JP5415043B2 - Negative electrode for alkaline storage battery and alkaline storage battery - Google Patents
Negative electrode for alkaline storage battery and alkaline storage battery Download PDFInfo
- Publication number
- JP5415043B2 JP5415043B2 JP2008219294A JP2008219294A JP5415043B2 JP 5415043 B2 JP5415043 B2 JP 5415043B2 JP 2008219294 A JP2008219294 A JP 2008219294A JP 2008219294 A JP2008219294 A JP 2008219294A JP 5415043 B2 JP5415043 B2 JP 5415043B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- storage battery
- alkaline storage
- alkaline
- hydrogen storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池及びこのアルカリ蓄電池の負極に使用するアルカリ蓄電池用負極に係り、特に、Mg−Ni−希土類系水素吸蔵合金を用いたアルカリ蓄電池用負極を改善し、このアルカリ蓄電池用負極を用いたアルカリ蓄電池を繰り返して充放電させた場合に、上記の水素吸蔵合金がアルカリ電解液によって酸化されたり、電池の内部抵抗が上昇したりするのを防止し、充放電サイクル特性に優れたアルカリ蓄電池が得られるようにした点に特徴を有するものである。 The present invention relates to an alkaline storage battery including a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, and an alkaline storage battery negative electrode used for the negative electrode of the alkaline storage battery, and in particular, Mg-Ni-rare earth hydrogen. When the negative electrode for an alkaline storage battery using a storage alloy is improved and the alkaline storage battery using the negative electrode for an alkaline storage battery is repeatedly charged and discharged, the hydrogen storage alloy is oxidized by the alkaline electrolyte or the inside of the battery This is characterized in that an increase in resistance is prevented and an alkaline storage battery excellent in charge / discharge cycle characteristics is obtained.
従来、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池が広く使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。 Conventionally, nickel-cadmium storage batteries have been widely used as alkaline storage batteries, but in recent years they have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have come to attract attention.
そして、近年においては、このようなニッケル・水素蓄電池からなるアルカリ蓄電池が各種のポータブル機器やハイブリッド電気自動車などに使用されるようになり、このアルカリ蓄電池をさらに高容量化させることが期待されている。 In recent years, alkaline storage batteries made of such nickel / hydrogen storage batteries have come to be used in various portable devices and hybrid electric vehicles, and it is expected that the capacity of these alkaline storage batteries will be further increased. .
ここで、このようなアルカリ蓄電池においては、その負極に使用する水素吸蔵合金として、一般にCaCu5型格子の結晶を主相とする希土類−ニッケル系水素吸蔵合金や、ラーベス型のAB2格子の結晶を主相とする水素吸蔵合金等が一般に使用されている。 Here, in such an alkaline storage battery, as a hydrogen storage alloy used for the negative electrode, a rare earth-nickel hydrogen storage alloy having a CaCu 5 type lattice crystal as a main phase or a Laves type AB 2 lattice crystal is generally used. In general, a hydrogen storage alloy having a main phase of is used.
しかし、上記の各水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、アルカリ蓄電池をさらに高容量化させることが困難であった。 However, each of the above hydrogen storage alloys does not necessarily have sufficient hydrogen storage capacity, and it has been difficult to further increase the capacity of the alkaline storage battery.
そこで、近年においては、上記の希土類−ニッケル系水素吸蔵合金における水素吸蔵能力を向上させるために、特許文献1等に示されるように、上記の希土類−ニッケル系水素吸蔵合金にMg等を含有させて、CaCu5型以外のCe2Ni7型やCeNi3型等の結晶構造を有するMg−Ni−希土類系水素吸蔵合金を用いることが提案されている。 Therefore, in recent years, in order to improve the hydrogen storage capacity in the rare earth-nickel hydrogen storage alloy, as shown in Patent Document 1 and the like, the rare earth-nickel hydrogen storage alloy contains Mg or the like. Thus, it has been proposed to use a Mg—Ni-rare earth-based hydrogen storage alloy having a crystal structure such as Ce 2 Ni 7 type or CeNi 3 type other than CaCu 5 type.
ここで、上記のような水素吸蔵合金は、一般にクラックが生じやすく、反応性の高い新しい面が放電反応に寄与するため、低温での放電特性や、高率放電時における放電容量は比較的良好である一方、水素吸蔵合金の耐食性が悪くなり、アルカリ蓄電池のサイクル寿命が大きく低下するという問題があった。 Here, the hydrogen storage alloy as described above is generally prone to cracking, and a new surface with high reactivity contributes to the discharge reaction. Therefore, discharge characteristics at low temperatures and discharge capacity at high rate discharge are relatively good. On the other hand, there is a problem that the corrosion resistance of the hydrogen storage alloy is deteriorated and the cycle life of the alkaline storage battery is greatly reduced.
