case, a hydrogen storage alloy a having a composition formula represented by Nd 0.9 Mg 0.1 Ni 3.2 Al 0.2 Co 0.1 was used.

同様に、組成式がLa0.2Pr0.1Nd0.5Mg0.2Ni3.6Al0.3で表されるものを水素吸蔵合金bとし、La0.2Sm0.7Mg0.1Ni3.5Al0.1Zn0.2で表されるものを水素吸蔵合金cとし、La0.8Ce0.1Pr0.05Nd0.05Ni4.2Al0.3(Co,Mn)0.5で表されるものを水素吸蔵合金dとし、La0.2Pr0.3Nd0.3Mg0.2Ni3.1Al0.2で表されるものを水素吸蔵合金eとした。 Similarly, a hydrogen storage alloy b having a composition formula represented by La 0.2 Pr 0.1 Nd 0.5 Mg 0.2 Ni 3.6 Al 0.3 and a hydrogen storage alloy b having La 0.2 Sm 0.7 Mg 0.1 Ni 3.5 Al 0.1 Zn 0.2 The alloy c is represented by La 0.8 Ce 0.1 Pr 0.05 Nd 0.05 Ni 4.2 Al 0.3 (Co, Mn) 0.5 and the hydrogen storage alloy d is represented by La 0.2 Pr 0.3 Nd 0.3 Mg 0.2 Ni 3.1 Al 0.2 This was designated as hydrogen storage alloy e.

ついで、得られた各水素吸蔵合金a〜eについて、DSC(示差走査熱量計)を用いて融点(Tm)を測定した。その後、これらの水素吸蔵合金a〜eの融点(Tm)よりも30℃だけ低い温度(Ta=Tm−30℃)で所定時間(この場合は10時間)の熱処理を行った。そして、熱処理後の各水素吸蔵合金a〜eの組成を高周波プラズマ分光法(ICP)によって分析し、その結果を示すと、下記の表1に示すような結果が得られた。   Subsequently, about each obtained hydrogen storage alloy ae, melting | fusing point (Tm) was measured using DSC (differential scanning calorimeter). Thereafter, a heat treatment was performed for a predetermined time (in this case, 10 hours) at a temperature (Ta = Tm-30 ° C.) lower by 30 ° C. than the melting points (Tm) of these hydrogen storage alloys a to e. And the composition of each hydrogen storage alloy ae after heat processing was analyzed by the high frequency plasma spectroscopy (ICP), and when the result was shown, the result as shown in following Table 1 was obtained.

ついで、Cu−Kα管をX線源とするX線回折測定装置を用いる粉末X線回折法で水素吸蔵合金a〜eの結晶構造の同定を行った。この場合、スキャンスピード1°/min、管電圧40kV、管電流300mA、スキャンステップ1°、測定角度(2θ)20〜50°でX線回折測定を行った。得られたXRDプロファイルよりJCPDSカードチャートを用いて、各水素吸蔵合金a〜eの結晶構造を同定した。   Subsequently, the crystal structures of the hydrogen storage alloys a to e were identified by a powder X-ray diffraction method using an X-ray diffraction measuring apparatus using a Cu-Kα tube as an X-ray source. In this case, X-ray diffraction measurement was performed at a scan speed of 1 ° / min, a tube voltage of 40 kV, a tube current of 300 mA, a scan step of 1 °, and a measurement angle (2θ) of 20 to 50 °. From the obtained XRD profile, the crystal structure of each of the hydrogen storage alloys a to e was identified using a JCPDS card chart.

ここで、各結晶構造の構成比において、A519型構造はCe5Co19型構造とPr5Co19型構造とし、A27型構造はNd2Ni7型構造とCe2Ni7型構造とし、AB5型構造はLaNi5型構造として、JCPDSによる各構造の回折角の強度値と42〜44°の最強強度値との比各強度比を、得られたXRDプロファイルにあてはめて、各構造の構成比率を算出すると、下記の表1に示すような結果が得られた。

Figure 2009059598
Here, in the composition ratio of each crystal structure, the A 5 B 19 type structure is a Ce 5 Co 19 type structure and a Pr 5 Co 19 type structure, and the A 2 B 7 type structure is an Nd 2 Ni 7 type structure and Ce 2 Ni structure. 7 type structure, AB 5 type structure is LaNi 5 type structure, and the ratio of intensity of diffraction angle of each structure by JCPDS and the strongest intensity value of 42-44 ° is applied to each obtained XRD profile. When the composition ratio of each structure was calculated, the results shown in Table 1 below were obtained.
Figure 2009059598

上記表1の結果から明らかなように、一般式がLnl-xMgxNiy-a-bAlabと表される水素吸蔵合金a〜eにおいて、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2の条件を満たさないものの内、水素吸蔵合金dはAB5型構造からなり、水素吸蔵合金eはA27構造とAB5型構造とからなることが分かる。一方、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2の条件を満たす水素吸蔵合金a,b,cは、少なくともA519型構造を有していることが分かる。 As is clear from the results in Table 1 above, in the hydrogen storage alloys a to e represented by the general formula Ln lx Mg x Ni yab Al a M b , 0.1 ≦ x ≦ 0.2, 3.5 ≦ Of those that do not satisfy the conditions of y ≦ 3.9, 0.1 ≦ a ≦ 0.3, and 0 ≦ b ≦ 0.2, the hydrogen storage alloy d has an AB 5 type structure, and the hydrogen storage alloy e is A 2. it can be seen consisting of B 7 structure and AB 5 type structure. On the other hand, hydrogen storage alloys a, b, which satisfy the conditions of 0.1 ≦ x ≦ 0.2, 3.5 ≦ y ≦ 3.9, 0.1 ≦ a ≦ 0.3, and 0 ≦ b ≦ 0.2. It can be seen that c has at least an A 5 B 19 type structure.

2.水素吸蔵合金電極
ついで、水素吸蔵合金aを用いて、この水素吸蔵合金aの塊を粗粉砕した後、不活性ガス雰囲気中で平均粒径が25μmになるまで機械的に粉砕して、水素吸蔵合金粉末を作製した。この後、得られた水素吸蔵合金粉末100質量部に対し、非水溶性高分子としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、アニオン系水溶性高分子としてのCMC(カルボキシメチルセルロース)を0.05質量部と、適量の水(あるいは純水)とを加え、混練して、水素吸蔵合金スラリーを作製した。
2. Hydrogen storage alloy electrode Next, the hydrogen storage alloy a is used to roughly pulverize the lump of the hydrogen storage alloy a, and then mechanically pulverize it in an inert gas atmosphere until the average particle size becomes 25 μm. Alloy powder was prepared. Then, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble polymer and CMC (carboxymethylcellulose) as an anionic water-soluble polymer with respect to 100 parts by mass of the obtained hydrogen storage alloy powder. 0.05 part by mass and an appropriate amount of water (or pure water) were added and kneaded to prepare a hydrogen storage alloy slurry.

