JP4849856B2 - Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery - Google Patents

Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery Download PDF

Info

Publication number
JP4849856B2
JP4849856B2 JP2005279526A JP2005279526A JP4849856B2 JP 4849856 B2 JP4849856 B2 JP 4849856B2 JP 2005279526 A JP2005279526 A JP 2005279526A JP 2005279526 A JP2005279526 A JP 2005279526A JP 4849856 B2 JP4849856 B2 JP 4849856B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
slurry
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005279526A
Other languages
Japanese (ja)
Other versions
JP2007095334A (en
Inventor
周平 吉田
吉宣 片山
喜裕 増田
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005279526A priority Critical patent/JP4849856B2/en
Publication of JP2007095334A publication Critical patent/JP2007095334A/en
Application granted granted Critical
Publication of JP4849856B2 publication Critical patent/JP4849856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、HEV(ハイブリッド車)やPEV(電気自動車)等の大電流放電を要する用途に適した水素吸蔵合金電極およびその製造方法、並びに、この水素吸蔵合金電極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池に関する。   The present invention relates to a hydrogen storage alloy electrode suitable for applications requiring high current discharge such as HEV (hybrid vehicle) and PEV (electric vehicle) and a method for producing the same, as well as the hydrogen storage alloy electrode, a positive electrode, a separator, The present invention relates to an alkaline storage battery provided with an alkaline electrolyte in an outer can.

近年、二次電池(蓄電池)の用途が拡大して、携帯電話、ノートパソコン、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(PEV)など広範囲にわたって用いられるようになった。このうち、特に、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(PEV)などの高出力が求められる機器の電源用としては、従来の範囲を遥かに超える高出力が求められており、限界電流(外部電源による強制放電での放電可能限界電流値)の向上が求められるようになった。   In recent years, the use of secondary batteries (storage batteries) has expanded, and has come to be used in a wide range such as mobile phones, notebook computers, electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (PEV). Among these, especially for power supplies for devices that require high output such as electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (PEV), high output far exceeding the conventional range is required. Therefore, the improvement of the limit current (the limit current value that can be discharged by forced discharge by an external power source) has been demanded.

ところで、この種の高出力が求められる電源用にニッケル−水素蓄電池などのアルカリ蓄電池が用いられるが、このようなアルカリ蓄電池を高出力化する手法が、例えば、特許文献1(特開2000−82491号公報)にて提案されるようになった。ここで、特許文献1にて提案された高出力化手法においては、電極群を構成している正極板において正極合剤を担持する部分の面積、すなわち電池反応に直接寄与する部分の面積(負極板との対向面積)が、電池の理論容量(Ah)当たり30cm2以上(30cm2/Ah以上)になるようにしている。 Incidentally, an alkaline storage battery such as a nickel-hydrogen storage battery is used for a power source that requires this type of high output. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-82491) discloses a technique for increasing the output of such an alkaline storage battery. Issue). Here, in the high output method proposed in Patent Document 1, the area of the portion supporting the positive electrode mixture in the positive electrode plate constituting the electrode group, that is, the area of the portion directly contributing to the battery reaction (negative electrode) The area facing the plate) is 30 cm 2 or more (30 cm 2 / Ah or more) per theoretical capacity (Ah) of the battery.

これは、収容されている電極群における正極板と負極板の対向面積を大きくすれば、両極間を流れる電流の電流密度は小さくなるため、電池を高い放電率で作動させても電極群における内部抵抗の増大はおこらず、作動電圧が低下することなく大きな放電電流を取り出せるという着想に基づく処置である。その場合、上記の面積値が30cm2/Ahより小さくなると電極群における内部抵抗は小さくならず、作動電圧が不充分となって大電流放電の実現が困難になるからである。 This is because if the opposing area of the positive electrode plate and the negative electrode plate in the accommodated electrode group is increased, the current density of the current flowing between the two electrodes is reduced, so even if the battery is operated at a high discharge rate, the inside of the electrode group This is a measure based on the idea that a large discharge current can be taken out without a decrease in operating voltage and a decrease in operating voltage. In this case, if the area value is smaller than 30 cm 2 / Ah, the internal resistance in the electrode group is not reduced, and the operating voltage becomes insufficient, making it difficult to realize a large current discharge.

しかしながら、この面積値を大きくするということは、電極群の外径や高さが一定であれば、正極板の厚みを薄くして巻回後の電極群における正極板の層数を多くすればよいことになるが、そのような処置をとると、正極板の強度低下を招いて巻回時にワレや亀裂などが発生するようになる。そのようなことを勘案して上限は60cm2/Ahにするようにしている。
特開2000−82491号公報
However, increasing this area value means that if the outer diameter and height of the electrode group are constant, the thickness of the positive electrode plate is reduced and the number of layers of the positive electrode plate in the electrode group after winding is increased. Although it is good, when such a measure is taken, the strength of the positive electrode plate is reduced, and cracks and cracks occur during winding. Taking this into consideration, the upper limit is set to 60 cm 2 / Ah.
JP 2000-82491 A

ところで、電極群の外径や高さが一定であると仮定すると、電極群における正極板と負極板の対向面積を増大させるためには、極板の導電性芯体の厚みやセパレータの目付を低減させる必要がある。ところが、大電流用途における電流密度の均一化の必要性の観点に基づくと、導電性芯体の厚みを一定値以上に確保する必要がある。また、短絡防止の観点においては、セパレータの目付を一定値以上に確保する必要がある。このため、電極群における正極板と負極板の対向面積を増大させるためには、必然的に電極群の構成圧を増加させる必要があった。   By the way, assuming that the outer diameter and height of the electrode group are constant, in order to increase the facing area of the positive electrode plate and the negative electrode plate in the electrode group, the thickness of the conductive core of the electrode plate and the basis weight of the separator are set. It needs to be reduced. However, based on the viewpoint of the necessity of equalizing the current density in large current applications, it is necessary to ensure the thickness of the conductive core above a certain value. Further, from the viewpoint of preventing a short circuit, it is necessary to secure the basis weight of the separator above a certain value. For this reason, in order to increase the opposing area of the positive electrode plate and the negative electrode plate in the electrode group, it is necessary to increase the constituent pressure of the electrode group.

しかしながら、電極群における正極板と負極板の対向面積を増大させるために電極群の構成圧を増加させると、電極群に構成圧が作用する工程で負極活物質としての水素吸蔵合金の導電性芯体からの剥離等が生じるようになって、水素吸蔵合金電極の品質が低下するという問題を生じるようになった。ここで、水素吸蔵合金を負極活物質として用いたアルカリ蓄電池においては、非誘電率が大きいLiOH、NaOH、KOH等を含む極性溶媒をアルカリ電解液として用いた場合、導電性芯体から剥離した水素吸蔵合金はアルカリ電解液を保持するようになる。   However, when the constituent pressure of the electrode group is increased in order to increase the opposing area of the positive electrode plate and the negative electrode plate in the electrode group, the conductive core of the hydrogen storage alloy as the negative electrode active material in the process in which the constituent pressure acts on the electrode group As a result of peeling from the body, the quality of the hydrogen storage alloy electrode deteriorates. Here, in an alkaline storage battery using a hydrogen storage alloy as a negative electrode active material, when a polar solvent containing LiOH, NaOH, KOH or the like having a large non-dielectric constant is used as an alkaline electrolyte, the hydrogen separated from the conductive core The occlusion alloy retains the alkaline electrolyte.

そして、導電性芯体から剥離した水素吸蔵合金がアルカリ電解液を保持するようになると、電極群内に電解液の過多部を発現させるようになって、アルカリ電解液が水素吸蔵合金電極の内部に均一に配分されることが阻害されるようになる。これは、水素吸蔵合金間の静電相互作用がアルカリ電解液の非誘電率の逆数に比例しており、水素吸蔵合金電極表面への電解液分配に偏りがあると、電解液の過多部での静電相互作用が極度の弱まるためである。そして、この電解液の過多部より電解液が優先的に浸透するようになると、アルカリ電解液が水素吸蔵合金電極の内部への均一分散ができなくなるからである。   Then, when the hydrogen storage alloy peeled from the conductive core holds the alkaline electrolyte, an excessive portion of the electrolyte is developed in the electrode group, so that the alkaline electrolyte is inside the hydrogen storage alloy electrode. It is impeded to be evenly distributed to each other. This is because the electrostatic interaction between the hydrogen storage alloys is proportional to the reciprocal of the non-dielectric constant of the alkaline electrolyte, and if there is a bias in the distribution of the electrolyte on the surface of the hydrogen storage alloy electrode, This is because the electrostatic interaction becomes extremely weak. Then, when the electrolyte solution preferentially penetrates from the excessive portion of the electrolyte solution, the alkaline electrolyte solution cannot be uniformly dispersed inside the hydrogen storage alloy electrode.