このため、従来においては、特許文献2に示されるように、上記のようなMg−Ni−希土類系水素吸蔵合金の組成を改善して、上記の水素吸蔵合金における耐酸化性を向上させるようにしたものが提案されている。
For this reason, conventionally, as disclosed in
しかし、このようにMg−Ni−希土類系水素吸蔵合金の組成を改善して、上記の水素吸蔵合金における耐酸化性を向上させるようにしたものにおいても、依然として、上記の水素吸蔵合金粉末がアルカリ電解液によって酸化されたり、電池の内部抵抗が上昇したりするのを十分に防止することができず、アルカリ蓄電池のサイクル寿命を十分に向上させることができなかった。 However, even when the composition of the Mg—Ni—rare earth-based hydrogen storage alloy is improved to improve the oxidation resistance of the hydrogen storage alloy, the hydrogen storage alloy powder is still alkaline. It was not possible to sufficiently prevent oxidation by the electrolytic solution or increase in the internal resistance of the battery, and the cycle life of the alkaline storage battery could not be sufficiently improved.
また、従来においては、特許文献2に示されるように、上記のようなMg−Ni−希土類系水素吸蔵合金を用いたアルカリ蓄電池の負極にポリテトラフルオロエチレン等のフッ素樹脂を混合させ、この負極にアルカリ電解液が浸透するのを抑制し、充放電を繰り返した場合に、負極における上記の水素吸蔵合金粉末が微粉化したり、酸化したりするのを抑制して、アルカリ蓄電池のサイクル寿命を向上させるようにしたものも提案されている。
Conventionally, as shown in
しかし、上記のように負極にポリテトラフルオロエチレン等のフッ素樹脂を混合させてアルカリ電解液が負極に浸透するのを抑制させるようにしたアルカリ蓄電池においても、依然として、上記の水素吸蔵合金粉末がアルカリ電解液によって酸化されたり、電池の内部抵抗が上昇したりするのを十分に防止することができず、アルカリ蓄電池のサイクル寿命を十分に向上させることは困難であった。
本発明は、負極に水素吸蔵合金を用いたアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、特に、Mg−Ni−希土類系水素吸蔵合金にフッ素樹脂を含有させたアルカリ蓄電池用負極を用いたアルカリ蓄電池において、上記の水素吸蔵合金がアルカリ電解液によって酸化されたり、電池の内部抵抗が上昇したりするのを十分に防止して、アルカリ蓄電池のサイクル寿命を十分に向上させることを課題とするものである。 An object of the present invention is to solve the above-mentioned problems in an alkaline storage battery using a hydrogen storage alloy as a negative electrode, and in particular, a fluorine resin is contained in a Mg—Ni-rare earth-based hydrogen storage alloy. In the alkaline storage battery using the negative electrode for alkaline storage battery, the above hydrogen storage alloy is sufficiently prevented from being oxidized by the alkaline electrolyte or the internal resistance of the battery is increased, and the cycle life of the alkaline storage battery is sufficiently increased. The problem is to improve.
本発明におけるアルカリ蓄電池用負極においては、上記のような課題を解決するため、一般式Ln1-xMgxNiy-a-bAlaMb(式中、Lnは、Yを含む希土類元素とZrとTiとから選択される少なくとも1種の元素、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金と、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体とを含むようにした。 In the negative electrode for an alkaline storage battery according to the present invention, in order to solve the above-described problems, the general formula Ln 1-x Mg x Ni yab Al a M b (where Ln is a rare earth element including Y, Zr and Ti). And at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B. (It is one element and satisfies the conditions of 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9.) And a tetrafluoroethylene-perfluorovinyl ether copolymer.
そして、上記のアルカリ蓄電池用負極において、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体を含有させるにあたっては、このテトラフルオロエチレン−パーフルオロビニルエーテル共重合体を塗布等によって負極の表面に設けるようにする。アルカリ電解液がこのアルカリ蓄電池用負極内に浸透して、上記の水素吸蔵合金がアルカリ電解液によって酸化されるのを適切に防止させるために、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体を塗布等によって負極の表面に設ける。
In addition, when the tetrafluoroethylene-perfluorovinyl ether copolymer is contained in the alkaline storage battery negative electrode, the tetrafluoroethylene-perfluorovinyl ether copolymer is provided on the surface of the negative electrode by coating or the like . Applying a perfluorovinyl ether copolymer - A alkaline electrolyte penetrates into the negative electrode in for this alkaline storage battery, in order to the hydrogen absorbing alloy is appropriately prevented from being oxidized by the alkaline electrolyte, tetrafluoroethylene Ru is provided on the surface of the negative electrode by such.
また、上記のアルカリ蓄電池用負極においては、上記の水素吸蔵合金と、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体の他に、結着剤のスチレン・ブタジエン共重合体を含有させ、このスチレン・ブタジエン共重合体によってテトラフルオロエチレン−パーフルオロビニルエーテル共重合体をアルカリ蓄電池用負極に固定化させることが好ましい。 Further, the negative electrode for an alkaline storage battery described above contains a styrene / butadiene copolymer as a binder in addition to the hydrogen storage alloy and the tetrafluoroethylene-perfluorovinyl ether copolymer. It is preferable to fix the tetrafluoroethylene-perfluorovinyl ether copolymer to the negative electrode for an alkaline storage battery by the copolymer.