この後、この水素吸蔵合金スラリーを、ニッケルメッキを施したパンチングメタルからなる芯体に塗着して負極合剤層を形成した。乾燥後、負極合剤層の充填密度が5.0g/cm3になるよう圧延し、負極表面積(短軸長×長軸長×2)が760cm2となるよう切断して、水素吸蔵合金電極11を作製した。ついで、CMCを適量の水(あるいは純水)に溶解させ、粘度200mPa・sになるよう調整した後、水素吸蔵合金電極11の表面部のCMC(アニオン系水溶性高分子)の含有量(水素吸蔵合金粉末100質量部に対する質量部)が表2に示すような所定量となるように、ロール転写により水素吸蔵合金電極11の表面部に塗布し、水素吸蔵合金電極a1〜a8をそれぞれ作製した。
この場合、水素吸蔵合金電極11の厚みをt1とし、この水素吸蔵合金電極のパンチングメタルからなる芯体の厚みをt2としたとき、水素吸蔵合金電極11の表面より(t1−t2)×0.15の範囲内を水素吸蔵合金電極の表面部と定義する。
Thereafter, this hydrogen storage alloy slurry was applied to a core made of nickel-plated punching metal to form a negative electrode mixture layer. After drying, the negative electrode mixture layer is rolled so as to have a packing density of 5.0 g / cm 3 and cut so that the negative electrode surface area (short axis length × long axis length × 2) becomes 760 cm 2. 11 was produced. Next, CMC is dissolved in an appropriate amount of water (or pure water) and adjusted to have a viscosity of 200 mPa · s, and then the content of CMC (anionic water-soluble polymer) on the surface of the hydrogen storage alloy electrode 11 (hydrogen The surface of the hydrogen storage alloy electrode 11 was applied by roll transfer so that the mass part) relative to 100 parts by mass of the storage alloy powder was a predetermined amount as shown in Table 2, and the hydrogen storage alloy electrodes a1 to a8 were produced. .
In this case, when the thickness of the hydrogen storage alloy electrode 11 is t1, and the thickness of the core made of the punching metal of the hydrogen storage alloy electrode is t2, (t1−t2) × 0. The range of 15 is defined as the surface portion of the hydrogen storage alloy electrode.

ここで、水素吸蔵合金電極11の表面部のCMC(アニオン系水溶性高分子)の含有量が0.05(この場合は、表面部へCMCが未塗布のもの)となるように調整されたものを水素吸蔵合金電極a1とした。同様に、0.08質量部となるように調整されたものを水素吸蔵合金電極a2とし、0.14質量部となるように調整されたものを水素吸蔵合金電極a3とし、0.24質量部となるように調整されたものを水素吸蔵合金電極a4とした。また、0.33質量部となるように調整されたものを水素吸蔵合金電極a5とし、0.50質量部となるように調整されたものを水素吸蔵合金電極a6とし、0.63質量部となるように調整されたものを水素吸蔵合金電極a7とし、0.70質量部となるように調整されたものを水素吸蔵合金電極a8とした。
そして、水素吸蔵合金電極の内部のCMCの含有量(水素吸蔵合金粉末100質量部に対する質量部)Xに対する水素吸蔵合金電極の表面部のCMCの含有量(水素吸蔵合金粉末100質量部に対する質量部)Yの比Y/Xを求めると、下記の表2に示すような結果となった。
Here, the content of CMC (anionic water-soluble polymer) in the surface portion of the hydrogen storage alloy electrode 11 was adjusted to 0.05 (in this case, CMC was not applied to the surface portion). This was used as a hydrogen storage alloy electrode a1. Similarly, the hydrogen storage alloy electrode a2 adjusted to 0.08 parts by mass and the hydrogen storage alloy electrode a3 adjusted to 0.14 parts by mass were 0.24 parts by mass. What was adjusted to become hydrogen storage alloy electrode a4. Moreover, what was adjusted to be 0.33 parts by mass was a hydrogen storage alloy electrode a5, and what was adjusted to be 0.50 parts by mass was a hydrogen storage alloy electrode a6, and was 0.63 parts by mass. What was adjusted to become hydrogen storage alloy electrode a7, and what was adjusted to 0.70 parts by mass was hydrogen storage alloy electrode a8.
And the content of CMC in the surface portion of the hydrogen storage alloy electrode with respect to the content of CMC in the hydrogen storage alloy electrode (mass part with respect to 100 parts by mass of hydrogen storage alloy powder) X (mass part with respect to 100 parts by mass of hydrogen storage alloy powder) ) Y ratio Y / X was obtained as shown in Table 2 below.

3.水素吸蔵合金電極の強度試験
(1)活物質間強度
ついで、上述のようにして作製された水素吸蔵合金電極a1〜a8をそれぞれ用いて、極板強度の指標となる加圧力試験(活物質間強度試験および芯体−活物質間強度試験)を以下のようにして行った。即ち、活物質間強度試験においては、各水素吸蔵合金電極a1〜a8を100mm×50mmに裁断し、その上に目付量が55g/m2のセパレータを載置した後、30g/cm2の荷重をかけながらセパレータを挿引(引っ張る)する。ついで、セパレータヘの活物質付着量を測定し、電極表面部へCMCが未塗布であるa1の活物質付着量を100とした際の相対値の逆数を活物質間強度の指標Aとした。つまり、指標Aが大きいほど、電極表面での活物質間強度が向上していることを示すようにした。
3. Strength test of hydrogen storage alloy electrode (1) Strength between active materials Next, using each of the hydrogen storage alloy electrodes a1 to a8 produced as described above, a pressure test (between active materials) serving as an index of electrode plate strength Strength test and core-active material strength test) were performed as follows. That is, in the strength test between active materials, each hydrogen storage alloy electrode a1 to a8 is cut into 100 mm × 50 mm, and a separator having a basis weight of 55 g / m 2 is placed thereon, and then a load of 30 g / cm 2 is applied. Insert (pull) the separator while applying. Next, the amount of active material adhering to the separator was measured, and the reciprocal of the relative value when the active material adhering amount of a1 on which the CMC was not applied to the electrode surface was set to 100 was used as an index A of the strength between the active materials. That is, as the index A is larger, the strength between the active materials on the electrode surface is improved.