この結果、水素吸蔵合金電極の電極反応の均一性が阻害され、特に、非水溶性ポリマーを結着剤として用いた場合、この結着剤が溶解しないために、当該結着剤は水素吸蔵合金粉末表面に点接触することとなる。これにより、非水溶性ポリマーの添加量を増大させないと、水素吸蔵合金粉末の導電性芯体からの剥がれが顕著となり、水素吸蔵合金電極の面積増加が高出力に繋がらないという問題を生じた。   As a result, the uniformity of the electrode reaction of the hydrogen storage alloy electrode is hindered. In particular, when a water-insoluble polymer is used as the binder, the binder does not dissolve, so that the binder is a hydrogen storage alloy. Point contact is made with the powder surface. As a result, unless the amount of the water-insoluble polymer added is increased, the hydrogen storage alloy powder peels off from the conductive core, and the increase in the area of the hydrogen storage alloy electrode does not lead to high output.

本発明は上記知見に基づいてなされたものであって、非水溶性ポリマーの添加量を増大させなくても、水素吸蔵合金電極の面積増加に伴う構成圧の増加に耐えうる強度を確保できるようにして、高出力が得られる水素吸蔵合金電極およびその製造方法を提供するとともに、この水素吸蔵合金電極を用いて、高出力特性を有するアルカリ蓄電池を提供することを目的とするものである。   The present invention has been made on the basis of the above knowledge, and can secure a strength that can withstand the increase in the component pressure accompanying the increase in the area of the hydrogen storage alloy electrode without increasing the amount of the water-insoluble polymer added. Thus, it is an object of the present invention to provide a hydrogen storage alloy electrode capable of obtaining high output and a method for producing the same, and to provide an alkaline storage battery having high output characteristics using the hydrogen storage alloy electrode.

上記目的を達成するため、本発明の水素吸蔵合金電極は、水素吸蔵合金粉末と非水溶性ポリマーからなる結着剤とを備えているとともに、水素吸蔵合金電極の電極容量(X)に対する電極表面積(Y)の割合(Y/X)が70cm2/Ah以上(Y/X≧70cm2/Ah)で、かつ水素吸蔵合金電極の活物質保持体として用いられている導電性芯体の電極状態での表面粗さ(Ra)は2〜8μm(2μm≦Ra≦8μm)であることを特徴とする。 In order to achieve the above object, the hydrogen storage alloy electrode of the present invention comprises a hydrogen storage alloy powder and a binder made of a water-insoluble polymer, and has an electrode surface area relative to the electrode capacity (X) of the hydrogen storage alloy electrode. Electrode state of a conductive core body having a ratio (Y / X) of (Y) of 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah) and being used as an active material holding body of a hydrogen storage alloy electrode The surface roughness (Ra) is 2 to 8 μm (2 μm ≦ Ra ≦ 8 μm).

このように、水素吸蔵合金電極の活物質保持体として用いられている導電性芯体の電極状態(圧延後)での表面粗さ(Ra)が2〜8μm(2μm≦Ra≦8μm)であると、導電性芯体と水素吸蔵合金粒子との密着性(アンカー効果)が良好になる。このため、非水溶性ポリマーからなる非水溶性ポリマーの添加量を増大させなくても、接着強度に優れた水素吸蔵合金電極を得ることが可能となる。そして、このように接着強度に優れた水素吸蔵合金電極であると、その電極表面積を増加させて高出力化を図っても、当該水素吸蔵合金電極の強度が向上しているので電極群の構成圧を増大させても、水素吸蔵合金粒子が導電性芯体から剥がれることが防止できる。   Thus, the surface roughness (Ra) in the electrode state (after rolling) of the conductive core used as the active material holder of the hydrogen storage alloy electrode is 2 to 8 μm (2 μm ≦ Ra ≦ 8 μm). And the adhesiveness (anchor effect) of an electroconductive core and a hydrogen storage alloy particle becomes favorable. For this reason, it is possible to obtain a hydrogen storage alloy electrode having excellent adhesive strength without increasing the amount of the water-insoluble polymer composed of the water-insoluble polymer. And, if the hydrogen storage alloy electrode is excellent in adhesive strength in this way, the strength of the hydrogen storage alloy electrode is improved even if the surface area of the electrode is increased to increase the output, so the structure of the electrode group Even when the pressure is increased, the hydrogen storage alloy particles can be prevented from being peeled off from the conductive core.

この結果、電解液を水素吸蔵合金電極内に均一に分散させることが可能となるので、ハイブリッド車(HEV)や電気自動車(PEV)等で求められる従来よりも遙かな高出力特性を達成するとことができるようになる。ここで、導電性芯体の電極状態(圧延後)での表面粗さ(Ra)が2μm未満の場合、導電性芯体と水素吸蔵合金粒子との密着性(アンカー効果)が不十分で、接着強度に優れた水素吸蔵合金電極を得ることができないという実験結果が得られた。この場合、水素吸蔵合金粒子の導電性芯体への密着性が悪いと、電解液が水素吸蔵合金電極内に浸透する際に水素吸蔵合金粒子の導電性芯体からの剥がれを誘発して、この剥がれ部に電解液が保持されて電解液過多部が出現することとなる。   As a result, it becomes possible to uniformly disperse the electrolyte in the hydrogen storage alloy electrode, so that it achieves a much higher output characteristic than that conventionally required for hybrid vehicles (HEV), electric vehicles (PEV), etc. Will be able to. Here, when the surface roughness (Ra) in the electrode state (after rolling) of the conductive core is less than 2 μm, the adhesion (anchor effect) between the conductive core and the hydrogen storage alloy particles is insufficient, The experimental result that the hydrogen storage alloy electrode excellent in adhesive strength could not be obtained was obtained. In this case, when the adhesion of the hydrogen storage alloy particles to the conductive core is poor, when the electrolyte penetrates into the hydrogen storage alloy electrode, the hydrogen storage alloy particles are induced to peel from the conductive core, The electrolytic solution is held in the peeled portion, and the excessive electrolyte solution portion appears.

この結果、電解液が電極表面から電極内に均一に浸透し得なくなって、電解液の電極内への均一配分が阻害されるようになり、電流密度の均一性が損なわれて高出力を得ることができにくくなる。一方、導電性芯体の電極状態(圧延後)での表面粗さ(Ra)が8μmを越えるようになると、圧延時の引張応力やアンカー効果の過多により水素吸蔵合金粒子の凹凸転写に起因する極板歪みや極板切れが発生するようになる。このことから、電極状態(圧延後)での芯体表面粗さ(Ra)は2.0μm以上で8.0μm以下にするのが望ましい。   As a result, the electrolyte cannot uniformly penetrate into the electrode from the electrode surface, and the uniform distribution of the electrolyte into the electrode is hindered, and the current density uniformity is impaired and high output is obtained. It becomes difficult to do. On the other hand, when the surface roughness (Ra) in the electrode state (after rolling) of the conductive core exceeds 8 μm, it is caused by uneven transfer of the hydrogen storage alloy particles due to excessive tensile stress and anchor effect during rolling. Electrode distortion and electrode plate breakage occur. Therefore, the core surface roughness (Ra) in the electrode state (after rolling) is desirably 2.0 μm or more and 8.0 μm or less.

なお、本発明の水素吸蔵合金電極においては、非水溶性ポリマーからなる結着剤の添加量を増大させなくても、接着強度に優れた水素吸蔵合金電極を得ることが可能となる。このため、非水溶性ポリマーの総量は、水素吸蔵合金粉末の質量に対して0.5〜2.0質量%に規制することが可能となる。このように非水溶性ポリマーの添加量を規制することにより、反応抵抗を低減させることが可能となるので、限界電流(外部電源による強制放電での放電可能限界電流値)を向上させることが可能となるとともに、高出力化を達成することも可能となる。   In the hydrogen storage alloy electrode of the present invention, it is possible to obtain a hydrogen storage alloy electrode having excellent adhesive strength without increasing the amount of the binder made of a water-insoluble polymer. For this reason, the total amount of the water-insoluble polymer can be regulated to 0.5 to 2.0% by mass with respect to the mass of the hydrogen storage alloy powder. By limiting the amount of water-insoluble polymer added in this way, reaction resistance can be reduced, so that the limit current (limit current value that can be discharged by forced discharge from an external power source) can be improved. In addition, higher output can be achieved.

この場合、結着剤として用いられる非水溶性ポリマーとしては、水素吸蔵合金粉末を保持することが可能なアクリル酸エステル、メタクリル酸エステル、芳香族オレフィン、共役ジエン、オレフィンから選択される二種以上を含む共重合体、例えば、アクリル酸エステル−メタクリル酸エステル共重合体、SBR(スチレン−ブタジエン−ラテックス)、NBR(アクリロニトリル−ブタジエン−ラテックス)、アクリレート−ブタジエン−ラテックス等から選択して用いるのが望ましい。この場合、水素吸蔵合金スラリーの作製時に均一分散が容易なエマルジョンまたはラテックスの状態で用いるのが望ましい。   In this case, as the water-insoluble polymer used as the binder, two or more selected from acrylic acid ester, methacrylic acid ester, aromatic olefin, conjugated diene, and olefin capable of holding the hydrogen storage alloy powder. For example, an acrylic acid ester-methacrylic acid ester copolymer, SBR (styrene-butadiene-latex), NBR (acrylonitrile-butadiene-latex), acrylate-butadiene-latex and the like are used. desirable. In this case, it is desirable to use it in the state of an emulsion or latex that can be easily uniformly dispersed during the production of the hydrogen storage alloy slurry.

また、水素吸蔵合金電極の電極容量(X)に対する電極表面積(Y)の割合(Y/X)が70cm2/Ah以上(Y/X≧70cm2/Ah)であるような大面積で、電極状態(圧延後)での芯体表面粗さ(Ra)が2.0μm以上で8.0μm以下となる導電性芯体の厚みが10μm未満であると、導電性芯体の強度が小さいために、電極製造時の圧延工程や電極群形成時の巻回工程における引張力により極板切れを生じる恐れがある。一方、導電性芯体の厚みが150μmを越えるように厚くなると活物質の塗布量が相対的に減少し、電極容量が低下して高出力化を達成することが困難となる。このことから、導電性芯体の厚みは10μm以上で、150μm以下にするのが望ましい。 In addition, the electrode has a large area such that the ratio (Y / X) of the electrode surface area (Y) to the electrode capacity (X) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah). When the core surface roughness (Ra) in the state (after rolling) is 2.0 μm or more and 8.0 μm or less and the thickness of the conductive core is less than 10 μm, the strength of the conductive core is small. There is a risk of electrode plate breakage due to the tensile force in the rolling process during electrode manufacturing and the winding process during electrode group formation. On the other hand, when the thickness of the conductive core is increased so as to exceed 150 μm, the amount of active material applied is relatively reduced, and the electrode capacity is lowered, making it difficult to achieve high output. For this reason, the thickness of the conductive core is desirably 10 μm or more and 150 μm or less.

上述のような電極容量(X)に対する電極表面積(Y)の割合(Y/X)が70cm2/Ah以上で、導電性芯体の電極状態での表面粗さ(Ra)が2〜8μmとなる水素吸蔵合金電極を製造するためには、水素吸蔵合金粉末と非水溶性ポリマーからなる結着剤と水とを混練してスラリー密度が2.0〜3.5g/cm3の水素吸蔵合金スラリーを調整するスラリー調整工程と、スラリー密度が2.0〜3.5g/cm3に調整された水素吸蔵合金スラリーを活物質保持体となる導電性芯体に塗着してスラリー塗着極板とするスラリー塗着工程と、水素吸蔵合金電極の電極容量(X)に対する電極表面積(Y)の割合(Y/X)が70cm2/Ah以上(Y/X≧70cm2/Ah)となるようにスラリー塗着極板を圧延、裁断する圧延裁断工程とを備えるようにすればよい。 The ratio (Y / X) of the electrode surface area (Y) to the electrode capacity (X) as described above is 70 cm 2 / Ah or more, and the surface roughness (Ra) in the electrode state of the conductive core is 2 to 8 μm. In order to manufacture the hydrogen storage alloy electrode, a hydrogen storage alloy having a slurry density of 2.0 to 3.5 g / cm 3 by kneading a hydrogen storage alloy powder, a binder composed of a water-insoluble polymer, and water. A slurry adjusting step for adjusting the slurry, and a slurry-coated electrode by applying a hydrogen storage alloy slurry having a slurry density adjusted to 2.0 to 3.5 g / cm 3 to a conductive core serving as an active material holder. The ratio (Y / X) of electrode surface area (Y) to electrode capacity (X) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah). Rolling and cutting the slurry-coated electrode plate It is sufficient to include and.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のアルカリ蓄電池を模式的に示す断面図である。図2は放電レート(It)に対する電池電圧(V)の関係(V−I特性)を示す図である。図3は放電レート(It)に対する電池出力(W)の関係を示す図である。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention. FIG. 2 is a graph showing the relationship (V-I characteristics) of the battery voltage (V) to the discharge rate (It). FIG. 3 is a diagram showing the relationship between the battery output (W) and the discharge rate (It).

1.水素吸蔵合金負極
(1)水素吸蔵合金粉末の作製
ミッシュメタル(Mm)、マグネシウム(Mg)、ニッケル(Ni)、コバルト(Co)およびアルミニウム(Al)をモル比で0.89:0.11:3.2:0.1:0.2の割合で混合した後、この混合物をアルゴンガス雰囲気の高周波誘導炉で1000℃で10時間の熱処理を行って合金溶湯とした。この合金溶湯を公知の方法で鋳型に流し込み、冷却して、組成式がMm0.89Mg0.11Ni3.2Co0.1Al0.2で表される水素吸蔵合金のインゴットを作製した。この水素吸蔵合金のインゴットを粗粉砕した後、不活性雰囲気中で平均粒径が30μmになるまで機械的に粉砕して水素吸蔵合金粉末を作製した。なお、平均粒径の測定はレーザー回折法により行った。
1. Hydrogen storage alloy negative electrode (1) Production of hydrogen storage alloy powder Misch metal (Mm), magnesium (Mg), nickel (Ni), cobalt (Co) and aluminum (Al) in molar ratio of 0.89: 0.11: After mixing at a ratio of 3.2: 0.1: 0.2, this mixture was heat-treated at 1000 ° C. for 10 hours in a high-frequency induction furnace in an argon gas atmosphere to obtain a molten alloy. This molten alloy was poured into a mold by a known method, cooled, and a hydrogen storage alloy ingot having a composition formula of Mm 0.89 Mg 0.11 Ni 3.2 Co 0.1 Al 0.2 was produced. The hydrogen storage alloy ingot was coarsely pulverized and then mechanically pulverized in an inert atmosphere until the average particle size became 30 μm to prepare a hydrogen storage alloy powder. The average particle size was measured by a laser diffraction method.

(2)水素吸蔵合金スラリーの作製
ついで、上述のようにして作製された水素吸蔵合金粉末をそれぞれ用いて、これらの各水素吸蔵合金粉末100質量部に対して、非水溶性結着剤としてのSBR(スチレン−ブタジエン−ラテックス)を0.50質量部と水(あるいは純水)とを加え、所定のスラリー密度になるように混練して水素吸蔵合金スラリー11b(α,β,γ,δ,ε)を作製した。この場合、水素吸蔵合金スラリーのスラリー密度(g/cm3)が1.5(g/cm3)のものを水素吸蔵合金スラリーαとした。同様に、スラリー密度が2.0(g/cm3)のものを水素吸蔵合金スラリーβとし、スラリー密度が3.0(g/cm3)のものを水素吸蔵合金スラリーγとし、スラリー密度が3.5(g/cm3)のものを水素吸蔵合金スラリーδとし、スラリー密度が4.0(g/cm3)のものを水素吸蔵合金スラリーεとした。
(2) Preparation of hydrogen storage alloy slurry Next, each of the hydrogen storage alloy powders prepared as described above was used as a water-insoluble binder for 100 parts by mass of each of these hydrogen storage alloy powders. Add 0.50 parts by mass of SBR (styrene-butadiene-latex) and water (or pure water), knead to a predetermined slurry density, and hydrogen storage alloy slurry 11b (α, β, γ, δ, ε) was prepared. In this case, a hydrogen storage alloy slurry α having a hydrogen storage alloy slurry having a slurry density (g / cm 3 ) of 1.5 (g / cm 3 ) was used. Similarly, those slurry density of 2.0 (g / cm 3) and the hydrogen storage alloy slurry beta, those slurry density 3.0 (g / cm 3) and the hydrogen storage alloy slurry gamma, slurry density The one having 3.5 (g / cm 3 ) was designated as hydrogen storage alloy slurry δ, and the one having a slurry density of 4.0 (g / cm 3 ) was designated as hydrogen storage alloy slurry ε.