このように結着剤のスチレン・ブタジエン共重合体を含有させると、このスチレン・ブタジエン共重合体の粘着性により、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体が負極に固定化されるようになり、充放電を繰り返した際に、電池内においてアルカリ電解液の移動が生じても、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体を添加した効果が安定して得られるようになる。 When the styrene / butadiene copolymer as a binder is contained in this way, the tetrafluoroethylene-perfluorovinyl ether copolymer is fixed to the negative electrode due to the adhesiveness of the styrene / butadiene copolymer. When the charging / discharging is repeated, even if the alkaline electrolyte moves in the battery, the effect of adding the tetrafluoroethylene-perfluorovinyl ether copolymer can be stably obtained.
そして、本発明におけるアルカリ蓄電池においては、その負極に上記のようなアルカリ蓄電池用負極を用いるようにした。 And in the alkaline storage battery in this invention, the above negative electrodes for alkaline storage batteries were used for the negative electrode.
本発明のように、一般式Ln1-xMgxNiy-a-bAlaMb(式中、Lnは、Yを含む希土類元素とZrとTiとから選択される少なくとも1種の元素、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金を用いたアルカリ蓄電池用負極に、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体を含有させ、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体を負極の表面に存在させると、このテトラフルオロエチレン−パーフルオロビニルエーテル共重合体によって負極に十分な撥水性が付与されるようになる。
As in the present invention, the general formula Ln 1-x Mg x Ni yab Al a M b (where Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is It is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B, and 0.05 ≦ x ≦ 0 .30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9.)) For an alkaline storage battery negative electrode using a hydrogen storage alloy , tetrafluoroethylene - contain a perfluoro vinyl ether copolymer, tetrafluoroethylene - when Ru perfluoro vinyl ether copolymer is present on the surface of the anode, the tetrafluoroethylene - sufficient negative by perfluorovinyl ether copolymer Na Water repellency is imparted.
この結果、上記のようなアルカリ蓄電池用負極を用いたアルカリ蓄電池においては、この負極中にアルカリ電解液が浸透するのが適切に抑制され、上記の水素吸蔵合金がアルカリ電解液によって酸化されたり、セパレータ中におけるアルカリ電解液が減少して電池の内部抵抗が上昇したりするのが十分に防止され、アルカリ蓄電池のサイクル寿命が十分に向上されるようになる。 As a result, in the alkaline storage battery using the negative electrode for alkaline storage battery as described above, the alkaline electrolyte is appropriately prevented from penetrating into the negative electrode, and the hydrogen storage alloy is oxidized by the alkaline electrolyte, It is sufficiently prevented that the alkaline electrolyte in the separator is reduced and the internal resistance of the battery is increased, and the cycle life of the alkaline storage battery is sufficiently improved.
ここで、上記のテトラフルオロエチレン−パーフルオロビニルエーテル共重合体(以下、PFAと略す。)と、他のフッ素樹脂であるポリテトラフルオロエチレン(以下、PTFEと略す。)やテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下、FEPと略す。)と比較した場合、これらのフッ素樹脂自体の撥水性はほぼ同じであるが、これらのフッ素樹脂を含有させた負極を用いてアルカリ蓄電池を作製した場合、PFAを含有させた負極における撥水性が、PTFEやFEPを含有させた負極における撥水性よりも高くなり、負極中にアルカリ電解液が浸透するのが適切に抑制され、PTFEやFEPを含有させた負極を用いた場合と比べても、上記の水素吸蔵合金がアルカリ電解液によって酸化されたり、セパレータ中におけるアルカリ電解液が減少して電池の内部抵抗が上昇したりするのが十分に防止され、アルカリ蓄電池のサイクル寿命が十分に向上されるようになる。 Here, the above-mentioned tetrafluoroethylene-perfluorovinyl ether copolymer (hereinafter abbreviated as PFA) and other fluororesins such as polytetrafluoroethylene (hereinafter abbreviated as PTFE) and tetrafluoroethylene-hexafluoro. When compared with a propylene copolymer (hereinafter abbreviated as FEP), these fluororesins themselves have substantially the same water repellency, but when an alkaline storage battery is produced using a negative electrode containing these fluororesins. , The water repellency of the negative electrode containing PFA is higher than the water repellency of the negative electrode containing PTFE and FEP, and the penetration of the alkaline electrolyte into the negative electrode is appropriately suppressed, and PTFE and FEP are contained. Compared to the case of using a negative electrode, the above hydrogen storage alloy is oxidized by an alkaline electrolyte or separated. The internal resistance of the battery alkaline electrolyte is decreased or increased is sufficiently prevented in the middle, so that the cycle life of the alkaline storage battery is sufficiently improved.
ここで、上記のような撥水性は、一般に材質の持つ撥水特性の他に、物理的な表面状態によって決まり、同じような撥水性を有する材質であれば、微細な凹凸が多く存在する方が、撥水性が高くなる。 Here, the water repellency as described above is generally determined by the physical surface state in addition to the water repellency characteristic of the material. If the material has the same water repellency, there are many fine irregularities. However, the water repellency is increased.