(2)芯体−活物質間強度
一方、芯体−活物質間強度試験においては、各水素吸蔵合金電極a1〜a8を150mm×50mmに裁断し、これを半径が20mmのロールに巻き付けた後、粘着テープで固定した。この後、これらの上に0.5MPaの圧力を付与しながらロールを5秒間だけ回転させ、水素吸蔵合金粉末が芯体から剥がれた回数を求めた。そして、電極表面部へCMCが未塗布である水素吸蔵合金電極a1の剥がれ回数を100とした際の相対値を芯体−活物質間強度の指標Bとした。つまり、指標Bが小さいほど芯体と活物質との問の強度が弱いことを示すようにした。

Figure 2009059598
(2) Strength between core and active material On the other hand, in the strength test between core and active material, after each hydrogen storage alloy electrode a1 to a8 was cut into 150 mm × 50 mm and wound around a roll having a radius of 20 mm And fixed with adhesive tape. Thereafter, the roll was rotated for 5 seconds while applying a pressure of 0.5 MPa on them, and the number of times the hydrogen storage alloy powder was peeled off from the core was determined. And the relative value when the frequency | count of peeling of the hydrogen storage alloy electrode a1 in which CMC is not apply | coated to the electrode surface part was set to 100 was set as the parameter | index B of the strength between core bodies-active materials. That is, the smaller the index B, the weaker the strength between the core and the active material.
Figure 2009059598

ここで、上記表2の結果に基づいて、水素吸蔵合金電極の内部のCMCの含有量Xに対する表面部のCMCの含有量Yの比Y/Xを横軸(X軸)とし、活物質間強度(指標A)および芯体−活物質間強度(指標B)を縦軸にしてグラフにして表すと、図2に示すような結果となった。そして、これらの表2および図2の結果から明らかなように、活物質間強度(指標A)はY/Xが増加するに伴って向上することが分かる。一方、芯体−活物質間強度(指標B)は、Y/Xが3.0以上になると向上するようになるが、13を超えるようになると、逆に、電極表面部へCMCが未塗布である水素吸蔵合金電極a1よりも低下することが分かる。   Here, based on the results in Table 2 above, the ratio Y / X of the CMC content Y in the surface portion to the CMC content X inside the hydrogen storage alloy electrode is taken as the horizontal axis (X axis), When the strength (index A) and the core-active material strength (index B) are plotted on the vertical axis, the results are as shown in FIG. As can be seen from the results of Table 2 and FIG. 2, the strength between the active materials (index A) increases as Y / X increases. On the other hand, the strength between the core and the active material (index B) is improved when Y / X is 3.0 or more. However, when it exceeds 13, the CMC is not applied to the electrode surface. It turns out that it falls rather than the hydrogen storage alloy electrode a1 which is.

ここで、芯体−活物質間強度試験の際、粘着テープ際の水素吸蔵合金粉末が剥離するのに対して、Y/X>13の場合には、粘着テープ際以外の水素吸蔵合金粉末が剥離するのが確認された。これは、水素吸蔵合金電極の表面がCMC(アニオン系水溶性高分子)により硬化して、巻取り時に表面割れが発生したためと考えられる。   Here, in the strength test between the core and the active material, the hydrogen storage alloy powder at the time of the adhesive tape peels, whereas when Y / X> 13, the hydrogen storage alloy powder other than at the time of the adhesive tape is Peeling was confirmed. This is presumably because the surface of the hydrogen storage alloy electrode was hardened by CMC (anionic water-soluble polymer) and surface cracking occurred during winding.

これらの結果から、活物質間強度および芯体−活物質間強度を両立させるには、水素吸蔵合金電極の内部に対する表面部のCMCの含有量の比Y/Xを3以上で13以下(3≦Y/X≦13)になるようにするのが望ましいということができる。この場合、水素吸蔵合金電極の表面部のCMCの含有量Yは0.14質量部以上で0.63質量部以下(0.14質量部≦Y≦0.63質量部)となる。なお、このような活物質間強度向上効果および芯体−活物質間強度向上効果の両効果は、巻回圧力が強くなるほど、即ち、両電極間の対向面積を増大させたほど効果が表れるようになる。   From these results, in order to achieve both the strength between the active materials and the strength between the core and the active material, the ratio Y / X of the CMC content in the surface portion to the inside of the hydrogen storage alloy electrode is 3 or more and 13 or less (3 It can be said that it is desirable to satisfy ≦ Y / X ≦ 13). In this case, the content Y of CMC in the surface portion of the hydrogen storage alloy electrode is 0.14 parts by mass or more and 0.63 parts by mass or less (0.14 parts by mass ≦ Y ≦ 0.63 parts by mass). It should be noted that both the effect of improving the strength between the active materials and the effect of improving the strength between the core and the active material appear as the winding pressure increases, that is, as the opposing area between the electrodes increases. become.

4.ニッケル−水素蓄電池
ついで、上述した水素吸蔵合金b〜eを用いて、これらの水素吸蔵合金b〜eの塊を粗粉砕した後、不活性ガス雰囲気中で平均粒径が25μmになるまで機械的に粉砕して、水素吸蔵合金粉末を作製した。ついで、上述と同様に、得られた水素吸蔵合金粉末100質量部に対し、非水溶性高分子としてのSBRを0.5質量部と、アニオン系水溶性高分子としてのCMCを0.05質量部と、適量の水(あるいは純水)とを加え、混練して、水素吸蔵合金スラリーを作製した。
4). Nickel-hydrogen storage battery Next, the above-mentioned hydrogen storage alloys b to e are used to mechanically pulverize these hydrogen storage alloys be to e until the average particle size becomes 25 μm in an inert gas atmosphere. To obtain a hydrogen storage alloy powder. Next, in the same manner as described above, 0.5 parts by mass of SBR as a water-insoluble polymer and 0.05 parts by mass of CMC as an anionic water-soluble polymer are obtained with respect to 100 parts by mass of the obtained hydrogen storage alloy powder. And a suitable amount of water (or pure water) were added and kneaded to prepare a hydrogen storage alloy slurry.