(3)水素吸蔵合金負極の作製
ついで、上述のようにして作製された水素吸蔵合金スラリー11b(α,β,γ,δ,ε)をそれぞれ用いて、これらの各スラリーをニッケルメッキ鋼板からなる導電性芯体(ビッカーズ硬度が200で、厚みが80μmのもの)11aの両面に塗布し、室温で乾燥させた後、圧延し、所定の寸法に切断して水素吸蔵合金負極11(a,b,c,d,e)をそれぞれ作製した。この場合、水素吸蔵合金負極11の電極容量が10.8Ahで、電極表面積が760cm2となるようにスラリーを塗布し、圧延および切断した。ここで、水素吸蔵合金スラリーαを用いたものを負極aとした。また、水素吸蔵合金スラリーβを用いたものを負極bとし、水素吸蔵合金スラリーγを用いたものを負極cとし、水素吸蔵合金スラリーδを用いたものを負極dとし、水素吸蔵合金スラリーεを用いたものを負極eとした。
(3) Production of hydrogen storage alloy negative electrode Next, each of the hydrogen storage alloy slurries 11b (α, β, γ, δ, ε) prepared as described above is used, and each of these slurries is made of a nickel-plated steel plate. The conductive core (having a Vickers hardness of 200 and a thickness of 80 μm) is applied on both sides of the conductive core 11a, dried at room temperature, rolled, cut to a predetermined size, and the hydrogen storage alloy negative electrode 11 (a, b , C, d, e). In this case, the slurry was applied, rolled and cut so that the hydrogen storage alloy negative electrode 11 had an electrode capacity of 10.8 Ah and an electrode surface area of 760 cm 2 . Here, a negative electrode a was prepared using the hydrogen storage alloy slurry α. Also, the negative electrode b is the one using the hydrogen storage alloy slurry β, the negative electrode c is the one using the hydrogen storage alloy slurry γ, the negative electrode d is the one using the hydrogen storage alloy slurry δ, and the hydrogen storage alloy slurry ε is The one used was designated as negative electrode e.

(4)表面粗さの測定
上述のようにして作製された水素吸蔵合金負極11(a,b,c,d,e)をそれぞれ用いて、これらのスラリー塗布部(活物質塗布部)を40mm×5mmの大きさに裁断して試料片とした。ついで、得られた試料片を水洗あるいは超音波洗浄により、各導電性芯体11aの両面に塗布されたスラリー成分を除去した後、水素吸蔵合金負極11(a,b,c,d,e)に用いられた各導電性芯体11aの表面粗さを測定した。この場合、CMOS製レーザー形状測定装置を用い、測定距離が30mmで、200ピッチにて芯体表面粗さ(Ra(μm):JIS06601;2001)を測定したところ、下記の表1に示すような結果が得られた。

Figure 0004849856
(4) Measurement of surface roughness Using each of the hydrogen storage alloy negative electrodes 11 (a, b, c, d, e) produced as described above, the slurry application part (active material application part) was 40 mm. A sample piece was cut into a size of 5 mm. Next, after removing the slurry component applied to both surfaces of each conductive core 11a by washing with water or ultrasonic washing, the obtained specimen piece was then subjected to hydrogen storage alloy negative electrode 11 (a, b, c, d, e). The surface roughness of each conductive core 11a used in the measurement was measured. In this case, the core surface roughness (Ra (μm): JIS06601; 2001) was measured at a measurement distance of 30 mm and 200 pitches using a CMOS laser shape measuring apparatus, as shown in Table 1 below. Results were obtained.
Figure 0004849856

上記表1の結果から明らかなように、水素吸蔵合金スラリーのスラリー密度が高くなるほど圧延後の芯体表面粗さ(Ra)が大きくなり、水素吸蔵合金粒子と導電性芯体との接触部位(アンカー部位)が多いことが分かる。これは、スラリー密度が高い水素吸蔵合金スラリーを導電性芯体に塗布し、乾燥させることで、水素吸蔵合金粒子間の距離が短くなって、圧延時の荷重を有効に水素吸蔵合金粒子間に伝達させることで、導電性芯体への水素吸蔵合金粒子の接触部位(接触点)が増加することにより、アンカー部位が多くなったためである。   As is clear from the results of Table 1 above, the higher the slurry density of the hydrogen storage alloy slurry, the higher the core surface roughness (Ra) after rolling, and the contact site between the hydrogen storage alloy particles and the conductive core ( It can be seen that there are many anchor sites. This is because the distance between the hydrogen storage alloy particles is shortened by applying a hydrogen storage alloy slurry having a high slurry density to the conductive core and drying, so that the load during rolling is effectively reduced between the hydrogen storage alloy particles. This is because by increasing the number of contact sites (contact points) of the hydrogen storage alloy particles to the conductive core, the number of anchor sites increases.

(5)強度試験(加圧力試験および撥水率試験)
ついで、上述のようにして作製された水素吸蔵合金負極11(a,b,c,d,e)をそれぞれ用いて、極板強度の指標となる加圧力試験および撥水率試験を以下のようにして行った。即ち、加圧力試験においては、各水素吸蔵合金負極a,b,c,d,eを150mm×50mmに裁断し、これを半径が20mmのロールに巻き付けた後、粘着テープで固定した。この後、これらの上に圧力を付与しながらロールを5秒間だけ回転させ、水素吸蔵合金粉末の剥がれが確認された際の加圧力(MPa)を求めると、下記の表2に示すような結果が得られた。
(5) Strength test (pressure test and water repellency test)
Next, using the hydrogen storage alloy negative electrode 11 (a, b, c, d, e) produced as described above, a pressure test and a water repellency test, which are indicators of electrode plate strength, are performed as follows. I went there. That is, in the pressure test, each hydrogen storage alloy negative electrode a, b, c, d, e was cut into 150 mm × 50 mm, wound around a roll having a radius of 20 mm, and then fixed with an adhesive tape. Thereafter, the roll was rotated for 5 seconds while applying pressure on them, and the pressure (MPa) when the peeling of the hydrogen storage alloy powder was confirmed was as shown in Table 2 below. was gotten.

一方、撥水率試験においては、各水素吸蔵合金負極a,b,c,d,eを40mm×50mmに裁断し後、これらの上に、スポイトで1滴当たり0.05gとなる純水を10滴ずつ滴下した。ついで、30分経過後の純水の残存率をそれぞれ10回ずつ測定し、その平均の純水の残存率を極板強度の指標となる撥水率(%)として求めると、下記の表2に示すような結果が得られた。

Figure 0004849856
On the other hand, in the water repellency test, after each hydrogen storage alloy negative electrode a, b, c, d, e is cut into 40 mm × 50 mm, pure water with a dropper of 0.05 g per drop is formed thereon. Ten drops were added. Then, the remaining ratio of pure water after 30 minutes was measured 10 times, and the average remaining ratio of pure water was determined as the water repellency (%) as an index of electrode plate strength. The results as shown in Fig. 1 were obtained.
Figure 0004849856

上記表2の結果から明らかなように、水素吸蔵合金スラリーのスラリー密度が1.5g/cm3で、圧延後の芯体表面粗さ(Ra)が1.0μmの水素吸蔵合金負極aは加圧力(MPa)および撥水率(%)が小さく、導電性芯体と水素吸蔵合金粒子との密着性が小さくて、極板強度が低いことが分かる。これに対して、水素吸蔵合金スラリーのスラリー密度が2.0g/cm3で、圧延後の芯体表面粗さ(Ra)が2.0μm以上の水素吸蔵合金負極b,c,d,eは加圧力(MPa)および撥水率(%)が大きくて、極板強度が向上していて導電性芯体と水素吸蔵合金粒子との密着性が向上していることが分かる。 As is clear from the results in Table 2 above, the hydrogen storage alloy negative electrode a having a slurry density of 1.5 g / cm 3 and a core surface roughness (Ra) after rolling of 1.0 μm is not added. It can be seen that the pressure (MPa) and water repellency (%) are small, the adhesion between the conductive core and the hydrogen storage alloy particles is small, and the electrode plate strength is low. In contrast, the hydrogen storage alloy negative electrode b, c, d, e having a slurry density of the hydrogen storage alloy slurry of 2.0 g / cm 3 and a core surface roughness (Ra) after rolling of 2.0 μm or more is It can be seen that the applied pressure (MPa) and water repellency (%) are large, the electrode plate strength is improved, and the adhesion between the conductive core and the hydrogen storage alloy particles is improved.

ただし、水素吸蔵合金負極eにおいては、加圧力(MPa)および撥水率(%)が大きい反面、圧延後の芯体表面粗さ(Ra)が10.0μmと大きすぎて、アンカー効果の過多により水素吸蔵合金粒子の凹凸転写が生じ、極板歪みが発生するという現象が生じた。このことから、水素吸蔵合金スラリーのスラリー密度は2.0g/cm3以上、3.5g/cm3以下で、圧延後の芯体表面粗さ(Ra)が2.0μm以上、8.0μm以下にするのが望ましいということができる。 However, in the hydrogen storage alloy negative electrode e, the pressing force (MPa) and the water repellency (%) are large, but the core surface roughness (Ra) after rolling is too large as 10.0 μm, and the anchor effect is excessive. As a result, unevenness transfer of the hydrogen storage alloy particles occurred, and a phenomenon that electrode plate distortion occurred was generated. From this, the slurry density of the hydrogen storage alloy slurry is 2.0 g / cm 3 or more and 3.5 g / cm 3 or less, and the core surface roughness (Ra) after rolling is 2.0 μm or more and 8.0 μm or less. It can be said that it is desirable.

2.ニッケル−水素蓄電池
ついで、上述のようにして作製された水素吸蔵合金スラリー11b(γ)を用いて、これらの各スラリーをニッケルメッキ鋼板からなる導電性芯体(ビッカーズ硬度が200で、厚みが80μmのもの)11aの両面に塗布して活物質層11bを形成し、室温で乾燥させた後、圧延し、所定の寸法に切断して水素吸蔵合金負極11(f,g)をそれぞれ作製した。この場合、水素吸蔵合金負極11の電極容量が10.8Ahで、電極表面積が1030cm2となるようにスラリーを塗布して切断したものを水素吸蔵合金負極fとした。また、水素吸蔵合金負極11の電極容量が5.8Ahで、電極表面積が230cm2となるようにスラリーを塗布して切断したものを水素吸蔵合金負極gとした。
2. Nickel-hydrogen storage battery Next, using the hydrogen storage alloy slurry 11b (γ) produced as described above, each of these slurries is made of a conductive core made of a nickel-plated steel plate (Vickers hardness is 200, thickness is 80 μm). The active material layer 11b was formed by coating on both surfaces of the material 11a, dried at room temperature, rolled, cut into predetermined dimensions, and the hydrogen storage alloy negative electrode 11 (f, g) was produced. In this case, the hydrogen storage alloy negative electrode f was formed by applying slurry and cutting so that the electrode capacity of the hydrogen storage alloy negative electrode 11 was 10.8 Ah and the electrode surface area was 1030 cm 2 . The hydrogen storage alloy negative electrode g was prepared by applying a slurry and cutting so that the electrode capacity of the hydrogen storage alloy negative electrode 11 was 5.8 Ah and the electrode surface area was 230 cm 2 .

ついで、パンチングメタルからなる極板導電性芯体12aの表面にニッケル焼結多孔体12bを形成した後、この多孔性ニッケル焼結基板を硝酸ニッケルと硝酸コバルトと硝酸亜鉛の混合水溶液(含浸液)に浸漬した。これにより、多孔性ニッケル焼結基板12bの細孔内に硝酸ニッケル、硝酸コバルトおよび硝酸亜鉛を保持させた。この後、この多孔性ニッケル焼結基板を25wt%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、硝酸ニッケル、硝酸コバルトおよび硝酸亜鉛をそれぞれ水酸化ニッケル、水酸化コバルトおよび水酸化亜鉛に転換させた。   Next, after forming the nickel sintered porous body 12b on the surface of the electrode plate conductive core body 12a made of punching metal, this porous nickel sintered substrate is mixed with nickel nitrate, cobalt nitrate and zinc nitrate aqueous solution (impregnating liquid). Soaked in. Thereby, nickel nitrate, cobalt nitrate, and zinc nitrate were held in the pores of the porous nickel sintered substrate 12b. Thereafter, this porous nickel sintered substrate is immersed in a 25 wt% sodium hydroxide (NaOH) aqueous solution to convert nickel nitrate, cobalt nitrate and zinc nitrate into nickel hydroxide, cobalt hydroxide and zinc hydroxide, respectively. I let you.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板12bの細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板12bの細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極板12を作製した。 Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled in the pores of the porous nickel sintered substrate 12b. By repeating such an active material filling operation a predetermined number of times (for example, 6 times), the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate 12b becomes 2.5 g / cm 3 . Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode plate 12 was produced.

ついで、ポリプロピレン製不織布からなるセパレータ13を用意した。この後、上述のようにして作製した水素吸蔵合金負極11(a,b,f,g)と、ニッケル正極12とを用い、これらの間にセパレータ13を介在させて、これらを渦巻状に巻回して渦巻状電極群を作製した。得られた渦巻状電極群の下部に負極集電体11cを抵抗溶接するとともに、渦巻状電極群の上部に正極集電体12cを抵抗溶接して渦巻状電極体をそれぞれ作製した。ついで、鉄にニッケルメッキを施した有底円筒形の金属外装缶14内に渦巻状電極体を挿入した後、負極集電体11cと金属外装缶14の底部をスポット溶接した。   Next, a separator 13 made of a polypropylene nonwoven fabric was prepared. Thereafter, the hydrogen storage alloy negative electrode 11 (a, b, f, g) produced as described above and the nickel positive electrode 12 are used, and a separator 13 is interposed therebetween, and these are wound in a spiral shape. A spiral electrode group was produced by turning. The negative electrode current collector 11c was resistance welded to the lower part of the obtained spiral electrode group, and the positive electrode current collector 12c was resistance welded to the upper part of the spiral electrode group to produce a spiral electrode body. Next, after inserting the spiral electrode body into the bottomed cylindrical metal outer can 14 in which nickel was plated on iron, the negative electrode current collector 11c and the bottom of the metal outer can 14 were spot welded.

一方、正極キャップ15aと蓋体15bとからなる封口体15を用意し、正極集電体12cに設けられた正極リード12dを蓋体15bの底部に溶接した。この後、外装缶14の上部外周面に溝入れ加工を施して環状溝部14aを形成した。この後、金属製外装缶14内にアルカリ電解液(水酸化リチウム(LiOH)と水酸化ナトリウム(NaOH)を含有した7Nの水酸化カリウム(KOH)水溶液でリチウム濃度が0.05mol/lのもの)を注液した。   On the other hand, a sealing body 15 including a positive electrode cap 15a and a lid body 15b was prepared, and a positive electrode lead 12d provided on the positive electrode current collector 12c was welded to the bottom of the lid body 15b. Thereafter, the upper outer peripheral surface of the outer can 14 was grooved to form an annular groove 14a. Thereafter, an alkaline electrolyte (7N potassium hydroxide (KOH) aqueous solution containing lithium hydroxide (LiOH) and sodium hydroxide (NaOH) in a metal outer can 14 having a lithium concentration of 0.05 mol / l) ) Was injected.

ついで、封口体15に装着された封口ガスケット16を外装缶14の環状溝部14aに載置するとともに、外装缶14の先端部14bを封口体15側にカシメて封口して、ニッケル−水素蓄電池10(A,B,F,G)をそれぞれ作製した。ここで、水素吸蔵合金負極aを用いたものをニッケル−水素蓄電池Aとし、水素吸蔵合金負極bを用いたものをニッケル−水素蓄電池Bとし、水素吸蔵合金負極fを用いたものをニッケル−水素蓄電池Fとし、水素吸蔵合金負極gを用いたものをニッケル−水素蓄電池Gとした。なお、ニッケル−水素蓄電池A,B,Fの公称容量は6AhでDサイズ(直径が32mmで、高さが60mm)とし、ニッケル−水素蓄電池Gの公称容量は3AhでSCサイズ(直径が23mmで、高さが43mm)とした。   Next, the sealing gasket 16 attached to the sealing body 15 is placed in the annular groove portion 14a of the outer can 14, and the front end portion 14b of the outer can 14 is crimped to the sealing body 15 side to seal the nickel-hydrogen storage battery 10. (A, B, F, G) were prepared. Here, the one using the hydrogen storage alloy negative electrode a is a nickel-hydrogen storage battery A, the one using the hydrogen storage alloy negative electrode b is the nickel-hydrogen storage battery B, and the one using the hydrogen storage alloy negative electrode f is nickel-hydrogen. A storage battery F and a hydrogen storage alloy negative electrode g were used as a nickel-hydrogen storage battery G. The nominal capacity of nickel-hydrogen storage batteries A, B and F is 6Ah and D size (diameter is 32mm, height is 60mm), and the nominal capacity of nickel-hydrogen storage battery G is 3Ah and SC size (diameter is 23mm). The height was 43 mm).

これらの各電池A,B,F,Gにおいて、25℃で、1Itの充電電流でSOC(State Of Charge :充電深度)の120%まで充電し、1時間休止した後、70℃で24時間放置(熟成)した。ついで、45℃で、1Itの放電電流で電池電圧が0.3Vになるまで放電させた。ついで、このような充電、休止、熟成、放電を2サイクル繰り返して、これらの各電池A,B,F,Gをそれぞれ活性化した。   In each of these batteries A, B, F, and G, the battery is charged to 120% of SOC (State Of Charge) at 25 ° C. with a charging current of 1 It, and after resting for 1 hour, it is left at 70 ° C. for 24 hours. (Aged). Subsequently, the battery was discharged at 45 ° C. with a discharge current of 1 It until the battery voltage became 0.3V. Subsequently, such charging, resting, aging, and discharging were repeated for two cycles to activate each of these batteries A, B, F, and G.

3.限界電流値の測定
ついで、上述のように活性化した各電池A,B,F,Gにおいて、以下のようにして限界電流値の測定を行った。即ち、25℃で、1Itの充電電流でSOC50%まで充電し、1時間休止した後、以下のような放電レートで10秒間放電させた後、30分間休止した。ついで、放電レートに等しいレートで10秒間充電させた後、30分間休止した。この場合、放電レートは6.7It→13.3It→20.0It→26.7It→33.3It→37.5It→41.7It→45.8It→50.0It→58.3It→62.5It→66.7Itと放電電流を増加させ、各放電レートで10秒経過時点における各電池A,B,F,Gの電池電圧(V)をそれぞれ測定した。
3. Measurement of limit current value Next, in each of the batteries A, B, F, and G activated as described above, the limit current value was measured as follows. That is, at 25 ° C., the battery was charged to 50% SOC with a charging current of 1 It, rested for 1 hour, discharged for 10 seconds at the following discharge rate, and then rested for 30 minutes. Next, the battery was charged for 10 seconds at a rate equal to the discharge rate, and then rested for 30 minutes. In this case, the discharge rate is 6.7 It → 13.3 It → 20.0 It → 26.7 It → 33.3 It → 37.5 It → 41.7 It → 45.8 It → 50.0 It → 58.3 It → 62.5 It → The discharge current was increased to 66.7 It, and the battery voltages (V) of the batteries A, B, F, and G at the time when 10 seconds passed at each discharge rate were measured.

この後、各放電レート(It)を横軸(X軸)にプロットし、得られた電池電圧(V)を縦軸(Y軸)にプロットしてV−I特性を求めると図2に示すような結果が得られた。また、得られたV−I特性から電流値(I)とその電圧(V)との積である出力(W=I×V)を求めると図3に示すような結果が得られた。なお、図2および図3においては、電池Aと電池Bの結果のみを示している。そして、得られたV−I特性の直線から逸脱する直前の最大放電可能電流を限界電流として求めると、下記の表3に示すような結果が得られた。また、得られた出力特性(図3参照)から最大出力を求めると、下記の表3に示すような結果が得られた。

Figure 0004849856
Thereafter, each discharge rate (It) is plotted on the horizontal axis (X axis), and the obtained battery voltage (V) is plotted on the vertical axis (Y axis) to obtain the VI characteristic, which is shown in FIG. The result was obtained. Further, when the output (W = I × V), which is the product of the current value (I) and the voltage (V), is obtained from the obtained VI characteristic, the result shown in FIG. 3 is obtained. 2 and 3, only the results of the battery A and the battery B are shown. When the maximum dischargeable current immediately before deviating from the obtained VI characteristic line was determined as the limit current, the results shown in Table 3 below were obtained. Further, when the maximum output was obtained from the obtained output characteristics (see FIG. 3), the results shown in Table 3 below were obtained.
Figure 0004849856

上記表3の結果から明らかなように、電極容量X(Ah)に対する電極表面積Y(cm2)の割合(Y/X)が70cm2/Ahである電池A(スラリー密度が1.5g/cm3で、極板強度が低い水素吸蔵合金負極を用いたもの)と、Y/Xが40cm2/Ahである電池G(スラリー密度が3.0g/cm3で、極板強度が大きい水素吸蔵合金負極を用いたもの)とを比較すると、どちらも限界電流は41.7Itで等しいことが分かる。また、電極容量X(Ah)に対する電極表面積Y(cm2)の割合(Y/X)が70cm2/Ahである電池Aと、電池B(スラリー密度が3.0g/cm3で、極板強度が大きい水素吸蔵水素吸蔵合金負極を用いたもの)とを比較すると、電池Bの方が限界電流が大きく、かつ最大出力も大きいことが分かる。 As is apparent from the results in Table 3 above, the battery A (slurry density is 1.5 g / cm) in which the ratio (Y / X) of the electrode surface area Y (cm 2 ) to the electrode capacity X (Ah) is 70 cm 2 / Ah. 3 using a hydrogen storage alloy negative electrode having a low electrode plate strength) and a battery G having a Y / X of 40 cm 2 / Ah (a slurry density of 3.0 g / cm 3 and a high electrode plate strength) Comparison with those using an alloy negative electrode) shows that the limiting current is equal to 41.7 It in both cases. Further, a battery A having a ratio (Y / X) of an electrode surface area Y (cm 2 ) to an electrode capacity X (Ah) of 70 cm 2 / Ah and a battery B (slurry density is 3.0 g / cm 3 , When compared with a battery using a hydrogen storage hydrogen storage alloy negative electrode having a high strength, it can be seen that battery B has a larger limit current and a larger maximum output.

このことは、限界電流を向上させ、かつ高出力化を達成するためには、スラリー密度が大きな水素吸蔵合金スラリーを用いて極板強度が高い水素吸蔵負極を作製し、この極板強度が高い水素吸蔵負極を用いてニッケル−水素蓄電池を作製するのが望ましいことを示している。この場合、電極容量X(Ah)に対する電極表面積Y(cm2)の割合(Y/X)が90cm2/Ahの水素吸蔵負極を用いた電池Fにおいては、限界電流が67.7It以上とさらに大きく、かつ最大出力も260Wと大きいことが分かる。このことから、電極容量X(Ah)に対する電極表面積Y(cm2)の割合(Y/X)は70cm2/Ah以上、好ましくは90cm2/Ah以上の水素吸蔵負極を用いるのが望ましいということができる。 This means that in order to improve the limit current and achieve high output, a hydrogen storage negative electrode having a high electrode plate strength is produced using a hydrogen storage alloy slurry having a high slurry density, and this electrode plate strength is high. It shows that it is desirable to produce a nickel-hydrogen storage battery using a hydrogen storage negative electrode. In this case, in the battery F using the hydrogen storage negative electrode having a ratio (Y / X) of the electrode surface area Y (cm 2 ) to the electrode capacity X (Ah) of 90 cm 2 / Ah, the limiting current is further 67.7 It or more. It can be seen that the maximum output is as large as 260 W. Therefore, it is desirable to use a hydrogen storage negative electrode having a ratio (Y / X) of electrode surface area Y (cm 2 ) to electrode capacity X (Ah) of 70 cm 2 / Ah or more, preferably 90 cm 2 / Ah or more. Can do.

4.非水溶性ポリマーの添加量の検討
ついで、非水溶性結着剤としての非水溶性ポリマーの添加量について検討を行った。そこで、上述した水素吸蔵合金(Mm0.89Mg0.11Ni3.2Co0.1Al0.2)粉末100質量部に対して、所定量の非水溶性ポリマーとしてのSBRと、水(あるいは純水)とを加え、スラリー密度が3.0g/cm3になるように混練して水素吸蔵合金スラリーγ1,γ2,γ3,γ4を作製した。この場合、水素吸蔵合金粉末100質量部に対して、SBRの添加量が0.5質量部のものを水素吸蔵合金スラリーγ1(上述した水素吸蔵合金スラリーγと等しい)とした。同様に、SBRの添加量が1.0質量部のものを水素吸蔵合金スラリーγ2とし、SBRの添加量が2.0質量部のものを水素吸蔵合金スラリーγ3とし、SBRの添加量が2.5質量部のものを水素吸蔵合金スラリーγ4とした。
4). Next, the amount of water-insoluble polymer added as a water-insoluble binder was examined. Therefore, a predetermined amount of SBR as a water-insoluble polymer and water (or pure water) and water (or pure water) are added to 100 parts by mass of the hydrogen storage alloy (Mm 0.89 Mg 0.11 Ni 3.2 Co 0.1 Al 0.2 ) powder. The hydrogen storage alloy slurries γ1, γ2, γ3, and γ4 were prepared by kneading to a density of 3.0 g / cm 3 . In this case, the hydrogen storage alloy slurry γ1 (equivalent to the hydrogen storage alloy slurry γ described above) was used with an addition amount of SBR of 0.5 part by mass with respect to 100 parts by mass of the hydrogen storage alloy powder. Similarly, the hydrogen storage alloy slurry γ2 having an SBR addition amount of 1.0 part by mass is referred to as hydrogen storage alloy slurry γ3, and the SBR addition amount being 2.0 parts by mass, and the SBR addition amount is 2. 5 mass parts was made into hydrogen storage alloy slurry (gamma) 4.

ついで、上述のようにして作製された水素吸蔵合金スラリーγ1,γ2,γ3,γ4をそれぞれ用いて、これらの各スラリーをニッケルメッキ鋼板からなる導電性芯体(ビッカーズ硬度が200で、厚みが80μmのもの)の両面に塗布し、室温で乾燥させた後、圧延し、所定の寸法に切断して水素吸蔵合金負極c1,c2,c3,c4をそれぞれ作製した。この場合、水素吸蔵合金負極の電極容量が10.8Ahで、電極表面積が760cm2(電極容量X(Ah)に対する電極表面積Y(cm2)の割合(Y/X)が70cm2/Ah)となるようにスラリーを塗布し、圧延および切断した。ここで、水素吸蔵合金スラリーγ1を用いたものを負極c1とした。また、水素吸蔵合金スラリーγ2を用いたものを負極c2とし、水素吸蔵合金スラリーγ3を用いたものを負極c3とし、水素吸蔵合金スラリーγ4を用いたものを負極c4とした。 Next, using each of the hydrogen storage alloy slurries γ1, γ2, γ3, and γ4 produced as described above, each of these slurries was made into a conductive core made of a nickel-plated steel plate (Vickers hardness of 200, thickness of 80 μm). Were dried at room temperature, rolled, and cut into predetermined dimensions to produce hydrogen storage alloy negative electrodes c1, c2, c3, and c4, respectively. In this case, the electrode capacity of the hydrogen storage alloy negative electrode is 10.8 Ah, and the electrode surface area is 760 cm 2 (the ratio (Y / X) of the electrode surface area Y (cm 2 ) to the electrode capacity X (Ah) is 70 cm 2 / Ah). The slurry was applied, rolled and cut. Here, a negative electrode c1 was prepared using the hydrogen storage alloy slurry γ1. Further, a negative electrode c2 was prepared using the hydrogen storage alloy slurry γ2, a negative electrode c3 was formed using the hydrogen storage alloy slurry γ3, and a negative electrode c4 was formed using the hydrogen storage alloy slurry γ4.

ついで、上述した水素吸蔵合金負極11(c1,c2,c3,c4)と、ニッケル正極12とを用い、これらの間にセパレータ13を介在させて、これらを渦巻状に巻回して渦巻状電極群を作製し、上述と同様に、図1に示すようなニッケル−水素蓄電池10(C1,C2,C3,C4)をそれぞれ作製した。ここで、水素吸蔵合金負極c1を用いたものをニッケル−水素蓄電池C1とし、水素吸蔵合金負極c2を用いたものをニッケル−水素蓄電池C2とし、水素吸蔵合金負極c3を用いたものをニッケル−水素蓄電池C3とし、水素吸蔵合金負極c4を用いたものをニッケル−水素蓄電池C4とした。なお、ニッケル−水素蓄電池C1,C2,C3,C4の公称容量は6AhでDサイズ(直径が32mmで、高さが60mm)とした。   Next, the hydrogen storage alloy negative electrode 11 (c1, c2, c3, c4) and the nickel positive electrode 12 described above are used, and a separator 13 is interposed between them, and these are spirally wound to form a spiral electrode group. In the same manner as described above, nickel-hydrogen storage batteries 10 (C1, C2, C3, C4) as shown in FIG. Here, the one using the hydrogen storage alloy negative electrode c1 is a nickel-hydrogen storage battery C1, the one using the hydrogen storage alloy negative electrode c2 is a nickel-hydrogen storage battery C2, and the one using the hydrogen storage alloy negative electrode c3 is nickel-hydrogen. A storage battery C3 and a hydrogen storage alloy negative electrode c4 were used as a nickel-hydrogen storage battery C4. The nominal capacities of the nickel-hydrogen batteries C1, C2, C3, and C4 were 6Ah and D size (diameter was 32 mm and height was 60 mm).

ついで、これらの各電池C1,C2,C3,C4を上述と同様にして活性化した。ついで、活性化した各電池C1,C2,C3,C4を用いて、上述と同様の充放電を行って、各電池C1,C2,C3,C4のV−I特性(図2参照)を求めた。この後、得られたV−I特性に基づいてV−I傾き(mΩ)を求めると、下記の表4に示すような結果が得られた。なお、このV−I傾き(mΩ)は放電性をあらわす指標となり、傾きが小さいほど放電性が良いことを示す。

Figure 0004849856
Subsequently, these batteries C1, C2, C3, and C4 were activated in the same manner as described above. Next, using the activated batteries C1, C2, C3, and C4, charging and discharging were performed in the same manner as described above, and the VI characteristics (see FIG. 2) of the batteries C1, C2, C3, and C4 were obtained. . Thereafter, when the VI slope (mΩ) was determined based on the obtained VI characteristics, the results shown in Table 4 below were obtained. The V-I slope (mΩ) serves as an index representing the discharge performance, and the smaller the slope, the better the discharge performance.
Figure 0004849856

上記表4の結果から明らかなように、水素吸蔵合金負極の非水溶性結着剤として用いるSBR(非水溶性ポリマー)の添加量が水素吸蔵合金粉末100質量部に対して2.5質量部となる電池C4においては、V−I傾きが2.58mΩと大きくなることが分かる。これは、SBRの添加量が多くなることにより反応抵抗が増加したためと考えられる。一方、SBRの添加量が少なすぎると水素吸蔵合金粒子同士の密着性が低下して極板強度が弱くなる。これらのことから、水素吸蔵合金負極の非水溶性結着剤となるSBR(非水溶性ポリマー)の添加量は水素吸蔵合金粉末100質量部に対して0.5〜2.0質量部とするのが望ましいということができる。   As is apparent from the results in Table 4 above, the amount of SBR (water-insoluble polymer) used as the water-insoluble binder of the hydrogen storage alloy negative electrode is 2.5 parts by mass with respect to 100 parts by mass of the hydrogen storage alloy powder. It can be seen that in the battery C4, the V-I slope is as large as 2.58 mΩ. This is presumably because the reaction resistance increased as the amount of SBR added increased. On the other hand, when there is too little addition amount of SBR, the adhesiveness of hydrogen storage alloy particles will fall, and electrode plate intensity | strength will become weak. Therefore, the amount of SBR (water-insoluble polymer) added as the water-insoluble binder of the hydrogen storage alloy negative electrode is 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the hydrogen storage alloy powder. It can be said that it is desirable.

なお、非水溶性ポリマーとしては、上述したSBR(スチレン−ブタジエン−ラテックス)以外に、アクリル酸エステル−メタクリル酸エステル共重合体、NBR(アクリロニトリル−ブタジエン−ラテックス)、アクリレート−ブタジエン−ラテックス等の水素吸蔵合金粉末を保持することが可能なアクリル酸エステル、メタクリル酸エステル、芳香族オレフィン、共役ジエン、オレフィンから選択される二種以上を含む共重合体から選択して用いるようにしてもよい。この場合、水素吸蔵合金スラリーの作製時に均一分散が容易なエマルジョンまたはラテックスの状態で用いるのが望ましい。   As the water-insoluble polymer, in addition to the above-mentioned SBR (styrene-butadiene-latex), hydrogen such as acrylic ester-methacrylic ester copolymer, NBR (acrylonitrile-butadiene-latex), acrylate-butadiene-latex, etc. You may make it select and use from the copolymer containing 2 or more types selected from the acrylic acid ester which can hold | maintain a storage alloy powder, a methacrylic acid ester, an aromatic olefin, a conjugated diene, and an olefin. In this case, it is desirable to use it in the state of an emulsion or latex that can be easily uniformly dispersed during the production of the hydrogen storage alloy slurry.

なお、上述した実施形態においては、組成式がMm0.89Mg0.11Ni3.2Co0.1Al0.2で表される水素吸蔵合金を用いる例について説明したが、水素吸蔵合金としてはこれに限らない。 In the above-described embodiment, an example in which the hydrogen storage alloy represented by the composition formula Mm 0.89 Mg 0.11 Ni 3.2 Co 0.1 Al 0.2 is described, but the hydrogen storage alloy is not limited thereto.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically. 放電レート(It)に対する電池電圧(V)の関係(V−I特性)を示す図である。It is a figure which shows the relationship (V-I characteristic) of the battery voltage (V) with respect to discharge rate (It). 放電レート(It)に対する電池出力(W)の関係を示す図である。It is a figure which shows the relationship of the battery output (W) with respect to discharge rate (It).

符号の説明Explanation of symbols

10…ニッケル−水素蓄電池、11…水素吸蔵合金負極、11a…導電性芯体、11b…負極活物質層、11c…負極集電体、12…ニッケル正極、12a…正極集電体、12b…焼結体、12c…正極集電体、12d…リード部、13…セパレータ、14…金属製外装缶、14a…環状溝部、16…封口ガスケット、15…封口体、15a…正極キャップ、15b…蓋体
DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Hydrogen storage alloy negative electrode, 11a ... Conductive core, 11b ... Negative electrode active material layer, 11c ... Negative electrode collector, 12 ... Nickel positive electrode, 12a ... Positive electrode collector, 12b ... Firing Bonded body, 12c ... positive electrode current collector, 12d ... lead part, 13 ... separator, 14 ... metal outer can, 14a ... annular groove part, 16 ... sealing gasket, 15 ... sealing body, 15a ... positive electrode cap, 15b ... lid body

Claims (6)

水素吸蔵合金粉末を負極活物質とする水素吸蔵合金電極であって、
前記水素吸蔵合金電極は水素吸蔵合金粉末と非水溶性ポリマーからなる結着剤とを備えているとともに、
前記水素吸蔵合金電極の電極容量(X)に対する電極表面積(Y)の割合(Y/X)が70cm2/Ah以上(Y/X≧70cm2/Ah)で、かつ前記水素吸蔵合金電極の活物質保持体として用いられている導電性芯体の電極状態での表面粗さ(Ra)は2〜8μm(2μm≦Ra≦8μm)であることを特徴とする水素吸蔵合金電極。
A hydrogen storage alloy electrode using a hydrogen storage alloy powder as a negative electrode active material,
The hydrogen storage alloy electrode includes a hydrogen storage alloy powder and a binder composed of a water-insoluble polymer,
The ratio (Y / X) of the electrode surface area (Y) to the electrode capacity (X) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah), and the activity of the hydrogen storage alloy electrode A hydrogen storage alloy electrode characterized in that the surface roughness (Ra) of the conductive core used as a substance holding body in an electrode state is 2 to 8 μm (2 μm ≦ Ra ≦ 8 μm).
前記水素吸蔵合金電極中の前記非水溶性ポリマーの含有割合は前記水素吸蔵合金粉末の質量に対して0.5質量%以上で2.0質量%以下であることを特徴とする請求項1に記載の水素吸蔵合金電極。   The content ratio of the water-insoluble polymer in the hydrogen storage alloy electrode is 0.5 mass% or more and 2.0 mass% or less with respect to the mass of the hydrogen storage alloy powder. The hydrogen storage alloy electrode as described. 前記非水溶性ポリマーはアクリル酸エステル、メタクリル酸エステル、芳香族オレフィン、共役ジエン、オレフィンから選択される二種以上を含む共重合体から選択されることを特徴とする請求項1または請求項2に記載の水素吸蔵合金電極。   The said water-insoluble polymer is selected from the copolymer containing 2 or more types selected from an acrylic ester, a methacrylic ester, an aromatic olefin, a conjugated diene, and an olefin, The Claim 1 or Claim 2 characterized by the above-mentioned. 2. A hydrogen storage alloy electrode according to 1. 前記水素吸蔵合金電極の活物質保持体として用いられている導電性芯体の厚みは10μm以上で150μm以下であることを特徴とする請求項1から請求項3のいずれかに記載の水素吸蔵合金電極。   4. The hydrogen storage alloy according to claim 1, wherein a thickness of the conductive core used as an active material holding body of the hydrogen storage alloy electrode is 10 μm or more and 150 μm or less. 5. electrode. 水素吸蔵合金粉末を負極活物質とする水素吸蔵合金電極の製造方法であって、
水素吸蔵合金粉末と非水溶性ポリマーからなる結着剤と水とを混練してスラリー密度が2.0g/cm3以上で3.5g/cm3以下の範囲になるように水素吸蔵合金スラリーを調整するスラリー調整工程と、
前記スラリー密度が調整された水素吸蔵合金スラリーを活物質保持体となる導電性芯体に塗着してスラリー塗着極板とするスラリー塗着工程と、
水素吸蔵合金電極の電極容量(X)に対する電極表面積(Y)の割合(Y/X)が70cm2/Ah以上(Y/X≧70cm2/Ah)となるように前記スラリー塗着極板を圧延、裁断する圧延裁断工程とを備えたことを特徴とする水素吸蔵合金電極の製造方法。
A method for producing a hydrogen storage alloy electrode using a hydrogen storage alloy powder as a negative electrode active material,
A hydrogen storage alloy slurry is prepared by kneading a hydrogen storage alloy powder, a binder composed of a water-insoluble polymer, and water so that the slurry density is in the range of 2.0 g / cm 3 to 3.5 g / cm 3. A slurry adjustment step to adjust;
A slurry coating step in which the hydrogen storage alloy slurry with the adjusted slurry density is coated on a conductive core serving as an active material holding body to form a slurry-coated electrode plate;
The slurry-coated electrode plate is adjusted so that the ratio (Y / X) of the electrode surface area (Y) to the electrode capacity (X) of the hydrogen storage alloy electrode is 70 cm 2 / Ah or more (Y / X ≧ 70 cm 2 / Ah). A method for producing a hydrogen storage alloy electrode, comprising: a rolling cutting step for rolling and cutting.
請求項1から請求項4のいずれかに記載の水素吸蔵合金電極と、正極と、セパレータと、アルカリ電解液とを外装缶内に備えたことを特徴とするアルカリ蓄電池。
5. An alkaline storage battery comprising: the hydrogen storage alloy electrode according to claim 1; a positive electrode; a separator; and an alkaline electrolyte in an outer can.
JP2005279526A 2005-09-27 2005-09-27 Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery Active JP4849856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279526A JP4849856B2 (en) 2005-09-27 2005-09-27 Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279526A JP4849856B2 (en) 2005-09-27 2005-09-27 Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007095334A JP2007095334A (en) 2007-04-12
JP4849856B2 true JP4849856B2 (en) 2012-01-11

Family

ID=37980804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279526A Active JP4849856B2 (en) 2005-09-27 2005-09-27 Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4849856B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334498B2 (en) * 2008-02-25 2013-11-06 三洋電機株式会社 Alkaline storage battery
JP2010108821A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Electrode for alkaline storage battery, and alkaline storage battery with the same
JP2019145446A (en) * 2018-02-23 2019-08-29 トヨタ自動車株式会社 Nickel hydrogen battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059836B2 (en) * 1992-09-17 2000-07-04 三洋電機株式会社 Method for producing hydrogen storage electrode
JP4031620B2 (en) * 2001-04-09 2008-01-09 松下電器産業株式会社 Nickel metal hydride storage battery and method of using the same
JP4698291B2 (en) * 2005-05-31 2011-06-08 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JP2007095334A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP5196938B2 (en) Alkaline storage battery system
JP5207750B2 (en) Alkaline storage battery
JP2011216467A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery including negative electrode having the alloy, and alkaline storage battery system
US5935732A (en) Hydrogen absorbing electrode and its manufacturing method
JP5405167B2 (en) Alkaline storage battery system
JP2001102084A (en) Alkali storage battery and method for manufacturing it
JPH09265976A (en) Non-aqueous electrolytic secondary battery and its manufacture
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP4698291B2 (en) Alkaline storage battery
JP5127369B2 (en) Alkaline storage battery
JP5456326B2 (en) Alkaline storage battery and method of manufacturing the same
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP5213312B2 (en) Alkaline storage battery
JP3478030B2 (en) Alkaline storage battery
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP4720066B2 (en) Lead-acid battery and manufacturing method thereof
JP5334498B2 (en) Alkaline storage battery
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP2797554B2 (en) Nickel cadmium storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP2001266860A (en) Nickel hydrogen storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP4067524B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R151 Written notification of patent or utility model registration

Ref document number: 4849856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3