そして、上記のPFAは、PTFEやFEPより機械的な変形に強いため、これらのフッ素樹脂を添加させて負極やアルカリ蓄電池を作製する際における折り曲げやこすれ等の力が加わった場合、上記のPFA粒子は、PTFE粒子やFEP粒子に比べてつぶれにくく、凹凸が維持された状態になり、これによってPFAを含む負極が、PTFEやFEPを含む負極より撥水性が大きくなると考えられる。 Since the above PFA is more resistant to mechanical deformation than PTFE and FEP, when a force such as bending or rubbing is applied when a negative electrode or an alkaline storage battery is added by adding these fluororesins, the above PFA is used. The particles are less likely to be crushed than the PTFE particles and the FEP particles, and are in a state in which the unevenness is maintained. Thus, it is considered that the negative electrode containing PFA has higher water repellency than the negative electrode containing PTFE or FEP.
また、上記のようにPFAは機械的な変形に強く、負極に折り曲げやこすれ等の力が加わった場合につぶれにくいが、PFAと水素吸蔵合金との接着部に上記のような力が集中して剥がれやすくなる。ここで、前記のように結着剤のスチレン・ブタジエン共重合体を含有させると、このスチレン・ブタジエン共重合体のゴム性や粘着性によってPFAが負極に強固に固定化することが可能になる。 In addition, as described above, PFA is resistant to mechanical deformation and is not easily crushed when a force such as bending or rubbing is applied to the negative electrode. However, the force as described above is concentrated on the bonding portion between the PFA and the hydrogen storage alloy. Easily peel off. Here, when the styrene / butadiene copolymer as a binder is contained as described above, the PFA can be firmly fixed to the negative electrode due to the rubber property and adhesiveness of the styrene / butadiene copolymer. .
以下、本発明の実施例に係るアルカリ蓄電池用負極及びこのアルカリ蓄電池用負極を用いたアルカリ蓄電池について説明すると共に、比較例を挙げ、本発明の実施例に係るアルカリ蓄電池用負極を用いたアルカリ蓄電池においては、水素吸蔵合金がアルカリ電解液により酸化されるのが適切に防止されて、サイクル寿命が向上されることを明らかにする。なお、本発明におけるアルカリ蓄電池用負極及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。 Hereinafter, the negative electrode for an alkaline storage battery according to an embodiment of the present invention and the alkaline storage battery using the negative electrode for an alkaline storage battery will be described, a comparative example will be given, and the alkaline storage battery using the negative electrode for an alkaline storage battery according to an embodiment of the present invention. , It is clarified that the hydrogen storage alloy is appropriately prevented from being oxidized by the alkaline electrolyte and the cycle life is improved. In addition, the negative electrode for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown to the following Example, In the range which does not change the summary, it can implement suitably.
(実施例1)
実施例1においては、アルカリ蓄電池を作製するにあたり、下記のようにして作製した負極と正極とを用いるようにした。
Example 1
In Example 1, when producing an alkaline storage battery, a negative electrode and a positive electrode produced as described below were used.
[負極の作製]
負極を作製するにあたっては、NdとSmとMgとNiとAlとを所定の合金組成になるように混合し、これをアルゴンガス雰囲気中において高周波誘導溶解炉を用いて溶融させた後、これを冷却させて水素吸蔵合金のインゴットを得た。
[Production of negative electrode]
In producing the negative electrode, Nd, Sm, Mg, Ni and Al are mixed so as to have a predetermined alloy composition, and this is melted in a high-frequency induction melting furnace in an argon gas atmosphere. After cooling, an ingot of hydrogen storage alloy was obtained.
次いで、この水素吸蔵合金のインゴットを不活性雰囲気中において熱処理して均質化させた後、この水素吸蔵合金のインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、質量積分50%にあたる平均粒径が65μmになった水素吸蔵合金の粉末を得た。ここで、このようにして得た水素吸蔵合金の組成を高周波プラズマ分光分析法(ICP)によって分析した結果、組成はNd0.36Sm0.54Mg0.10Ni3.33Al0.17になっていた。 Next, the hydrogen storage alloy ingot was heat treated in an inert atmosphere to be homogenized, and then the hydrogen storage alloy ingot was mechanically pulverized in an inert atmosphere and classified to obtain a mass integral of 50 %, A hydrogen storage alloy powder having an average particle size of 65 μm was obtained. Here, as a result of analyzing the composition of the hydrogen storage alloy thus obtained by high-frequency plasma spectroscopy (ICP), the composition was Nd 0.36 Sm 0.54 Mg 0.10 Ni 3.33 Al 0.17 .
そして、上記の水素吸蔵合金の粉末100質量部に対して、結着剤のスチレン・ブタジエン共重合ゴム(SBR)を1質量部、ポリアクリル酸ナトリウムを0.2質量部、カルボキシメチルセルロースを0.2質量部、ケッチェンブラックを1質量部、水を50質量部添加し、これらを25℃の環境下で混練させてペーストを調製した。 Then, 1 part by mass of styrene / butadiene copolymer rubber (SBR) as a binder, 0.2 part by mass of sodium polyacrylate, and 0. 2 parts by mass, 1 part by mass of ketjen black and 50 parts by mass of water were added, and these were kneaded in an environment of 25 ° C. to prepare a paste.