ついで、得られた水素吸蔵合金スラリーを用いて水素吸蔵合金電極をそれぞれ作製した後、表面部のCMCの含有量が0.63質量部となるように、ロール転写により水素吸蔵合金電極の表面に塗布して水素吸蔵合金電極11(b7,c7,d7,e7)を作製した。ここで、水素吸蔵合金bを用いたものを水素吸蔵合金電極b7とし、水素吸蔵合金cを用いたものを水素吸蔵合金電極c7とし、水素吸蔵合金dを用いたものを水素吸蔵合金電極d7とし、水素吸蔵合金eを用いたものを水素吸蔵合金電極e7とした。   Next, after each hydrogen storage alloy electrode was produced using the obtained hydrogen storage alloy slurry, the surface of the hydrogen storage alloy electrode was transferred by roll transfer so that the CMC content of the surface portion was 0.63 parts by mass. It applied and produced hydrogen storage alloy electrode 11 (b7, c7, d7, e7). Here, the hydrogen storage alloy electrode b7 is the one using the hydrogen storage alloy b, the hydrogen storage alloy electrode c7 is the one using the hydrogen storage alloy c, and the hydrogen storage alloy electrode d7 is the one using the hydrogen storage alloy d. A hydrogen storage alloy electrode e7 was prepared using the hydrogen storage alloy e.

ついで、上述のようにして作製した水素吸蔵合金電極11(a1,a3,a4,a7,b7,c7,d7,e7)と、公知のニッケル電極12とを用い、これらの間に、目付が55g/cm2のポリプロピレン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金電極11の芯体露出部11cが露出しており、その上部にはニッケル電極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル電極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とした。 Next, the hydrogen storage alloy electrode 11 (a1, a3, a4, a7, b7, c7, d7, e7) produced as described above and a known nickel electrode 12 were used, and the basis weight was 55 g. A spiral electrode group was produced by winding in a spiral with a separator 13 made of polypropylene nonwoven fabric of / cm 2 interposed. The core exposed portion 11c of the hydrogen storage alloy electrode 11 is exposed at the lower part of the spiral electrode group thus produced, and the core exposed part 12c of the nickel electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、負極集電体14を外装缶17の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子を兼ねるとともに外周部に絶縁ガスケット19が装着された封口体18の底部に溶接する。なお、封口体18には正極キャップ18aが設けられていて、この正極キャップ18a内に所定の圧力になると変形する弁体18bとスプリング18cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body is housed in a bottomed cylindrical outer can (in which the outer surface of the bottom surface becomes a negative electrode external terminal) 17 in which nickel is plated on iron, the negative electrode current collector 14 is attached to the outer can 17. Welded to the inner bottom. On the other hand, the current collecting lead portion 15a extending from the positive electrode current collector 15 serves as a positive electrode terminal and is welded to the bottom portion of the sealing body 18 having the insulating gasket 19 attached to the outer peripheral portion. The sealing body 18 is provided with a positive electrode cap 18a, and a pressure valve (not shown) composed of a valve body 18b and a spring 18c, which are deformed when a predetermined pressure is reached, is disposed in the positive electrode cap 18a.

ついで、外装缶17の上部外周部に環状溝部17aを形成した後、電解液を注液し、外装缶17の上部に形成された環状溝部17aの上に封口体18の外周部に装着された絶縁ガスケット19を載置する。この後、外装缶17の開口端縁17bをかしめることにより、ニッケル−水素蓄電池10(A1,A3,A4,A7,B7,C7,D7,E7)が作製される。この場合、外装缶17内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を電池容量(Ah)当り2.5g(2.5g/Ah)となるように注入した。   Next, after forming an annular groove portion 17 a on the upper outer peripheral portion of the outer can 17, an electrolytic solution was injected, and the outer peripheral portion of the sealing body 18 was mounted on the annular groove portion 17 a formed on the upper portion of the outer can 17. An insulating gasket 19 is placed. Then, the nickel-hydrogen storage battery 10 (A1, A3, A4, A7, B7, C7, D7, E7) is produced by caulking the opening edge 17b of the outer can 17. In this case, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution was poured into the outer can 17 so as to be 2.5 g (2.5 g / Ah) per battery capacity (Ah).

ここで、水素吸蔵合金電極a1を用いたものを電池A1とし、水素吸蔵合金電極a3を用いたものを電池A3とし、水素吸蔵合金電極a4を用いたものを電池A4とし、水素吸蔵合金電極a7を用いたものを電池A7とした。また、水素吸蔵合金電極b7を用いたものを電池B7とし、水素吸蔵合金電極c7を用いたものを電池C7とし、水素吸蔵合金電極d7を用いたものを電池D7とし、水素吸蔵合金電極e7を用いたものを電池E7とした。なお、これらの各電池A1,A3,A4,A7,B7,C7,D7,E7の公称容量は6AhでDサイズ(直径が32mmで、高さが60mm)とした。   Here, a battery using the hydrogen storage alloy electrode a1 is referred to as a battery A1, a battery using the hydrogen storage alloy electrode a3 is referred to as a battery A3, a battery using the hydrogen storage alloy electrode a4 is referred to as a battery A4, and a hydrogen storage alloy electrode a7. A battery A7 was used. A battery using hydrogen storage alloy electrode b7 is referred to as battery B7, a battery using hydrogen storage alloy electrode c7 is referred to as battery C7, a battery using hydrogen storage alloy electrode d7 is referred to as battery D7, and a hydrogen storage alloy electrode e7 is used. The battery used was designated as battery E7. Each of these batteries A1, A3, A4, A7, B7, C7, D7, E7 had a nominal capacity of 6 Ah and a D size (a diameter of 32 mm and a height of 60 mm).

これらの各電池A1,A3,A4,A7,B7,C7,D7,E7において、25℃で、1Itの充電電流でSOC(State Of Charge :充電深度)の120%まで充電し、1時間休止した後、70℃で24時間放置(熟成)した。ついで、45℃で、1Itの放電電流で電池電圧が0.3Vになるまで放電させた。ついで、このような充電、休止、熟成、放電を2サイクル繰り返して、これらの各電池A1,A3,A4,A7,B7,C7,D7,E7をそれぞれ活性化した。   In each of these batteries A1, A3, A4, A7, B7, C7, D7, E7, the battery was charged to 120% of SOC (State Of Charge) with a charging current of 1 It at 25 ° C. and rested for 1 hour. Thereafter, it was left (ripened) at 70 ° C. for 24 hours. Subsequently, the battery was discharged at 45 ° C. with a discharge current of 1 It until the battery voltage became 0.3V. Subsequently, such charging, resting, aging, and discharging were repeated for two cycles to activate each of the batteries A1, A3, A4, A7, B7, C7, D7, and E7.