次いで、このペーストを、パンチングメタルからなる導電性芯体の両面に均一に塗布し、これを乾燥させてプレスした後、その表面にテトラフルオロエチレン−パーフルオロビニルエーテル共重合体(PFA)の分散液を、固形分のPFAの塗布量が0.4mg/cm2になるように塗布し、これを乾燥させて所定の寸法に切断して負極を作製した。
Next, the paste is uniformly applied to both surfaces of a conductive core made of punching metal, dried and pressed, and then a dispersion of tetrafluoroethylene-perfluorovinyl ether copolymer (PFA) is applied to the surface. Was applied so that the amount of PFA applied to the solid content was 0.4 mg / cm 2 , dried, and cut into a predetermined size to produce a negative electrode.
そして、このように作製した負極の表面に5μlの純水の液滴を滴下し、この負極の表面に接する液滴の接触角を水平方向から顕微鏡によって測定した結果、接触角は151度であった。なお、この接触角が大きくなるほど、負極表面の撥水性が高くなる。 Then, 5 μl of pure water droplets were dropped on the surface of the negative electrode thus prepared, and the contact angle of the droplets in contact with the negative electrode surface was measured from the horizontal direction with a microscope. As a result, the contact angle was 151 degrees. It was. Note that the greater the contact angle, the higher the water repellency of the negative electrode surface.
[正極の作製]
正極を作製するにあたっては、亜鉛を2.5質量%,コバルトを1.0質量%含有する水酸化ニッケル粉末を硫酸コバルト水溶液中に投入し、これを攪拌しながら、1モルの水酸化ナトリウム水溶液を徐々に滴下してpHを11にして反応させ、その後、沈殿物を濾過し、これを水洗し、真空乾燥させて、表面に水酸化コバルトが5質量%被覆された水酸化ニッケルを得た。
[Production of positive electrode]
In preparing the positive electrode, nickel hydroxide powder containing 2.5% by mass of zinc and 1.0% by mass of cobalt was charged into a cobalt sulfate aqueous solution, and 1 mol of sodium hydroxide aqueous solution was added while stirring the powder. Was gradually added dropwise to cause the reaction to
次いで、このように水酸化コバルトが被覆された水酸化ニッケルに、25質量%の水酸化ナトリウム水溶液を1:10の質量比になるように加えて含浸させ、これを8時間攪拌しながら85℃で加熱処理した後、これを水洗し、65℃で乾燥させて、上記の水酸化ニッケルの表面がナトリウム含有高次コバルト酸化物で被覆された正極活物質を得た。なお、上記のコバルト酸化物におけるコバルトの価数は2価を超える値であった。 Next, the nickel hydroxide thus coated with cobalt hydroxide was impregnated with a 25% by mass sodium hydroxide aqueous solution so as to have a mass ratio of 1:10. Then, this was washed with water and dried at 65 ° C. to obtain a positive electrode active material in which the nickel hydroxide surface was coated with sodium-containing higher cobalt oxide. In addition, the valence of cobalt in said cobalt oxide was a value exceeding 2 valences.
次いで、この正極活物質を95質量部、酸化亜鉛を3質量部、水酸化コバルトを2質量部の割合で混合させたものに、0.2質量%のヒドロキシプロピルセルロース水溶液を50質量部加え、これらを混合させてスラリーを調製した。 Next, 95 parts by mass of this positive electrode active material, 3 parts by mass of zinc oxide, and 2 parts by mass of cobalt hydroxide were added to 50 parts by mass of a 0.2% by mass hydroxypropylcellulose aqueous solution. These were mixed to prepare a slurry.
そして、このスラリーを目付けが約600g/m2、多孔度が95%、厚みが約2mmのニッケル発泡体に充填し、これを乾燥させて圧延させた後、所定の寸法に切断して非焼結式ニッケル極からなる正極を作製した。なお、この正極における正極活物質の密度は、約2.9g/cm3−voidになっていた。 Then, this slurry is filled in a nickel foam having a basis weight of about 600 g / m 2 , a porosity of 95% and a thickness of about 2 mm, dried and rolled, and then cut to a predetermined size and non-baked. A positive electrode made of a sintered nickel electrode was produced. In addition, the density of the positive electrode active material in this positive electrode was about 2.9 g / cm 3 -void.
そして、セパレータとしては、フッ素化ガスと亜硫酸ガスとでフッ素化処理してスルホン基を導入させたポリプロピレン製不織布を使用し、またアルカリ電解液としては、KOHとNaOHとLiOHとが15:2:1の質量比で含まれて比重が1.30になったアルカリ電解液を使用し、図1に示すような円筒型で設計容量が1500mAhのAAサイズになったアルカリ蓄電池を作製した。 And as a separator, the nonwoven fabric made from a polypropylene which carried out the fluorination process by the fluorination gas and the sulfurous acid gas and introduce | transduced the sulfone group is used, and KOH, NaOH, and LiOH are 15: 2: as an alkaline electrolyte. Using an alkaline electrolyte containing a mass ratio of 1 and having a specific gravity of 1.30, an alkaline storage battery having a cylindrical shape as shown in FIG. 1 and an AA size with a design capacity of 1500 mAh was produced.