5.出力特性試験
ついで、上述のように活性化した各電池A1,A3,A4,A7,B7,C7,D7,E7において、以下のようにして出力特性(−10℃アシスト出力および−30℃アシスト出力)の測定を行った。即ち、−10℃アシスト出力においては、25℃で、1Itの充電電流でSOC50%まで充電し、1時間休止した。この後、−10℃の温度環境で、以下のような任意の充電レートで20秒間充電させた後、30分間休止した後、以下のような任意の放電レートで10秒間放電させた後、25℃で、30分間休止させた。このような−10℃での充電、休止、放電、25℃での休止を繰り返した。
5). Next, in each of the batteries A1, A3, A4, A7, B7, C7, D7, and E7 activated as described above, the output characteristics (−10 ° C. assist output and −30 ° C. assist output) are as follows. ) Was measured. That is, at -10 ° C. assist output, the battery was charged to SOC 50% with a charging current of 1 It at 25 ° C. and rested for 1 hour. Then, after charging for 20 seconds at the following arbitrary charging rate in a temperature environment of −10 ° C., resting for 30 minutes, and then discharging for 10 seconds at the following arbitrary discharging rate, 25 Rested at 30 ° C. for 30 minutes. Such charge at −10 ° C., pause, discharge, and pause at 25 ° C. were repeated.

この場合、任意の充電レートは0.8It→1.7It→2.5It→3.3It→4.2Itと充電電流を増加させ、任意の放電レートは1.7It→3.3It→5.0It→6.7It→8.3Itと放電電流を増加させていき、各レートで10秒経過時点における各電池電圧を測定して行った。ここで、放電特性の指標として放電V−Iプロット近似直線上の0.9V電流を−10℃アシスト出力として求めると、下記の表3に示すような結果が得られた。   In this case, the arbitrary charging rate is 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It and the charging current is increased, and the arbitrary discharging rate is 1.7 It → 3.3 It → 5.0 It. The discharge current was increased from 6.7 It to 8.3 It, and each battery voltage at the time when 10 seconds elapsed at each rate was measured. Here, when the 0.9 V current on the approximate line of the discharge VI plot was obtained as the -10 ° C. assist output as an indicator of the discharge characteristics, the results shown in Table 3 below were obtained.

一方、−30℃アシスト出力においては、25℃で、1Itの充電電流でSOC50%まで充電し、1時間休止した。この後、−30℃の温度環境で、以下のような任意の充電レートで20秒間充電させた後、30分間休止した後、以下のような任意の放電レートで10秒間放電させた後、25℃で、30分間休止させた。このような−30℃での充電、休止、放電、25℃での休止を繰り返した。   On the other hand, at an assist output of −30 ° C., the battery was charged to SOC 50% with a charging current of 1 It at 25 ° C. and rested for 1 hour. Then, after charging for 20 seconds at the following arbitrary charging rate in a temperature environment of −30 ° C., resting for 30 minutes, and discharging for 10 seconds at the following arbitrary discharging rate, 25 Rested at 30 ° C. for 30 minutes. Such charge at −30 ° C., pause, discharge, and pause at 25 ° C. were repeated.

この場合、任意の充電レートは0.3It→0.7It→1.0It→1.3It→1.7Itと充電電流を増加させ、任意の放電レートは0.7It→1.3It→2.0It→2.7It→3.3Itと放電電流を増加させていき、各レートで10秒経過時点における各電池電圧を測定して行った。ここで、放電特性の指標として放電V−Iプロット近似直線上の0.9V電流を−30℃アシスト出力として求めると、下記の表3に示すような結果が得られた。なお、表3における−10℃アシスト出力および−30℃アシスト出力は、電池C1の結果を100とした際の相対値で表している。   In this case, the arbitrary charging rate is 0.3 It → 0.7 It → 1.0 It → 1.3 It → 1.7 It and the charging current is increased, and the arbitrary discharging rate is 0.7 It → 1.3 It → 2.0 It. → 2.7 It → 3.3 It was increased by increasing discharge current, and each battery voltage was measured at each rate when 10 seconds had elapsed. Here, when the 0.9 V current on the approximate line of the discharge VI plot was determined as the -30 ° C. assist output as an indicator of the discharge characteristics, the results shown in Table 3 below were obtained. Note that the −10 ° C. assist output and the −30 ° C. assist output in Table 3 are expressed as relative values when the result of the battery C1 is 100.

Figure 2009059598
Figure 2009059598

上記表3の電池A1,A3,A4,A7の結果から明らかなように、Y/Xが増加するほど、また、低温になるほど放電特性(出力特性;アシスト出力)が向上していることが分かる。これは、展延生や被覆性に優れているCMC(アニオン系水溶性高分子)の含有量を水素吸蔵合金電極の内部よりも表面部に多くすることで、水素吸蔵合金粉末の脱落が抑制可能となるだけではなく、電極内部の補液性が向上するようになる。これにより、三相界面での電荷移動抵抗が低減して、電荷移動抵抗が支配的な低温領域での放電特性(出力特性;アシスト出力)が向上したと考えられる。   As is clear from the results of the batteries A1, A3, A4, and A7 in Table 3 above, it can be seen that the discharge characteristics (output characteristics; assist output) improve as Y / X increases and as the temperature decreases. . This is because the content of CMC (anionic water-soluble polymer), which is excellent in spreading and covering properties, is increased on the surface than in the interior of the hydrogen-absorbing alloy electrode, so that the occlusion of the hydrogen-absorbing alloy powder can be suppressed. In addition, the fluid replenishment inside the electrode is improved. Thereby, it is considered that the charge transfer resistance at the three-phase interface is reduced, and the discharge characteristics (output characteristics; assist output) in the low temperature region where the charge transfer resistance is dominant are improved.

ここで、上記表3において、表面部のCMCの含有量が0.63質量部となるように調整された水素吸蔵合金電極を備えた電池A7,B7,C7,D7,E7の低温での放電特性(出力特性;アシスト出力)を比較する。この場合、電池A7,B7,C7においては放電特性(出力特性;アシスト出力)が優れていることが分かる。一方、電池D7,E7においては放電特性(出力特性;アシスト出力)が劣っていることが分かる。これは、電池A7,B7,C7においては、Lnl-xMgxNiy-a-bAlabと表した場合に、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2の条件を満たす水素吸蔵合金a(Nd0.9Mg0.1Ni3.2Al0.2Co0.1)、水素吸蔵合金b(La0.2Pr0.1Nd0.5Mg0.2Ni3.6Al0.3)、水素吸蔵合金c(La0.2Sm0.7Mg0.1Ni3.5Al0.1Zn0.2)を用いている。
これらの水素吸蔵合金a,b,cは、少なくともA519型構造を有している。そして、A519型構造は単位結晶格子当たりのニッケルの含有比率を増加させることが可能で、活性度の高い構造となる。このため、放電特性(出力特性;アシスト出力)が向上したと考えられる。
Here, in Table 3 above, discharge at low temperature of the batteries A7, B7, C7, D7, E7 provided with hydrogen storage alloy electrodes adjusted so that the content of CMC in the surface portion was 0.63 parts by mass Compare characteristics (output characteristics; assist output). In this case, it can be seen that the batteries A7, B7, C7 have excellent discharge characteristics (output characteristics; assist output). On the other hand, it can be seen that the batteries D7 and E7 have poor discharge characteristics (output characteristics; assist output). In the batteries A7, B7, and C7, when expressed as Ln lx Mg x Ni yab Al a M b , 0.1 ≦ x ≦ 0.2, 3.5 ≦ y ≦ 3.9, 0.8. Hydrogen storage alloy a (Nd 0.9 Mg 0.1 Ni 3.2 Al 0.2 Co 0.1 ), hydrogen storage alloy b (La 0.2 Pr 0.1 Nd 0.5 Mg 0.2 Ni) satisfying the conditions of 1 ≦ a ≦ 0.3 and 0 ≦ b ≦ 0.2 3.6 Al 0.3 ) and hydrogen storage alloy c (La 0.2 Sm 0.7 Mg 0.1 Ni 3.5 Al 0.1 Zn 0.2 ) are used.
These hydrogen storage alloys a, b, and c have at least an A 5 B 19 type structure. The A 5 B 19 type structure can increase the content ratio of nickel per unit crystal lattice, resulting in a structure with high activity. For this reason, it is considered that the discharge characteristics (output characteristics; assist output) have been improved.

一方、電池D7においてはAB5型構造の水素吸蔵合金d(La0.8Ce0.1Pr0.05Nd0.05Ni4.2Al0.3(Co,Mn)0.5)を用いており、電池E7においてはA27構造とAB5型構造とからなる水素吸蔵合金e(La0.2Pr0.3Nd0.3Mg0.2Ni3.1Al0.2)を用いている。これらの合金d,eは、Lnl-xMgxNiy-a-bAlabと表した場合に、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2の条件を満たしていないため、放電特性(出力特性;アシスト出力)が低下したと考えられる。 On the other hand, in the battery D7 are using a hydrogen storage alloy d of AB 5 type structure (La 0.8 Ce 0.1 Pr 0.05 Nd 0.05 Ni 4.2 Al 0.3 (Co, Mn) 0.5), and A 2 B 7 structure in cell E7 A hydrogen storage alloy e (La 0.2 Pr 0.3 Nd 0.3 Mg 0.2 Ni 3.1 Al 0.2 ) having an AB 5 type structure is used. When these alloys d and e are expressed as Ln lx Mg x Ni yab Al a M b , 0.1 ≦ x ≦ 0.2, 3.5 ≦ y ≦ 3.9, 0.1 ≦ a ≦ Since the conditions of 0.3 and 0 ≦ b ≦ 0.2 are not satisfied, it is considered that the discharge characteristics (output characteristics; assist output) have deteriorated.

以上のことから、一般式がLnl-xMgxNiy-a-bAlabと表される水素吸蔵合金において、少なくともA519型構造を有している水素吸蔵合金a,b,cを用いるのが望ましいということが分かる。ここで、x>0.2であるとマグネシウムの偏析が生じ、a>0.3であるとアルミニウムの偏析が生じるようになって、それぞれ耐食性の低下をもたらすようになる。また、y<3.5であったり、y>3.9であったりすると、A519型構造をそれぞれ構成することが困難である。このため、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2の条件を満たす必要がある。 From the above, in the hydrogen storage alloy general formula is expressed as Ln lx Mg x Ni yab Al a M b, at least A 5 B 19 type structure has a hydrogen storage alloy a, b, to use c Is desirable. Here, when x> 0.2, magnesium segregates, and when a> 0.3, aluminum segregates, resulting in a decrease in corrosion resistance. Further, if y <3.5 or y> 3.9, it is difficult to form the A 5 B 19 type structure. For this reason, the conditions of 0.1 ≦ x ≦ 0.2, 3.5 ≦ y ≦ 3.9, 0.1 ≦ a ≦ 0.3, and 0 ≦ b ≦ 0.2 must be satisfied.

6.セパレータの目付の検討
ついで、セパレータの目付(g/m2)と活物質間強度との関係を検討した。そこで、上述のようにして作製された水素吸蔵合金電極a1,a3をそれぞれ用い、これに、目付が51g/m2のセパレータを組み合わせて上述と同様に活物質間強度の指標Aを求めた。同様に、目付が45g/m2のセパレータを組み合わせて活物質間強度の指標Aを求めるととに、目付が35g/m2のセパレータを組み合わせて活物質間強度の指標Aを求める下記の表4に示すような結果が得られた。なお、表4には、先に示した目付が55g/m2のセパレータを用いた場合の結果も併せて示している。そして、セパレータの目付を横軸とし、活物質間強度の指標Aを縦軸にしてグラフに表すと図3に示すように結果となった。

Figure 2009059598
6). Next, the relationship between the separator basis weight (g / m 2 ) and the strength between the active materials was examined. Accordingly, the hydrogen storage alloy electrodes a1 and a3 produced as described above were used, respectively, and a separator with a basis weight of 51 g / m 2 was combined with this to obtain the index A of the strength between the active materials in the same manner as described above. Similarly, the index A of strength between active materials is obtained by combining separators with a basis weight of 45 g / m 2 , and the index A of strength between active materials is obtained by combining separators with a basis weight of 35 g / m 2. Results as shown in 4 were obtained. Table 4 also shows the results when using the separator having a basis weight of 55 g / m 2 shown above. Then, when the basis weight of the separator is plotted on the horizontal axis and the index A of the strength between the active materials is plotted on the vertical axis, the result is shown in FIG.
Figure 2009059598

上記表4および図3の結果から明らかなように、CMC(アニオン系水溶性高分子)を水素吸蔵合金電極11の表面に塗布しなかった電極a1を用いると、セパレータの目付を低減させるに伴い、活物質間強度が低下することが分かる。一方、CMC(アニオン系水溶性高分子)を水素吸蔵合金電極11の表面に塗布した電極a3を用いると、セパレータの目付を35g/m2に低減しても、CMC(アニオン系水溶性高分子)を表面に塗布しなかった電極a1を用いた場合よりも活物質間強度が向上することが分かる。このことから、CMC(アニオン系水溶性高分子)を水素吸蔵合金電極11の表面に塗布した電極を用いることにより、セパレータの目付を35g/m2に低減させることが可能になるということができる。 As is apparent from the results of Table 4 and FIG. 3, when the electrode a1 in which CMC (anionic water-soluble polymer) is not applied to the surface of the hydrogen storage alloy electrode 11 is used, the basis weight of the separator is reduced. It can be seen that the strength between the active materials decreases. On the other hand, when the electrode a3 in which CMC (anionic water-soluble polymer) is applied to the surface of the hydrogen storage alloy electrode 11 is used, the CMC (anionic water-soluble polymer) is obtained even when the basis weight of the separator is reduced to 35 g / m 2. It can be seen that the strength between the active materials is improved as compared with the case of using the electrode a1 that was not applied to the surface. From this, it can be said that the basis weight of the separator can be reduced to 35 g / m 2 by using an electrode obtained by applying CMC (anionic water-soluble polymer) to the surface of the hydrogen storage alloy electrode 11. .