ここで、上記のアルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間に上記のセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、この電池缶4内に上記のアルカリ電解液を2.2g注液させた後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に設けられたガス放出口6aを閉塞させるようにして、この正極蓋6と正極外部端子9との間にコイルスプリング10によって付勢された閉塞板11を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて、電池内部のガスが大気中に放出されるようにした。
Here, in producing the alkaline storage battery, as shown in FIG. 1, the separator 3 is interposed between the positive electrode 1 and the
(比較例1)
比較例1においては、上記の実施例1における負極の作製において、負極の表面に上記のPFAの分散液を塗布させないようにし、それ以外は、上記の実施例1の場合と同様にして、比較例1のアルカリ蓄電池を作製した。
(Comparative Example 1)
In Comparative Example 1, in the production of the negative electrode in Example 1 above, the dispersion of the PFA was not applied to the surface of the negative electrode, and the rest was the same as in Example 1 above. The alkaline storage battery of Example 1 was produced.
また、上記の負極の表面に5μlの純水の液滴を滴下し、この負極の表面に接する液滴の接触角を水平方向から顕微鏡によって測定した結果、接触角は87度であった。 In addition, 5 μl of pure water droplets were dropped on the surface of the negative electrode, and the contact angle of the droplets in contact with the negative electrode surface was measured with a microscope from the horizontal direction. As a result, the contact angle was 87 degrees.
(比較例2)
比較例2においては、上記の実施例1における負極の作製において、上記のPFAの分散液に代えて、ポリテトラフルオロエチレン(PTFE)の分散液を、固形分のPTFEの塗布量が0.4mg/cm2になるように負極の表面に塗布させて負極を作製し、それ以外は、上記の実施例1の場合と同様にして、比較例2のアルカリ蓄電池を作製した。
(Comparative Example 2)
In Comparative Example 2, in the production of the negative electrode in Example 1 described above, instead of the above-mentioned PFA dispersion, polytetrafluoroethylene (PTFE) dispersion was used, and the solid PTFE coating amount was 0.4 mg. An alkaline storage battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the negative electrode was produced by coating the surface of the negative electrode so as to be / cm 2 .
また、上記の負極の表面に5μlの純水の液滴を滴下し、この負極の表面に接する液滴の接触角を水平方向から顕微鏡によって測定した結果、接触角は144度であった。 In addition, 5 μl of pure water droplets were dropped on the surface of the negative electrode, and the contact angle of the droplets in contact with the negative electrode surface was measured with a microscope from the horizontal direction. As a result, the contact angle was 144 degrees.
(比較例3)
比較例3においては、上記の実施例1における負極の作製において、上記のPFAの分散液に代えて、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)の分散液を、固形分のFEPの塗布量が0.4mg/cm2になるように負極の表面に塗布させて負極を作製し、それ以外は、上記の実施例1の場合と同様にして、比較例3のアルカリ蓄電池を作製した。
(Comparative Example 3)
In Comparative Example 3, in the production of the negative electrode in Example 1 described above, instead of the above-mentioned PFA dispersion, a dispersion of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) was used. The negative electrode was produced by applying the negative electrode surface so that the coating amount was 0.4 mg / cm 2 , and an alkaline storage battery of Comparative Example 3 was produced in the same manner as in Example 1 above. .
また、上記の負極の表面に5μlの純水の液滴を滴下し、この負極の表面に接する液滴の接触角を水平方向から顕微鏡によって測定した結果、接触角は141度であった。 In addition, 5 μl of pure water droplets were dropped on the surface of the negative electrode, and the contact angle of the droplets in contact with the negative electrode surface was measured with a microscope from the horizontal direction. As a result, the contact angle was 141 degrees.
そして、上記のようにして作製した実施例1及び比較例1〜3の各アルカリ蓄電池を、それぞれ150mAの電流で16時間充電させた後、1500mAの電流で電池電圧が1.0Vになるまで放電させ、これを1サイクルとして3サイクルの充放電を行い、各アルカリ蓄電池を活性化させた。 Each of the alkaline storage batteries of Example 1 and Comparative Examples 1 to 3 manufactured as described above was charged at a current of 150 mA for 16 hours, and then discharged at a current of 1500 mA until the battery voltage reached 1.0 V. This was regarded as one cycle, and 3 cycles of charge / discharge were performed to activate each alkaline storage battery.