なお、上述した実施の形態においては、水溶性結着剤となるアニオン系水溶性高分子としてCMC(カルボキシメチルセルロース)を用いる例について説明したが、本発明は、セルロースを原料として得られるCMCに限らず、例えば、ポリカルボン酸とポリアクリル酸系共重合体およびこれらのアンモニウム塩、ビニル系単量体とアクリルアミド系の親水性単量体との共重合体等のアニオン系水溶性高分子を用いても同様な効果が得られる。   In the above-described embodiment, an example in which CMC (carboxymethylcellulose) is used as an anionic water-soluble polymer serving as a water-soluble binder has been described. However, the present invention is not limited to CMC obtained using cellulose as a raw material. For example, anionic water-soluble polymers such as polycarboxylic acid and polyacrylic acid copolymers and ammonium salts thereof, copolymers of vinyl monomers and acrylamide hydrophilic monomers are used. However, the same effect can be obtained.

また、非水溶性ポリマーとしては、上述したSBR(スチレン−ブタジエン−ラテックス)以外に、アクリル酸エステル−メタクリル酸エステル共重合体、NBR(アクリロニトリル−ブタジエン−ラテックス)、アクリレート−ブタジエン−ラテックス等の水素吸蔵合金粉末を保持することが可能なアクリル酸エステル、メタクリル酸エステル、芳香族オレフィン、共役ジエン、オレフィンから選択される二種以上を含む共重合体から選択して用いるようにしてもよい。この場合、水素吸蔵合金スラリーの作製時に均一分散が容易なエマルジョンまたはラテックスの状態で用いるのが望ましい。   In addition to the above-mentioned SBR (styrene-butadiene-latex), water-insoluble polymers include hydrogen such as acrylic ester-methacrylic ester copolymer, NBR (acrylonitrile-butadiene-latex), acrylate-butadiene-latex, etc. You may make it select and use from the copolymer containing 2 or more types selected from the acrylic acid ester which can hold | maintain a storage alloy powder, a methacrylic acid ester, an aromatic olefin, a conjugated diene, and an olefin. In this case, it is desirable to use it in the state of an emulsion or latex that can be easily uniformly dispersed when the hydrogen storage alloy slurry is produced.

上述したように、本発明により構成されたアルカリ蓄電池においては、水素吸蔵合金粉末が水素吸蔵合金電極から脱落することが防止できるようになる。これにより、個々のアルカリ蓄電池の特性(電池電圧や充放電容量など)に不均一を生じることなく製造することが可能となる。このため、これらの単電池を用いて組電池(例えば、5個以上を直列に組み合わせた組電池)を構成すると、特にその効果を有効に発揮することが可能となる。   As described above, in the alkaline storage battery configured according to the present invention, it is possible to prevent the hydrogen storage alloy powder from falling off the hydrogen storage alloy electrode. Thereby, it becomes possible to manufacture without causing non-uniformity in the characteristics (battery voltage, charge / discharge capacity, etc.) of each alkaline storage battery. For this reason, when an assembled battery (for example, an assembled battery in which five or more batteries are combined in series) is configured using these single cells, the effect can be exhibited particularly effectively.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically. 水素吸蔵合金電極の内部に対する表面部のCMCの含有量の比Y/Xに対する活物質間強度および芯体−活物質間強度の関係を示す図である。It is a figure which shows the relationship between the strength between active materials with respect to ratio Y / X of the content of CMC of the surface part with respect to the inside of a hydrogen storage alloy electrode, and the strength between core bodies-active materials. セパレータの目付(g/m2)に対する活物質間強度の関係を示す図である。It is a figure which shows the relationship of the strength between active materials with respect to the fabric weight (g / m < 2 >) of a separator.

符号の説明Explanation of symbols

11…水素吸蔵合金電極、11c…芯体露出部、12…ニッケル電極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、16…正極用リード、17…外装缶、17a…環状溝部、17b…開口端縁、18…封口体、18a…正極キャップ、18b…正極キャップ、18b…弁板、18c…スプリング、19…絶縁ガスケット DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy electrode, 11c ... Core body exposed part, 12 ... Nickel electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, 16 ... Positive electrode lead, DESCRIPTION OF SYMBOLS 17 ... Exterior can, 17a ... Annular groove, 17b ... Opening edge, 18 ... Sealing body, 18a ... Positive electrode cap, 18b ... Positive electrode cap, 18b ... Valve plate, 18c ... Spring, 19 ... Insulating gasket

Claims (7)

水素吸蔵合金を負極活物質とする水素吸蔵合金電極と水酸化ニッケルを主正極活物質とするニッケル電極との間にセパレータを介在させて渦巻状に巻回させた電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金電極は結着剤として非水溶性高分子とアニオン系水溶性高分子とを含有しているとともに、
前記アニオン系水溶性高分子は前記水素吸蔵合金電極の内部に存在する含有量よりも前記水素吸蔵合金電極の表面部に存在する含有量の方を多くしたことを特徴とするアルカリ蓄電池。
An electrode group wound with a separator between a hydrogen storage alloy electrode using a hydrogen storage alloy as a negative electrode active material and a nickel electrode using nickel hydroxide as a main positive electrode active material together with an alkaline electrolyte An alkaline storage battery provided in a can,
The hydrogen storage alloy electrode contains a water-insoluble polymer and an anionic water-soluble polymer as a binder,
2. The alkaline storage battery according to claim 1, wherein the content of the anionic water-soluble polymer in the surface portion of the hydrogen storage alloy electrode is larger than the content in the hydrogen storage alloy electrode.
前記水素吸蔵合金電極の内部に存在する前記アニオン系水溶性高分子の含有量を水素吸蔵合金粉末100質量部に対してX質量部とし、
前記水素吸蔵合金電極の表面部に存在する前記アニオン系水溶性高分子の含有量を水素吸蔵合金粉末100質量部に対してY質量部とした場合、
3≦Y/X≦13の関係を有するとともに、0.14質量部≦Y≦0.63質量部の関係を有することを特徴とする請求項1に記載のアルカリ蓄電池。
The content of the anionic water-soluble polymer present inside the hydrogen storage alloy electrode is X parts by mass with respect to 100 parts by mass of the hydrogen storage alloy powder,
When the content of the anionic water-soluble polymer present on the surface portion of the hydrogen storage alloy electrode is Y parts by mass with respect to 100 parts by mass of the hydrogen storage alloy powder,
2. The alkaline storage battery according to claim 1, wherein the alkaline storage battery has a relationship of 3 ≦ Y / X ≦ 13 and a relationship of 0.14 parts by mass ≦ Y ≦ 0.63 parts by mass.
前記水素吸蔵合金電極の厚みをt1とし、該水素吸蔵合金電極の芯体の厚みをt2としたとき、前記水素吸蔵合金電極の表面部は当該水素吸蔵合金電極の表面より(t1−t2)×0.15までの範囲であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。   When the thickness of the hydrogen storage alloy electrode is t1, and the thickness of the core of the hydrogen storage alloy electrode is t2, the surface portion of the hydrogen storage alloy electrode is (t1-t2) × from the surface of the hydrogen storage alloy electrode. The alkaline storage battery according to claim 1 or 2, wherein the alkaline storage battery is in a range of up to 0.15. 前記水素吸蔵合金は、少なくとも希土類元素、ニッケル、マグネシウム、アルミニウムを含有するとともに、少なくともA519型構造の結晶構造を有することを特徴とする請求項1から請求項3のいずれかに記載のアルカリ蓄電池。 4. The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy contains at least a rare earth element, nickel, magnesium, and aluminum, and has a crystal structure of at least an A 5 B 19 type structure. 5 . Alkaline storage battery. 前記水素吸蔵合金は、一般式がLnl-xMgxNiy-a-bAlab(式中、LnはYを含む希土類元素から選択される少なくとも1種の元素で、MはCo,Mn,Znから選択される少なくとも1種の元素であり、0.1≦x≦0.2、3.5≦y≦3.9、0.1≦a≦0.3、0≦b≦0.2)で表されることを特徴とする請求項1から請求項4のいずれかに記載のアルカリ蓄電池。 Select the hydrogen storage alloy is represented by the general formula is in Ln lx Mg x Ni yab Al a M b ( wherein, Ln is at least one element selected from rare earth elements including Y, M is Co, Mn, and Zn At least one element, 0.1 ≦ x ≦ 0.2, 3.5 ≦ y ≦ 3.9, 0.1 ≦ a ≦ 0.3, 0 ≦ b ≦ 0.2) The alkaline storage battery according to any one of claims 1 to 4, wherein the alkaline storage battery is provided. 前記水素吸蔵合金は平均粒径が30μm以下であることを特徴とする請求項1から請求項5のいずれかに記載のアルカリ蓄電池。   The alkaline storage battery according to any one of claims 1 to 5, wherein the hydrogen storage alloy has an average particle size of 30 µm or less. 前記セパレータは目付量が35〜55g/m2であることを特徴とする請求項1から請求項6のいずれかに記載のアルカリ蓄電池。 Alkaline storage battery according to any one of claims 1 to 6 wherein the separator is characterized in that a weight per unit area is 35~55g / m 2.
JP2007226167A 2007-08-31 2007-08-31 Alkaline storage battery Active JP5127369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226167A JP5127369B2 (en) 2007-08-31 2007-08-31 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226167A JP5127369B2 (en) 2007-08-31 2007-08-31 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2009059598A true JP2009059598A (en) 2009-03-19
JP5127369B2 JP5127369B2 (en) 2013-01-23

Family

ID=40555157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226167A Active JP5127369B2 (en) 2007-08-31 2007-08-31 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5127369B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080171A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Alkaline secondary battery
JP2010231940A (en) * 2009-03-26 2010-10-14 Sanyo Electric Co Ltd Alkaline secondary battery
JP2011082129A (en) * 2009-09-11 2011-04-21 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy electrode for alkaline storage battery using the same
JP2011134626A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Alkaline storage battery and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284354A (en) * 1991-03-14 1992-10-08 Matsushita Electric Ind Co Ltd Hydrogen storage electrode, its manufacture, and metal-oxide-hydrogen storage battery using the electrode
JPH117948A (en) * 1997-06-05 1999-01-12 Samsung Display Devices Co Ltd Nickel-hydrogen battery anode and manufacture thereof
JP2002015731A (en) * 2000-06-30 2002-01-18 Sanyo Electric Co Ltd Hydrogen storing alloy electrode and its manufacturing method and alkaline storage battery
JP2004127590A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Hydrogen storing alloy electrode and alkaline storage battery using the same
JP2005158533A (en) * 2003-11-26 2005-06-16 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery using the same
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284354A (en) * 1991-03-14 1992-10-08 Matsushita Electric Ind Co Ltd Hydrogen storage electrode, its manufacture, and metal-oxide-hydrogen storage battery using the electrode
JPH117948A (en) * 1997-06-05 1999-01-12 Samsung Display Devices Co Ltd Nickel-hydrogen battery anode and manufacture thereof
JP2002015731A (en) * 2000-06-30 2002-01-18 Sanyo Electric Co Ltd Hydrogen storing alloy electrode and its manufacturing method and alkaline storage battery
JP2004127590A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Hydrogen storing alloy electrode and alkaline storage battery using the same
JP2005158533A (en) * 2003-11-26 2005-06-16 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery using the same
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080171A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Alkaline secondary battery
JP2010231940A (en) * 2009-03-26 2010-10-14 Sanyo Electric Co Ltd Alkaline secondary battery
JP2011082129A (en) * 2009-09-11 2011-04-21 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy electrode for alkaline storage battery using the same
JP2011134626A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Alkaline storage battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP5127369B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5241188B2 (en) Alkaline storage battery system
JP5171114B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5173320B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
US9105947B2 (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5207750B2 (en) Alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
EP2234189A1 (en) Alkaline storage battery system with partial charge-discharge
JP5127369B2 (en) Alkaline storage battery
JP5482029B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
EP2096691B1 (en) Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material
JP4698291B2 (en) Alkaline storage battery
JP5354970B2 (en) Hydrogen storage alloy and alkaline storage battery
JP5507140B2 (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery
JP5213312B2 (en) Alkaline storage battery
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP5456326B2 (en) Alkaline storage battery and method of manufacturing the same
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP2011014258A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JP5542308B2 (en) Hydrogen storage alloy electrode, method for producing hydrogen storage alloy electrode, and alkaline storage battery
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP5334498B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R151 Written notification of patent or utility model registration

Ref document number: 5127369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3