次いで、このように活性化させた実施例1及び比較例1〜3の各アルカリ蓄電池を、それぞれ1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて30分間放置した後、1500mAの電流で電池電圧が1.0Vになるまで放電させて30分間放置し、これを1サイクルとして充放電を繰り返して行い、各アルカリ蓄電池について放電容量が1000mAhになるまでのサイクル数を求め、比較例1のアルカリ蓄電池におけるサイクル数をサイクル寿命100として、各アルカリ蓄電池におけるサイクル寿命比を求め、その結果を下記の表1に示した。 Next, each of the alkaline storage batteries of Example 1 and Comparative Examples 1 to 3 activated in this way was charged until the battery voltage reached the maximum value at a current of 1500 mA, respectively, until the battery voltage decreased by 10 mV, and left for 30 minutes. After that, the battery is discharged at a current of 1500 mA until the battery voltage reaches 1.0 V and left for 30 minutes, and this is repeated as one cycle, and the number of cycles until the discharge capacity of each alkaline storage battery reaches 1000 mAh is determined. The number of cycles in the alkaline storage battery of Comparative Example 1 was determined as the cycle life 100, the cycle life ratio in each alkaline storage battery was determined, and the results are shown in Table 1 below.
また、上記のように活性化させた実施例1及び比較例1〜3の各アルカリ蓄電池を、上記の場合と同様にして200サイクルの充放電を行った後、各アルカリ蓄電池を分解し、これらを水洗してアルカリ電解液を取り除き、乾燥させた後、各アルカリ蓄電池の負極における水素吸蔵合金粉末を取り出し、酸素分析装置(LECO社製)を用い、不活性ガス中において融解抽出法により、各水素吸蔵合金粉末における酸素濃度(質量%)を測定し、比較例1における水素吸蔵合金粉末の酸素濃度を100として、各アルカリ蓄電池における水素吸蔵合金粉末の酸素濃度比を求め、その結果を下記の表1に示した。 Moreover, after charging / discharging each alkaline storage battery of Example 1 and Comparative Examples 1-3 activated as mentioned above for 200 cycles similarly to the above case, each alkaline storage battery was disassembled, and these After washing with water to remove the alkaline electrolyte and drying, the hydrogen storage alloy powder in the negative electrode of each alkaline storage battery was taken out, and each oxygen extraction device (manufactured by LECO) was used to extract each of the hydrogen storage alloy powders in an inert gas by a melt extraction method. The oxygen concentration (mass%) in the hydrogen storage alloy powder was measured, and the oxygen concentration ratio of the hydrogen storage alloy powder in each alkaline storage battery was determined with the oxygen concentration of the hydrogen storage alloy powder in Comparative Example 1 being 100. It is shown in Table 1.
この結果、前記の一般式に示される水素吸蔵合金を用いた負極に、フッ素樹脂のPFAや、PTFEや、FEPを表面に塗布させた負極を使用した実施例1及び比較例2,3の各アルカリ蓄電池は、フッ素樹脂を添加していない比較例1のアルカリ蓄電池に比べて、負極の表面における接触角の値が大幅に増加しており、負極における撥水性が大きく向上しており、特に、PFAを用いた実施例1のものは、PTFEやFEPを用いた比較例2,3のものに比べて、負極の表面における接触角の値がさらに大きくなって、負極における撥水性がさらに大きく向上していた。
As a result, each of Example 1 and Comparative Examples 2 and 3 in which the negative electrode using the hydrogen storage alloy represented by the above general formula was used with the negative electrode coated with fluororesin PFA, PTFE, or FEP on the surface. Compared to the alkaline storage battery of Comparative Example 1 in which no fluororesin is added, the alkaline storage battery has a greatly increased contact angle value on the surface of the negative electrode, and the water repellency at the negative electrode is greatly improved. Compared with Comparative Examples 2 and 3 using PTFE or FEP, the value of the contact angle on the surface of the negative electrode is larger in Example 1 using PFA and the water repellency in the negative electrode is further improved. Was.
また、フッ素樹脂のPFAや、PTFEや、FEPを表面に塗布させた負極を使用した実施例1及び比較例2,3の各アルカリ蓄電池は、フッ素樹脂を添加していない比較例1のアルカリ蓄電池に比べて、充放電を繰り返して行った場合におけるサイクル寿命が大きく向上すると共に、200サイクルの充放電を行った後における負極中における酸素濃度も大きく低下しており、アルカリ電解液によって上記の水素吸蔵合金が酸化されるのが抑制されていた。
Moreover, each alkaline storage battery of Example 1 and Comparative Examples 2 and 3 using a negative electrode having a fluororesin PFA, PTFE, or FEP coated on its surface is the alkaline storage battery of Comparative Example 1 to which no fluororesin is added. In comparison with the above, the cycle life in the case of repeated charge / discharge is greatly improved, and the oxygen concentration in the negative electrode after the 200 cycles of charge / discharge is also greatly reduced. Oxidation of the storage alloy was suppressed.
また、フッ素樹脂のPFAや、PTFEや、FEPを表面に塗布させた負極を使用した実施例1及び比較例2,3の各アルカリ蓄電池を比較した場合、PFAが表面に塗布されて撥水性が一番高くなった負極を用いた実施例1のアルカリ蓄電池は、PTFEやFEPが表面に塗布された負極を用いた比較例2,3のアルカリ蓄電池よりも、充放電を繰り返して行った場合におけるサイクル寿命がさらに大きく向上していた。
Also, PFA and fluorine resins, PTFE and, when compared with the alkaline storage batteries of Example 1 and Comparative Examples 2 and 3 were used a negative electrode was coated with FEP to the surface, PFA is is applied to the surface water repellent The alkaline storage battery of Example 1 using the highest negative electrode was obtained by repeatedly charging and discharging the alkaline storage battery of Comparative Examples 2 and 3 using the negative electrode coated with PTFE or FEP on the surface . The cycle life was further improved.
1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
6a ガス放出口
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
11 閉塞板
DESCRIPTION OF SYMBOLS 1
Claims (3)
An alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, wherein the negative electrode for an alkaline storage battery according to claim 1 or 2 is used for the negative electrode. An alkaline storage battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008219294A JP5415043B2 (en) | 2008-08-28 | 2008-08-28 | Negative electrode for alkaline storage battery and alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008219294A JP5415043B2 (en) | 2008-08-28 | 2008-08-28 | Negative electrode for alkaline storage battery and alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010055920A JP2010055920A (en) | 2010-03-11 |
JP5415043B2 true JP5415043B2 (en) | 2014-02-12 |
Family
ID=42071617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008219294A Active JP5415043B2 (en) | 2008-08-28 | 2008-08-28 | Negative electrode for alkaline storage battery and alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5415043B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012134110A (en) * | 2010-12-24 | 2012-07-12 | Fdk Twicell Co Ltd | Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode |
JP7037916B2 (en) * | 2017-11-10 | 2022-03-17 | Fdk株式会社 | Negative electrode for nickel-metal hydride secondary battery and nickel-metal hydride secondary battery including this negative electrode |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3469922B2 (en) * | 1993-10-04 | 2003-11-25 | 東芝電池株式会社 | Method for producing negative electrode for alkaline secondary battery |
JPH08185854A (en) * | 1994-12-28 | 1996-07-16 | Furukawa Electric Co Ltd:The | Hydrogen storage alloy electrode and alkaline secondary battery using it |
JP4615666B2 (en) * | 2000-03-28 | 2011-01-19 | パナソニック株式会社 | Manufacturing method of alkaline secondary battery electrode plate |
JP4642967B2 (en) * | 2000-04-24 | 2011-03-02 | 株式会社東芝 | Method for producing hydrogen storage alloy electrode, method for producing alkaline secondary battery, hybrid car and electric vehicle |
JP2005158654A (en) * | 2003-11-28 | 2005-06-16 | Sanyo Electric Co Ltd | Cylinder-shaped alkali storage battery |
JP2005190863A (en) * | 2003-12-26 | 2005-07-14 | Sanyo Electric Co Ltd | Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery |
JP5283435B2 (en) * | 2007-08-28 | 2013-09-04 | 三洋電機株式会社 | Alkaline storage battery |
JP5334426B2 (en) * | 2008-02-29 | 2013-11-06 | 三洋電機株式会社 | Negative electrode for alkaline storage battery and alkaline storage battery |
-
2008
- 2008-08-28 JP JP2008219294A patent/JP5415043B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010055920A (en) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5334426B2 (en) | Negative electrode for alkaline storage battery and alkaline storage battery | |
JP2011096619A (en) | Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery | |
JP4849854B2 (en) | Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery | |
JP5482029B2 (en) | Negative electrode for alkaline storage battery and alkaline storage battery | |
JP2012134110A (en) | Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode | |
JP5959003B2 (en) | Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery | |
JP2009076430A (en) | Negative electrode for alkaline storage battery, and alkaline storage battery | |
JP4958411B2 (en) | Hydrogen storage alloy electrode and alkaline storage battery | |
JP2018055811A (en) | Air electrode for air secondary battery and air-hydrogen secondary battery including the air electrode | |
JP4342186B2 (en) | Alkaline storage battery | |
JP5415043B2 (en) | Negative electrode for alkaline storage battery and alkaline storage battery | |
JP5219338B2 (en) | Method for producing alkaline storage battery | |
JP5283435B2 (en) | Alkaline storage battery | |
JP6422017B2 (en) | Hydrogen storage alloy, electrode and nickel metal hydride storage battery | |
JP2008210554A (en) | Negative electrode for alkaline storage battery, and alkaline storage battery | |
JP5196932B2 (en) | Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery | |
JP2006228536A (en) | Hydrogen storage alloy for alkaline storage battery and alkaline storage battery | |
US20090061317A1 (en) | Negative electrode for alkaline storage battery and alkaline storage battery | |
JP2009228096A (en) | Hydrogen storage alloy | |
JP2005190863A (en) | Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery | |
JP2005226084A (en) | Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery | |
JP6394955B2 (en) | Hydrogen storage alloy, electrode and nickel metal hydride storage battery | |
JP6120362B2 (en) | Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode | |
JP5183077B2 (en) | Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery | |
JP4115367B2 (en) | Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5415043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |