JP2005158654A - Cylinder-shaped alkali storage battery - Google Patents

Cylinder-shaped alkali storage battery Download PDF

Info

Publication number
JP2005158654A
JP2005158654A JP2003399232A JP2003399232A JP2005158654A JP 2005158654 A JP2005158654 A JP 2005158654A JP 2003399232 A JP2003399232 A JP 2003399232A JP 2003399232 A JP2003399232 A JP 2003399232A JP 2005158654 A JP2005158654 A JP 2005158654A
Authority
JP
Japan
Prior art keywords
negative electrode
main body
electrode
active material
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399232A
Other languages
Japanese (ja)
Inventor
Koichi Mukai
宏一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003399232A priority Critical patent/JP2005158654A/en
Publication of JP2005158654A publication Critical patent/JP2005158654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder-shaped alkali storage battery prevented from increase of inner pressure at charging, suitable for increasing its capacity, having a good high-rate discharge property. <P>SOLUTION: The cylinder-shaped alkali storage battery comprises a cylinder-shaped conductive outer case and an electrode group housed in the outer case together with alkaline electrolyte. The electrode group is formed by winding a negative electrode 26 and a positive electrode through a separator in a swirl-shape so as to locate the negative electrode 26 at an outermost periphery, and the outermost periphery composed of the negative electrode 26 is made to contact the inner wall of the outer case. The negative electrode includes a belt-shaped negative electrode core body 46 and activator layers 48, 50 held on the negative electrode core body 46. Further, the negative electrode 26 is composed of a main body part 52 wound at the inside of the electrode group and a thin thickness part 56 wound as an outermost part of the electrode group, of which the thickness of the activator layer 50 is thinner than that of the main body part 52. The activator layer 48, 50 of the main body part 52 has water repellent layers 58 on its surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は円筒型アルカリ蓄電池に関する。   The present invention relates to a cylindrical alkaline storage battery.

アルカリ蓄電池としては、含まれる活物質の種類によって、例えばニッケルカドミウム二次電池、ニッケル水素二次電池等をあげることができ、これらアルカリ蓄電池には、セパレータを間に挟んでそれぞれ帯状の負極と正極とを渦巻状に巻回した電極群を、負極端子を兼ねる円筒状の外装缶内に収容した円筒型のものがある。通常、負極は正極よりも長く、電極群の最外周部には負極が位置付けられる。これは、過充電時に正極で発生した酸素ガスを負極で還元して内圧上昇を防止すべく、正極容量に比べて大きな負極容量を確保するためであり(ノイマン式の原理)、それ故、電池容量は正極容量により規定される。   Examples of the alkaline storage battery include a nickel cadmium secondary battery and a nickel hydride secondary battery, depending on the type of active material included. There is a cylindrical type in which a group of electrodes wound in a spiral shape is housed in a cylindrical outer can that also serves as a negative electrode terminal. Usually, the negative electrode is longer than the positive electrode, and the negative electrode is positioned on the outermost periphery of the electrode group. This is to ensure a large negative electrode capacity compared to the positive electrode capacity in order to prevent the increase in internal pressure by reducing the oxygen gas generated at the positive electrode at the time of overcharge (Neumann principle), therefore, the battery The capacity is defined by the positive electrode capacity.

この種の円筒型アルカリ蓄電池は、広汎な用途に好適することから、各種性能の向上のため、様々な技術開発が行われている(例えば、特許文献1及び特許文献2)。
特許文献1が開示するアルカリ蓄電池では、負極の表面に撥水性樹脂が付与されている。撥水性樹脂は、負極表面のガス透過性を高めて負極内への酸素ガスの拡散を容易にし、これにより、急速充電時における電池内圧の上昇や、放電時の電圧低下が抑制されるものと考えられる。
Since this type of cylindrical alkaline storage battery is suitable for a wide range of applications, various technical developments have been made to improve various performances (for example, Patent Document 1 and Patent Document 2).
In the alkaline storage battery disclosed in Patent Document 1, a water-repellent resin is applied to the surface of the negative electrode. The water-repellent resin enhances the gas permeability of the negative electrode surface to facilitate the diffusion of oxygen gas into the negative electrode, thereby suppressing the increase in battery internal pressure during rapid charging and the voltage drop during discharging. Conceivable.

特許文献2が開示する円筒型アルカリ蓄電池は、電極群の最外周に位置付けられ、電池反応への寄与が少ない負極の部分の厚みを他の部分よりも薄肉化することで、体積効率を高めて高容量化を達成するものと考えられる。
特許第3345889号公報 特開平4−206474号公報
The cylindrical alkaline storage battery disclosed in Patent Document 2 is positioned on the outermost periphery of the electrode group, and the volume efficiency is increased by reducing the thickness of the negative electrode part that contributes less to the battery reaction than the other parts. It is thought that high capacity will be achieved.
Japanese Patent No. 334589 JP-A-4-206474

ところで、特許文献1のアルカリ蓄電池においては、負極表面に付与した撥水性樹脂が電気抵抗層となり、正極と負極との反応抵抗を増大させる。そればかりか、負極と負極端子(外装缶)との間の電気的接続が、電極群の最外周部に位置付けられた負極と外装缶の内周壁との直接接触により実現されている電池においては、この電気抵抗層の介在により負極と外装缶との間において電気抵抗が増大することから、ハイレート放電特性が低下してしまうという問題がある。   By the way, in the alkaline storage battery of patent document 1, the water-repellent resin provided to the negative electrode surface becomes an electric resistance layer, and increases the reaction resistance between the positive electrode and the negative electrode. In addition, in the battery in which the electrical connection between the negative electrode and the negative electrode terminal (external can) is realized by direct contact between the negative electrode positioned on the outermost peripheral portion of the electrode group and the inner peripheral wall of the external can. Since the electrical resistance increases between the negative electrode and the outer can due to the interposition of the electrical resistance layer, there is a problem that the high-rate discharge characteristics are deteriorated.

また、特許文献1の円筒型アルカリ蓄電池において、ノイマン式の原理を成立させるためには、薄肉化した負極の部分での負極活物質量の減少を、負極の他の部分における負極活物質量を増加させることで補償する必要がある。
しかしながら、かかる補償のために負極活物質量が増加した負極の部分では、負極活物質の密度が高くなってガスの拡散が妨げられ、酸素還元性能が低下するという問題がある。
In addition, in the cylindrical alkaline storage battery of Patent Document 1, in order to establish the Neumann principle, the decrease in the amount of the negative electrode active material in the thinned negative electrode portion is reduced, and the negative electrode active material amount in the other portion of the negative electrode is reduced. It is necessary to compensate by increasing.
However, in the portion of the negative electrode where the amount of the negative electrode active material has increased due to such compensation, there is a problem that the density of the negative electrode active material becomes high and gas diffusion is hindered, resulting in a reduction in oxygen reduction performance.

そして、活物質の高密度化により低下した酸素還元性能を改善するために、この負極の他の部分の表面に撥水性樹脂を付与した場合、その撥水作用により、活物質の高密度化により負極表面に偏在していたアルカリ電解液が電極群の最外周部に移動し、遊離電解液として存在するようになる。遊離電解液は、正極にて発生した酸素ガスを一時的に受け入れる電池内の余剰空間を占有することから、充電時に電池内圧が上昇し易くなるという問題が生じる。   And, in order to improve the oxygen reduction performance that has been lowered due to the increase in the density of the active material, when a water repellent resin is applied to the surface of the other part of the negative electrode, the water repellent action increases the density of the active material. The alkaline electrolyte that is unevenly distributed on the negative electrode surface moves to the outermost peripheral portion of the electrode group, and exists as a free electrolyte. Since the free electrolyte occupies an excessive space in the battery that temporarily receives oxygen gas generated at the positive electrode, there arises a problem that the internal pressure of the battery tends to increase during charging.

本発明は上記の問題を解決し、充電時の内圧上昇が防止され、高容量化に好適し且つ良好なハイレート放電特性を有する円筒型アルカリ蓄電池を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a cylindrical alkaline storage battery that prevents an increase in internal pressure during charging, is suitable for increasing the capacity, and has good high-rate discharge characteristics.

上記した目的を達成するため、請求項1の発明では、導電性の円筒状外装缶と、前記外装缶内にアルカリ電解液とともに収容され、帯状の負極芯体及びこの負極芯体に保持された活物質層を含む負極並びに正極をセパレータを介して前記負極が最外周に位置付けられるように渦巻状に巻回してなり、前記負極からなる最外周部が前記外装缶の内周壁に接する電極群とを備えた円筒型アルカリ蓄電池において、前記負極は、前記電極群の内側に巻回された本体部と、前記電極群の最外周部として巻回され、前記本体部に比べて、前記活物質層の厚みが薄い薄肉部とを含み、前記本体部の活物質層は表面に撥水層を有することを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, the conductive cylindrical outer can and the outer can are housed together with the alkaline electrolyte, and are held by the strip-shaped negative electrode core and the negative electrode core. A negative electrode including an active material layer and a positive electrode are wound in a spiral shape so that the negative electrode is positioned on the outermost periphery via a separator, and an outermost part composed of the negative electrode is in contact with an inner peripheral wall of the outer can In the cylindrical alkaline storage battery, the negative electrode is wound as a main body wound inside the electrode group and an outermost peripheral part of the electrode group, and the active material layer is compared with the main body part. A thin-walled portion, and the active material layer of the main body portion has a water-repellent layer on the surface.

上記した構成では、負極が薄肉部を有するので、円筒型アルカリ蓄電池は高容量化に好適する。また、負極の本体部は表面に撥水層を有するので、負極の本体部はガス透過性が向上して良好な酸素還元性能を発揮し、充電時の電池内圧上昇が防止される。一方、負極の薄肉部は表面に電気抵抗層となる撥水層が設けられていないので、負極と外装缶の内周壁との間での電気抵抗増加が防止され、ハイレート放電特性の低下が防止される。   In the above configuration, since the negative electrode has a thin portion, the cylindrical alkaline storage battery is suitable for increasing the capacity. Further, since the main body portion of the negative electrode has a water-repellent layer on the surface, the main body portion of the negative electrode has improved gas permeability and exhibits good oxygen reduction performance, thereby preventing an increase in battery internal pressure during charging. On the other hand, the thin-walled part of the negative electrode is not provided with a water-repellent layer serving as an electric resistance layer on the surface, preventing an increase in electric resistance between the negative electrode and the inner peripheral wall of the outer can and preventing a decrease in high-rate discharge characteristics Is done.

請求項2の発明では、前記本体部の活物質層は、前記薄肉部の活物質層よりも単位体積当りに多くの活物質を含むことを特徴としている。
上記した構成によれば、負極の本体部における活物質層に、薄肉部における活物質層よりも単位体積あたりに多くの負極活物質を含ませることで、薄肉部における活物質層の薄肉化による負極活物質量の減少を補償することができる。従って、この構成によれば、正極容量に対して十分な負極容量が確保され、過充電時に正極で発生した酸素ガスを負極で還元して内圧上昇を防止することができる。
The invention according to claim 2 is characterized in that the active material layer of the main body part contains more active material per unit volume than the active material layer of the thin-walled part.
According to the above configuration, the active material layer in the main body portion of the negative electrode contains more negative electrode active material per unit volume than the active material layer in the thin wall portion, thereby reducing the thickness of the active material layer in the thin wall portion. A decrease in the amount of the negative electrode active material can be compensated. Therefore, according to this configuration, a sufficient negative electrode capacity with respect to the positive electrode capacity is ensured, and oxygen gas generated at the positive electrode during overcharge can be reduced at the negative electrode to prevent an increase in internal pressure.

請求項3の発明では、前記薄肉部の長さは、前記外装缶の内周壁の周長さに対して85%〜115%の範囲内にあることを特徴としている。
上記した構成によれば、外装缶の内周壁の周方向全域に亘り薄肉部を接触させることが可能であり、負極と外装缶との間における電気抵抗の増大を防止し、良好なハイレート放電特性を確保することができる。また、薄肉部と外装缶とが、周方向全域に亘り接触可能であることから、薄肉部への局所的な電流の集中が防止され、薄肉部の負極活物質の早期劣化が防止されるので、良好なサイクル寿命を確保することができる。
According to a third aspect of the present invention, the length of the thin wall portion is in the range of 85% to 115% with respect to the peripheral length of the inner peripheral wall of the outer can.
According to the above-described configuration, it is possible to contact the thin portion over the entire circumferential direction of the inner peripheral wall of the outer can, preventing an increase in electrical resistance between the negative electrode and the outer can, and good high-rate discharge characteristics Can be secured. In addition, since the thin-walled portion and the outer can can be contacted over the entire circumferential direction, local current concentration on the thin-walled portion is prevented, and early deterioration of the negative-electrode active material in the thin-walled portion is prevented. A good cycle life can be ensured.

請求項4の発明では、前記外装缶の内周壁の周長さと略等しい長さを有することを特徴としている。
上記した構成によれば、外装缶の内周壁の周方向全域に対して薄肉部を確実に接触させることができる。従って、良好なハイレート特性及びサイクル寿命を確保することができる。
The invention according to claim 4 is characterized by having a length substantially equal to the peripheral length of the inner peripheral wall of the outer can.
According to the above configuration, the thin portion can be reliably brought into contact with the entire circumferential direction of the inner peripheral wall of the outer can. Therefore, good high rate characteristics and cycle life can be ensured.

本発明の円筒型アルカリ蓄電池は、高容量化に好適し且つ良好なハイレート放電特性を有する(請求項1)。
また、本発明の円筒型アルカリ蓄電池は、充電時の内圧上昇が防止され、高容量化により好適する(請求項2)。
更に、本発明の円筒型アルカリ蓄電池は、良好なハイレート放電特性及びサイクル寿命が確保されている(請求項3及び請求項4)。
The cylindrical alkaline storage battery of the present invention is suitable for high capacity and has good high-rate discharge characteristics (claim 1).
In addition, the cylindrical alkaline storage battery of the present invention is suitable for higher capacity because it prevents an increase in internal pressure during charging (claim 2).
Furthermore, the cylindrical alkaline storage battery according to the present invention ensures good high-rate discharge characteristics and cycle life (claims 3 and 4).

以下に添付の図面を参照して、本発明の一実施形態の円筒型ニッケル水素二次電池(以下、電池Aという)を詳細に説明する。
図1に示したように、電池Aは上端が開口した有底円筒形状をなす外装缶10を備え、外装缶10は導電性を有して負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性の蓋板14が配置され、開口縁をかしめ加工することにより絶縁パッキン12及び蓋板14は開口内に固定されている。
A cylindrical nickel-hydrogen secondary battery (hereinafter referred to as battery A) according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
As shown in FIG. 1, the battery A includes an outer can 10 having a bottomed cylindrical shape with an open upper end, and the outer can 10 has conductivity and functions as a negative electrode terminal. In the opening of the outer can 10, a conductive cover plate 14 is disposed via a ring-shaped insulating packing 12, and the insulating packing 12 and the cover plate 14 are fixed in the opening by caulking the opening edge. Yes.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に蓋板14の外面上には、弁体18を覆う帽子状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18とともに蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生してその内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。   The cover plate 14 has a gas vent hole 16 in the center, and a rubber valve element 18 is disposed on the outer surface of the cover plate 14 so as to close the gas vent hole 16. Further, a cap-shaped positive terminal 20 covering the valve body 18 is fixed on the outer surface of the cover plate 14, and the positive terminal 20 presses the valve body 18 against the cover plate 14. Accordingly, the outer can 10 is normally airtightly closed by the lid plate 14 together with the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and its internal pressure increases, the valve body 18 is compressed and the gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, and the positive electrode terminal 20 form a safety valve.

外装缶10内には、アルカリ電解液(図示せず)とともに略円柱状の電極群22が収容され、電極群22はその最外周部が外装缶10の内周壁に直接接触している。電極群22は、正極24、負極26及びセパレータ28からなり、アルカリ電解液としては、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができる。   A substantially cylindrical electrode group 22 is accommodated in the outer can 10 together with an alkaline electrolyte (not shown), and the outermost peripheral portion of the electrode group 22 is in direct contact with the inner peripheral wall of the outer can 10. The electrode group 22 includes a positive electrode 24, a negative electrode 26, and a separator 28. Examples of the alkaline electrolyte include a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, and an aqueous solution obtained by mixing two or more of these. Etc.

更に外装缶内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極24及び蓋板14に接続されている。従って、正極端子20と正極24との間は、正極リード30及び蓋板14を介して電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。   Further, in the outer can, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the lid plate 14, and both ends of the positive electrode lead 30 are connected to the positive electrode 24 and the lid plate 14. Therefore, the positive electrode terminal 20 and the positive electrode 24 are electrically connected via the positive electrode lead 30 and the lid plate 14. A circular insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit provided in the insulating member 32. A circular insulating member 34 is also disposed between the electrode group 22 and the bottom of the outer can 10.

図2を参照すると、電極群22において、正極24及び負極26は、セパレータ28を間に挟んだ状態で電極群22の径方向でみて交互に重ね合わされている。
より詳しくは、電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28を用意し、これら正極24及び負極26を、セパレータ28を介してそれらの一端側から巻芯を用いて渦巻状に巻回して形成される。このため、正極24及び負極26の一端(内端)36,38が電極群22の中心側に位置付けられる一方、正極24及び負極26の他端(外端)40,42が電極群22の外周側に位置付けられている。また、負極26は、正極24に比べて長く、正極内端36の内側から正極外端40の外側まで渦巻き状に延び、セパレータ28を介して正極24を長手方向全域に亘って両側から挟んでいる。電極群22の最外周部にはセパレータ28は巻回されておらず、負極26は電極群22の最外周部を形成している。電極群22の最外周部において、負極26と外装缶10とは互いに電気的に接続され、負極外端42は、セパレータ28を介して負極26が正極外端40の外側を覆うために十分な長さだけ離間して、正極外端40の近傍に位置付けられている。なお、巻回後に巻芯は引き抜かれるので、電極群22の中心部には、巻芯の形状に対応した空間44が存在している。
Referring to FIG. 2, in the electrode group 22, the positive electrode 24 and the negative electrode 26 are alternately overlapped when viewed in the radial direction of the electrode group 22 with the separator 28 interposed therebetween.
More specifically, each of the electrode groups 22 includes a strip-like positive electrode 24, a negative electrode 26, and a separator 28. It is formed by winding. Therefore, one end (inner end) 36, 38 of the positive electrode 24 and the negative electrode 26 is positioned on the center side of the electrode group 22, while the other end (outer end) 40, 42 of the positive electrode 24 and the negative electrode 26 is the outer periphery of the electrode group 22. Is located on the side. The negative electrode 26 is longer than the positive electrode 24, extends in a spiral shape from the inside of the positive electrode inner end 36 to the outer side of the positive electrode outer end 40, and sandwiches the positive electrode 24 from both sides across the entire longitudinal direction via the separator 28. Yes. The separator 28 is not wound around the outermost periphery of the electrode group 22, and the negative electrode 26 forms the outermost periphery of the electrode group 22. In the outermost peripheral portion of the electrode group 22, the negative electrode 26 and the outer can 10 are electrically connected to each other, and the negative electrode outer end 42 is sufficient for the negative electrode 26 to cover the outside of the positive electrode outer end 40 through the separator 28. It is positioned in the vicinity of the positive electrode outer end 40, separated by a length. Since the core is pulled out after winding, a space 44 corresponding to the shape of the core exists in the center of the electrode group 22.

セパレータ28の材質としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものをあげることができる。
正極24は、図示しないけれども帯状をなす導電性の正極芯体を有し、この芯体には正極合剤が保持されている。正極芯体としては、例えば、多孔質構造を有する発泡ニッケル基材等をあげることができ、発泡ニッケル基材の場合には、正極合剤は発泡ニッケル基材の連通孔内に保持される。
Examples of the material of the separator 28 include polyamide fiber nonwoven fabrics, and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene that are provided with hydrophilic functional groups.
Although not shown, the positive electrode 24 has a conductive positive electrode core having a strip shape, and a positive electrode mixture is held in the core. Examples of the positive electrode core include a foamed nickel base material having a porous structure. In the case of a foamed nickel base material, the positive electrode mixture is held in the communication hole of the foamed nickel base material.

正極合剤は、例えば、正極活物質、添加剤及び結着剤からなる。正極活物質としては、特に限定されないが、水酸化ニッケル粒子、あるいは、コバルト、亜鉛、カドミウム等を固溶した水酸化ニッケル粒子をあげることができる。また、添加剤としてはコバルト化合物からなる導電剤を、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。   The positive electrode mixture includes, for example, a positive electrode active material, an additive, and a binder. The positive electrode active material is not particularly limited, and examples thereof include nickel hydroxide particles or nickel hydroxide particles in which cobalt, zinc, cadmium or the like is dissolved. Examples of the additive include a conductive agent made of a cobalt compound, and examples of the binder include a hydrophilic or hydrophobic polymer.

負極26は、図3及び図4に展開して示したように、帯状をなす導電性の負極芯体46を有し、この負極芯体46には負極合剤が保持されている。負極芯体46は、厚み方向に複数の貫通孔(図示せず)を有するシート状の金属材からなり、このようなものとして、例えば、パンチングメタル、金属粉末焼結体基板、エキスパンデッドメタル及びニッケルネット等をあげることができる。とりわけ、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板は負極芯体46に好適する。なお、図1及び図2中、作図上の都合により、負極芯体46を省略した。   As shown in FIG. 3 and FIG. 4, the negative electrode 26 has a conductive negative electrode core 46 having a strip shape, and the negative electrode mixture 46 holds a negative electrode mixture. The negative electrode core 46 is made of a sheet-like metal material having a plurality of through holes (not shown) in the thickness direction, and examples thereof include a punching metal, a metal powder sintered body substrate, and an expanded metal. And nickel nets. In particular, a punched metal or a metal powder sintered body substrate obtained by molding and sintering a metal powder is suitable for the negative electrode core 46. In FIG. 1 and FIG. 2, the negative electrode core 46 is omitted for convenience of drawing.

負極合剤は、電池Aがニッケル水素二次電池であることから、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子及び結着剤からなる。尚、本明細書においては、説明の便宜上、水素吸蔵合金も負極活物質という。
水素吸蔵合金粒子は、電池Aの充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えば、LaNi5やMmNi5(Mmはミッシュメタル)等のAB5型系のものをあげることができる。また、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。更に必要に応じカーボンブラックやNi粉末等の導電剤を添加しても良い。なお、水素吸蔵合金に代えてカドミウム化合物を用いれば、電池Aをニッケルカドミウム二次電池とすることができるが、電池の容量向上にはニッケル水素二次電池が好適する。
Since the battery A is a nickel metal hydride secondary battery, the negative electrode mixture is composed of hydrogen storage alloy particles capable of storing and releasing hydrogen as a negative electrode active material and a binder. In the present specification, the hydrogen storage alloy is also referred to as a negative electrode active material for convenience of explanation.
The hydrogen storage alloy particles may be any particles that can store hydrogen generated electrochemically in an alkaline electrolyte when the battery A is charged and can easily release the stored hydrogen during discharge. Such a hydrogen storage alloy is not particularly limited, and examples thereof include AB 5 type alloys such as LaNi 5 and MmNi 5 (Mm is a misch metal). In addition, examples of the binder include hydrophilic or hydrophobic polymers. Further, a conductive agent such as carbon black or Ni powder may be added as necessary. If a cadmium compound is used instead of the hydrogen storage alloy, the battery A can be a nickel cadmium secondary battery, but a nickel hydride secondary battery is suitable for improving the battery capacity.

上記した負極合剤は、負極芯体46の貫通孔内に充填されるとともに、負極芯体46がシート状であることから、図3及び図4に示したように、負極芯体46の両面上に層状にして保持されて活物質層(合剤の層)を形成している。以下では、負極芯体46の内面を被覆し、電極群22の中心軸側を向いた負極合剤の層を内側水素吸蔵合金層48又は内側合金層48といい、負極芯体46の外面を被覆し、電極群22の外側を向いた負極合剤の層を外側水素吸蔵合金層50又は外側合金層50という。   The negative electrode mixture described above is filled in the through hole of the negative electrode core body 46, and the negative electrode core body 46 is in the form of a sheet. Therefore, as shown in FIGS. An active material layer (mixture layer) is formed by being layered on the top. Hereinafter, the layer of the negative electrode mixture that covers the inner surface of the negative electrode core 46 and faces the central axis side of the electrode group 22 is referred to as the inner hydrogen storage alloy layer 48 or the inner alloy layer 48, and the outer surface of the negative electrode core 46 is The layer of the negative electrode mixture that is covered and faces the outside of the electrode group 22 is referred to as an outer hydrogen storage alloy layer 50 or an outer alloy layer 50.

負極26において、内側合金層48の厚みT2は、負極内端38から負極外端42に亘って略一定である。一方、外側合金層50は、負極内端38と負極外端42との間で厚みが変化し、負極26は、外側合金層50の厚みに関して、負極芯体46の長手方向でみて3つの領域、すなわち、負極内端38から負極外端42に向かって順に、本体部52、境界部54および薄肉部56に区分けされる。   In the negative electrode 26, the thickness T 2 of the inner alloy layer 48 is substantially constant from the negative electrode inner end 38 to the negative electrode outer end 42. On the other hand, the thickness of the outer alloy layer 50 varies between the negative electrode inner end 38 and the negative electrode outer end 42, and the negative electrode 26 has three regions with respect to the thickness of the outer alloy layer 50 as viewed in the longitudinal direction of the negative electrode core 46. In other words, the main body 52, the boundary 54, and the thin portion 56 are sequentially divided from the negative inner end 38 toward the negative outer end 42.

本体部52は電極群22の内側に巻回され、セパレータ28を介して両側に正極24が配置されている。本体部52における外側合金層50の厚みは、内側合金層48の厚みT2に概略等しい。
境界部54は、本体部52と後述する薄肉部56との間に形成され、負極芯体46の長手方向でみて厚みが変化し、そして、電極群22として巻回されたとき、電極群22の周方向でみて、正極外端40とは異なる位置に位置付けられている。本実施形態では、境界部54は長さLを有し、境界部54における外側合金層50の厚みは、本体部52から薄肉部56に向かって略一定の変化率にて徐々に減少し、厚みT2から厚みT1まで変化する。
The main body 52 is wound inside the electrode group 22, and the positive electrode 24 is disposed on both sides with the separator 28 interposed therebetween. The thickness of the outer alloy layer 50 in the main body 52 is approximately equal to the thickness T2 of the inner alloy layer 48.
The boundary portion 54 is formed between the main body portion 52 and a thin-walled portion 56 to be described later, the thickness changes in the longitudinal direction of the negative electrode core 46, and the electrode group 22 when wound as the electrode group 22. When viewed in the circumferential direction, the positive electrode outer end 40 is positioned at a different position. In the present embodiment, the boundary portion 54 has a length L, and the thickness of the outer alloy layer 50 at the boundary portion 54 gradually decreases from the main body portion 52 toward the thin portion 56 at a substantially constant change rate, It changes from thickness T2 to thickness T1.

なお、負極26を平坦な基準面上に展開したときに、この基準面又は薄肉部56における外側合金層50の表面に対する、境界部54における外側合金層50の表面の傾斜角度をθとすると、傾斜角度θは、好ましい態様として、0°<θ<10°の範囲内に入っている。
薄肉部56は、負極26の最外周部として、電極群22の外側に巻回されて電極群22の最外周部を形成し、正極外端40の外側をセパレータ28を介して覆う一方、外装缶10の内周壁と密接する。薄肉部56における外側合金層50の厚みT1は、負極芯体46の長手方向でみて一定であり、且つ、本体部52における外側合金層50の厚み、すなわち内側合金層48の厚みT2よりも薄い。従って、薄肉部56においては、内側合金層48の方が外側合金層50よりも厚い。
When the negative electrode 26 is developed on a flat reference surface, the inclination angle of the surface of the outer alloy layer 50 in the boundary portion 54 with respect to the surface of the outer alloy layer 50 in the reference surface or the thin portion 56 is θ, The inclination angle θ is within a range of 0 ° <θ <10 ° as a preferred embodiment.
The thin-walled portion 56 is wound around the outer side of the electrode group 22 as the outermost peripheral portion of the negative electrode 26 to form the outermost peripheral portion of the electrode group 22, and covers the outer side of the positive electrode outer end 40 via the separator 28. Close contact with the inner peripheral wall of the can 10. The thickness T1 of the outer alloy layer 50 in the thin portion 56 is constant in the longitudinal direction of the negative electrode core 46, and is thinner than the thickness of the outer alloy layer 50 in the main body portion 52, that is, the thickness T2 of the inner alloy layer 48. . Therefore, in the thin portion 56, the inner alloy layer 48 is thicker than the outer alloy layer 50.

なお、薄肉部56の長さXdは、好ましい態様として、外装缶10の内周壁の周長さ、すなわち円周の85%〜115%の範囲内に入っており、より好ましくは、外装缶10の内周壁の円周に略等しく設定される。なお、内周壁の円周は、その内径dに基づいて求めることができる(図2参照)。
かくして負極26においては、本体部52よりも薄肉部56の方が薄い。
In addition, the length Xd of the thin part 56 is in the range of 85% to 115% of the circumferential length of the inner peripheral wall of the outer can 10, that is, the circumference, as a preferable mode, and more preferably, the outer can 10. Is set to be approximately equal to the circumference of the inner peripheral wall. The circumference of the inner peripheral wall can be obtained based on the inner diameter d (see FIG. 2).
Thus, in the negative electrode 26, the thin portion 56 is thinner than the main body portion 52.

そして、電池Aにおいては、負極26の本体部52の表面、つまり本体部52における内側合金層48及び外側合金層50の表面には、撥水層58が形成されている。撥水層58は、例えばPTFE(ポリテトラフルオロエチレン)からなるけれども、撥水層58の好適な材料としては、PTFE以外にも、FEP(フッ化エチレンプロピレン),PFA(テトラフルオロエチレン−ペルフルキロビニルエーテル),PCTFE(ポリクロロトリフルオロエチレン)及びPVDF(ポリフッ化ビニリデン)等のフッ素樹脂をあげることができる。なお、作図の都合上、図1及び2中、これら撥水層58は省略した。   In the battery A, a water repellent layer 58 is formed on the surface of the main body 52 of the negative electrode 26, that is, on the surfaces of the inner alloy layer 48 and the outer alloy layer 50 in the main body 52. Although the water repellent layer 58 is made of, for example, PTFE (polytetrafluoroethylene), as a suitable material for the water repellent layer 58, in addition to PTFE, FEP (fluorinated ethylene propylene), PFA (tetrafluoroethylene perfluoro) Examples thereof include fluororesins such as kilovinyl ether), PCTFE (polychlorotrifluoroethylene), and PVDF (polyvinylidene fluoride). For convenience of drawing, these water repellent layers 58 are omitted in FIGS.

撥水層58は、薄すぎると撥水性が乏しくなり、厚すぎると電気抵抗が大きくなるので、略10.0μm〜25.0μmの範囲内にあることが好ましい。ただし、図3及び4において、内側及び外側合金層48,50上に明瞭に区分けして撥水層58を示したが、撥水層58と内側及び外側合金層48,50との境界は明確である必要はない。
そしてその上、本体部52にて内側及び外側合金層48,50単位体積当りに含まれる水素吸蔵合金粒子の量は、薄肉部56にて内側及び外側合金層48,50の単位体積当りに含まれる水素吸蔵合金粒子の量よりも多く、換言すれば、本体部52は薄肉部56に比べて、内側及び外側合金層48,50における水素吸蔵合金密度が高い。
If the water repellent layer 58 is too thin, the water repellency will be poor, and if it is too thick, the electrical resistance will be large. Therefore, the water repellent layer 58 is preferably in the range of approximately 10.0 μm to 25.0 μm. 3 and 4, the water-repellent layer 58 is clearly shown on the inner and outer alloy layers 48 and 50, but the boundary between the water-repellent layer 58 and the inner and outer alloy layers 48 and 50 is clear. Need not be.
In addition, the amount of hydrogen storage alloy particles contained in the main body portion 52 per unit volume of the inner and outer alloy layers 48, 50 is included in the thin portion 56 per unit volume of the inner and outer alloy layers 48, 50. In other words, the main body 52 has a higher density of hydrogen storage alloys in the inner and outer alloy layers 48 and 50 than the thin portion 56.

また、負極26においては、好ましい態様として、薄肉部56の単位面積当りに含まれる水素吸蔵合金量は、本体部52の単位面積当りに含まれる水素吸蔵合金量の40%〜75%の範囲内に入っている。
上述した電池Aは、通常の方法を適用して製造することができるが、以下では負極26の製造方法の一例を説明する。
In the negative electrode 26, as a preferred embodiment, the amount of hydrogen storage alloy contained per unit area of the thin portion 56 is in the range of 40% to 75% of the amount of hydrogen storage alloy contained per unit area of the main body portion 52. In.
Although the battery A described above can be manufactured by applying a normal method, an example of a method for manufacturing the negative electrode 26 will be described below.

まず、負極芯体46となる例えばパンチングメタル及び負極合剤のペーストを用意し、薄肉部56となる部分には薄く且つ本体部52となる部分には厚くなるように、パンチングメタルにペーストを塗着して乾燥する。乾燥後、一対の圧延ロール間のギャップに通してその厚み方向両側から圧縮する。この圧延時、ロールの押圧力を、薄肉部56となる部分に比べて本体部52となる部分で大きくなるよう可変制御し、得られる負極26において、内側及び外側合金層48,50の単位体積当りに含まれる水素吸蔵合金量が、本体部52の方が薄肉部56に比べて多くなるようにする。それから、この圧延したものを所定の寸法に裁断して、帯状の負極26が製造される。次いで、本体部52となる部分の表面にPTFE若しくはFEP等の撥水性樹脂を濃度にして例えば60重量%含む溶液を塗布して乾燥させる。なお、境界部54の傾斜角度θは、塗着したペーストの厚みや押圧力の制御等により調整可能である。   First, a paste of, for example, punching metal and negative electrode mixture to be the negative electrode core 46 is prepared, and the paste is applied to the punching metal so that the thin portion 56 is thin and the main portion 52 is thick. Wear and dry. After drying, it is compressed from both sides in the thickness direction through a gap between a pair of rolling rolls. During this rolling, the pressing force of the roll is variably controlled so as to be larger in the portion serving as the main body portion 52 than in the portion serving as the thin portion 56, and in the negative electrode 26 obtained, the unit volume of the inner and outer alloy layers 48 and 50 is controlled. The amount of the hydrogen storage alloy contained per hit is set so that the main body portion 52 is larger than the thin portion 56. Then, the rolled product is cut into a predetermined size, and the strip-shaped negative electrode 26 is manufactured. Next, a solution containing, for example, 60% by weight of a water repellent resin such as PTFE or FEP is applied to the surface of the portion to be the main body 52 and dried. In addition, the inclination angle θ of the boundary portion 54 can be adjusted by controlling the thickness of the applied paste, the pressing force, or the like.

上記した構成の電池Aによれば、薄肉部56を本体部52に比べて薄くすることで減少した負極26の体積に対応して、正極24の体積を増大させることができる。この正極24の体積増大により、電池Aに含まれる正極活物質量を増大させることができ、もって電池Aの高容量化が達成される。
そして、電池Aにおいては、負極26の本体部52は、その表面に撥水層58が形成され、ガスの透過性が向上している。従って、充電時に正極24で発生した酸素ガスは、本体部52の内側及び外側合金層48,50内を容易に拡散可能なので、本体部52では酸素還元反応が迅速に進行し、電池Aでは充電時の内圧上昇が防止される。一方、負極26の薄肉部56の表面には、撥水層が形成されていないので、薄肉部56の外側合金層50は外装缶10の内周壁と直接密接している。従って、電池Aは、撥水層の介在による負極26と外装缶10との間の電気抵抗増大が防止され、良好なハイレート放電特性を有する。
According to the battery A having the above-described configuration, the volume of the positive electrode 24 can be increased corresponding to the volume of the negative electrode 26 that is reduced by making the thin portion 56 thinner than the main body portion 52. By increasing the volume of the positive electrode 24, the amount of the positive electrode active material contained in the battery A can be increased, and thus the capacity of the battery A can be increased.
In the battery A, the main body 52 of the negative electrode 26 has a water-repellent layer 58 formed on the surface thereof, and gas permeability is improved. Accordingly, the oxygen gas generated in the positive electrode 24 during charging can easily diffuse inside the main body portion 52 and inside the outer alloy layers 48 and 50, so that the oxygen reduction reaction proceeds rapidly in the main body portion 52, and the battery A is charged. The increase in internal pressure is prevented. On the other hand, since the water repellent layer is not formed on the surface of the thin portion 56 of the negative electrode 26, the outer alloy layer 50 of the thin portion 56 is in direct contact with the inner peripheral wall of the outer can 10. Therefore, the battery A is prevented from increasing the electric resistance between the negative electrode 26 and the outer can 10 due to the interposition of the water repellent layer, and has good high-rate discharge characteristics.

また、電池Aは、薄肉部56の薄肉化による負極活物質量の減少を、本体部52における内側及び外側合金層48,50の単位体積当りに含まれる水素吸蔵合金量を増大したことにより補償している。従って、電池Aは、正極容量に対して十分な負極容量が確保され、過充電時に正極24で発生した酸素ガスを負極26で還元して内圧上昇を防止することができ、高容量化により好適する。ここにおいて、電池Aでは、本体部52における内側及び外側合金層48,50の水素吸蔵合金密度が高くても、本体部52の表面に撥水層58が形成され、内側及び外側合金層48,50内に含まれるアルカリ電解液量が減少しているので、酸素ガスは本体部52の内側及び外側合金層48,50内を容易に拡散することができる。従って、本体部52に含まれる全ての水素吸蔵合金が酸素還元反応に有効に寄与することができ、酸素ガスが確実に還元されて内圧上昇が防止される。   In addition, the battery A compensates for the decrease in the amount of the negative electrode active material due to the thinning of the thin portion 56 by increasing the amount of the hydrogen storage alloy contained per unit volume of the inner and outer alloy layers 48 and 50 in the main body portion 52. doing. Therefore, the battery A has a sufficient negative electrode capacity with respect to the positive electrode capacity, can reduce the oxygen gas generated at the positive electrode 24 at the time of overcharge by the negative electrode 26 and prevent an increase in internal pressure, and is more suitable for higher capacity. To do. Here, in the battery A, even if the hydrogen storage alloy density of the inner and outer alloy layers 48 and 50 in the main body 52 is high, the water repellent layer 58 is formed on the surface of the main body 52, and the inner and outer alloy layers 48, Since the amount of the alkaline electrolyte contained in 50 is reduced, the oxygen gas can easily diffuse inside the body portion 52 and inside the outer alloy layers 48 and 50. Therefore, all the hydrogen storage alloys contained in the main body 52 can contribute effectively to the oxygen reduction reaction, and the oxygen gas is reliably reduced to prevent an increase in internal pressure.

そして、電池Aにおいて、薄肉部56は、その長さXdが外装缶10の内周壁の円周に85%〜115%の範囲内に入っており、内周壁のほぼ周方向全域に亘り接触することが可能である。ここで、下限の好適値を85%としたのは、電気抵抗の高い撥水層58を有する本体部52と外装缶10の内周壁との接触面積を制限しつつ、導電性の高い薄肉部56と外装缶10の内周壁との接触面積の最大化を図るためである。これにより、電池Aでは、負極26と外装缶10との間における電気抵抗の増大が防止され、良好なハイレート放電特性が確保される。また、本体部52と外装缶10の内周壁との接触面積を制限したことにより、導電性の高い薄肉部56への局所的な電流の集中が防止され、薄肉部56に含まれる負極活物質の早期劣化が防止される。それ故、電池Aでは良好なサイクル寿命も確保される。   In the battery A, the thin portion 56 has a length Xd within the range of 85% to 115% of the circumference of the inner peripheral wall of the outer can 10 and is in contact with substantially the entire circumferential direction of the inner peripheral wall. It is possible. Here, the preferable value of the lower limit was set to 85% because the thin-walled portion having high conductivity while limiting the contact area between the main body 52 having the water-repellent layer 58 having high electrical resistance and the inner peripheral wall of the outer can 10. This is to maximize the contact area between the inner wall 56 and the inner peripheral wall of the outer can 10. Thereby, in the battery A, an increase in electrical resistance between the negative electrode 26 and the outer can 10 is prevented, and good high-rate discharge characteristics are ensured. Further, by restricting the contact area between the main body 52 and the inner peripheral wall of the outer can 10, local current concentration on the thin portion 56 having high conductivity is prevented, and the negative electrode active material contained in the thin portion 56. Is prevented from premature deterioration. Therefore, the battery A also ensures a good cycle life.

一方、上限の好適値を115%としたのは、薄肉部56の長さXdがあまり長くなると、撥水層58の撥水性により本体部52から薄肉部56側へ移動してくるアルカリ電解液、即ち遊離電解液が増加し、電池A内の余剰空間が減少して内圧が上昇し易くなるからである。
なお、これらの理由から、薄肉部56の長さXdは外装缶10の内周壁の円周と略等しいことがより好ましい。
On the other hand, the preferable value of the upper limit is set to 115% because when the length Xd of the thin portion 56 becomes too long, the alkaline electrolyte moves from the main body portion 52 toward the thin portion 56 due to the water repellency of the water repellent layer 58. That is, the amount of free electrolyte increases, the excess space in the battery A decreases, and the internal pressure easily rises.
For these reasons, the length Xd of the thin portion 56 is more preferably substantially equal to the circumference of the inner peripheral wall of the outer can 10.

本発明は、上記した一実施形態に限定されることはなく、種々変形が可能であり、例えば、境界部54が外装缶10の内周壁に接触しないならば、境界部54の表面にも撥水層を形成してもよい。更には、薄肉部56においても、内側合金層48の表面に撥水層を形成してもよい。
また、薄肉部56において、外側合金層50のみを本体部52に比べて薄くするのではなく、内側及び外側合金層48,50の両方を薄くしてもよい。
The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, if the boundary portion 54 does not contact the inner peripheral wall of the outer can 10, the surface of the boundary portion 54 is repelled. An aqueous layer may be formed. Furthermore, a water repellent layer may be formed on the surface of the inner alloy layer 48 also in the thin portion 56.
Further, in the thin portion 56, not only the outer alloy layer 50 is made thinner than the main body portion 52, but both the inner and outer alloy layers 48, 50 may be made thinner.

そして、貫通孔を有するシート状の負極芯体46に代えて、正極24の場合と同様に、多孔質構造を有する基材、例えば発泡ニッケル基材を負極芯体に用いてもよい。この場合、発泡ニッケル基材の骨格が水素吸蔵合金層内を網目状に広がった状態で、水素吸蔵合金層は負極芯体によって保持される。   Then, instead of the sheet-like negative electrode core body 46 having through holes, a substrate having a porous structure, for example, a foamed nickel base material, may be used for the negative electrode core body as in the case of the positive electrode 24. In this case, the hydrogen storage alloy layer is held by the negative electrode core in a state in which the skeleton of the foamed nickel base material extends in a network shape in the hydrogen storage alloy layer.

実施例1〜4,比較例1〜9
1.電池の組み立て
実施例1〜4として、図1乃至図4に示した構成を有する単3サイズの円筒型ニッケル水素二次電池をそれぞれ100個ずつ組み立てた。
なお、実施例1,3及び4においては、撥水層58はPTFEからなり、実施例2においては、撥水層58はFEPからなる。そして、実施例1〜4においては、負極26の本体部52では、薄肉部56に比べて水素吸蔵合金密度が高くなっており、また、外装缶10の内周壁の周長さ(外装缶内周長)に対する薄肉部の長さXdの比が、それぞれ表1に示した値となるよう、薄肉部56の長さXdが設定されている。
Examples 1-4, Comparative Examples 1-9
1. Assembling of batteries As Examples 1 to 4, 100 AA-sized cylindrical nickel-hydrogen secondary batteries having the configurations shown in FIGS. 1 to 4 were assembled.
In Examples 1, 3 and 4, the water repellent layer 58 is made of PTFE, and in Example 2, the water repellent layer 58 is made of FEP. And in Examples 1-4, in the main-body part 52 of the negative electrode 26, the hydrogen storage alloy density is high compared with the thin part 56, and the peripheral length (inside the outer can) of the outer peripheral wall of the outer can 10 The length Xd of the thin portion 56 is set so that the ratio of the length Xd of the thin portion to the (circumferential length) becomes the value shown in Table 1, respectively.

比較例1及び2として、負極の本体部の表面に撥水層を形成しなかったことを除き、実施例1と同様にして、単3サイズの円筒型ニッケル水素二次電池をそれぞれ100個ずつ組み立てた。
比較例2及び3として、負極の本体部の表面に撥水層を形成しなかったことと、外装缶内周長に対する薄肉部の長さの比が85%以下もしくは115%以上であることを除き、実施例1と同様にして、単3サイズの円筒型ニッケル水素二次電池をそれぞれ100個ずつ組み立てた。
As Comparative Examples 1 and 2, 100 AA-size cylindrical nickel-metal hydride secondary batteries were respectively provided in the same manner as in Example 1 except that the water-repellent layer was not formed on the surface of the negative electrode body. Assembled.
As Comparative Examples 2 and 3, the water repellent layer was not formed on the surface of the main body of the negative electrode, and the ratio of the length of the thin portion to the inner peripheral length of the outer can was 85% or less or 115% or more. Except for this, in the same manner as in Example 1, 100 AA-sized cylindrical nickel-metal hydride secondary batteries were assembled.

比較例4として、負極の厚みを一定とし、且つその表面に撥水層を形成しなかったことを除き、実施例1及び2と同様にして、単3サイズの円筒型ニッケル水素二次電池を100個組み立てた。
比較例5として、負極の境界部及び薄肉部の表面にも撥水層を形成したことを除き、実施例1と同様にして、単3サイズの円筒型ニッケル水素二次電池を100個組み立てた。
As Comparative Example 4, an AA size cylindrical nickel-metal hydride secondary battery was prepared in the same manner as in Examples 1 and 2, except that the thickness of the negative electrode was constant and a water repellent layer was not formed on the surface. 100 pieces were assembled.
As Comparative Example 5, 100 AA-sized cylindrical nickel metal hydride secondary batteries were assembled in the same manner as in Example 1 except that a water-repellent layer was also formed on the surface of the boundary and the thin part of the negative electrode. .

比較例6として、負極の本体部に相当する部分の表面に、PTFEからなる撥水層を形成したことを除き、比較例4と同様にして、単3サイズの円筒型ニッケル水素二次電池を100個組み立てた。
比較例7として、負極の表面全域にPTFEからなる撥水層を形成したことを除き、比較例4と同様にして、単3サイズの円筒型ニッケル水素二次電池を100個組み立てた。
As Comparative Example 6, an AA size cylindrical nickel metal hydride secondary battery was prepared in the same manner as Comparative Example 4 except that a water repellent layer made of PTFE was formed on the surface of the portion corresponding to the main body of the negative electrode. 100 pieces were assembled.
As Comparative Example 7, 100 AA-sized cylindrical nickel-metal hydride secondary batteries were assembled in the same manner as Comparative Example 4 except that a water-repellent layer made of PTFE was formed on the entire surface of the negative electrode.

比較例8として、FEPからなる撥水層を形成したことを除き、比較例7と同様にして、単3サイズの円筒型ニッケル水素二次電池を100個ずつ組み立てた。
2.電池の特性評価試験
得られた実施例及び比較例の各電池について、以下の評価試験を行った。
(1)充電時の内圧測定
実施例及び比較例の各電池について、電池の内圧を測定可能な圧力センサを取り付けてから、1ItAの電流値で1.5時間充電を行い、この充電時の最大内圧を測定した。この結果を、比較例5の結果を100として規格化して表1に示した。なお、各電池の結果は100個の平均値である。
As Comparative Example 8, 100 AA-sized cylindrical nickel-hydrogen secondary batteries were assembled one by one in the same manner as Comparative Example 7 except that a water-repellent layer made of FEP was formed.
2. Battery Characteristic Evaluation Test The following evaluation tests were performed on the batteries of the obtained Examples and Comparative Examples.
(1) Measurement of internal pressure during charging For each of the batteries of the example and comparative example, after attaching a pressure sensor capable of measuring the internal pressure of the battery, charging was performed for 1.5 hours at a current value of 1 ItA, and the maximum during charging The internal pressure was measured. The results are shown in Table 1, normalized with the result of Comparative Example 5 being 100. In addition, the result of each battery is an average value of 100 pieces.

(2)ハイレート放電特性の測定
実施例及び比較例の各電池について、1ItAの電流値で1.5時間充電した後、3ItAの電流値で終止電圧1.0Vまで放電させたときの放電容量を測定した。この結果を、比較例5の結果を100として規格化して表1に示した。なお、各電池の結果は100個の平均値である。
(2) Measurement of high-rate discharge characteristics For each battery of the example and comparative example, after charging for 1.5 hours at a current value of 1 ItA, the discharge capacity when discharged to a final voltage of 1.0 V at a current value of 3 ItA It was measured. The results are shown in Table 1, normalized with the result of Comparative Example 5 being 100. In addition, the result of each battery is an average value of 100 pieces.

(3)サイクル寿命の測定
実施例及び比較例の各電池について、1ItAの電流値で1.5時間充電した後、放電容量を測定しながら1ItAの電流値で終止電圧1.0Vまで放電させる充放電サイクルを、放電容量が初期の放電容量の80%以下になるまで繰り返し、そのサイクル数を数えた。この結果を、比較例5の結果を100として規格化して表1に示した。なお、各電池の結果は100個の平均値である。
(3) Measurement of cycle life For each battery of the example and comparative example, after charging for 1.5 hours at a current value of 1 ItA, charging to discharge to a final voltage of 1.0 V at a current value of 1 ItA while measuring the discharge capacity. The discharge cycle was repeated until the discharge capacity became 80% or less of the initial discharge capacity, and the number of cycles was counted. The results are shown in Table 1, normalized with the result of Comparative Example 5 being 100. In addition, the result of each battery is an average value of 100 pieces.

Figure 2005158654
Figure 2005158654

表1からは以下のことが明らかである。
実施例1及び2と比較例1との比較から、負極26の本体部52の表面に撥水層58を形成すれば、充電時の内圧上昇を効果的に防止できることがわかる。
実施例1及び2と、比較例5との比較から、薄肉部56に撥水層を形成した場合、ハイレート放電特性が低下するとともに、充電時の内圧が高くなることがわかる。これは、薄肉部の撥水層の介在により、負極と外装缶との間で電気抵抗が増大したのと、薄肉部の表面からアルカリ電解液が電池の余剰空間に移動し、遊離電解液の増大により余剰空間が減少したためと考えられる。
From Table 1, the following is clear.
From the comparison between Examples 1 and 2 and Comparative Example 1, it can be seen that if the water-repellent layer 58 is formed on the surface of the main body 52 of the negative electrode 26, an increase in internal pressure during charging can be effectively prevented.
From comparison between Examples 1 and 2 and Comparative Example 5, it can be seen that when a water repellent layer is formed on the thin portion 56, the high-rate discharge characteristics are lowered and the internal pressure during charging is increased. This is because the electrical resistance increased between the negative electrode and the outer can due to the interposition of the water repellent layer in the thin wall portion, the alkaline electrolyte moved from the surface of the thin wall portion to the excess space of the battery, and the free electrolyte solution This is thought to be because the excess space decreased due to the increase.

実施例1及び2と、比較例6及び7との比較から、負極の最外周部を薄肉化しない場合、ハイレート放電特性及びサイクル寿命が低下することがわかる。これは、正極と対向しない負極の最外周部に含まれて、充放電反応に寄与しない水素吸蔵合金が多かったためと考えられる。特に、負極の最外周部の表面にも撥水層を形成した比較例7では、ハイレート放電特性の低下が顕著である。これは、もともと薄肉化しなかったことにより負極最外周部の導電性が低かったことに加えて、撥水層が電気抵抗層として作用したためと考えられる。   From a comparison between Examples 1 and 2 and Comparative Examples 6 and 7, it can be seen that the high rate discharge characteristics and the cycle life are reduced when the outermost peripheral portion of the negative electrode is not thinned. This is presumably because there were many hydrogen storage alloys that were included in the outermost peripheral portion of the negative electrode not facing the positive electrode and did not contribute to the charge / discharge reaction. In particular, in Comparative Example 7 in which the water-repellent layer is also formed on the surface of the outermost peripheral portion of the negative electrode, the deterioration of the high rate discharge characteristics is significant. This is presumably because the water-repellent layer acted as an electric resistance layer in addition to the fact that the conductivity of the outermost periphery of the negative electrode was low due to the fact that it was not originally thinned.

実施例1及び2と、実施例3との比較から、負極26の薄肉部56の長さが、外装缶10の内周壁の円周に対して50%となると、ハイレート放電特性及びサイクル寿命特性が低下することがわかる。これは、薄肉部56が短くなったことにより、本体部52が撥水層58を介して外装缶10の内周壁に接触し、負極26と外装缶10との間で電気抵抗が増大したことと、導電性の高い薄肉部56に電流が集中し、薄肉部56に含まれる水素吸蔵合金が早期に劣化したためと考えらる。   From comparison between Examples 1 and 2 and Example 3, when the length of the thin portion 56 of the negative electrode 26 is 50% with respect to the circumference of the inner peripheral wall of the outer can 10, high rate discharge characteristics and cycle life characteristics It turns out that falls. This is because the thin-walled portion 56 is shortened, so that the main body portion 52 comes into contact with the inner peripheral wall of the outer can 10 through the water-repellent layer 58, and the electrical resistance increases between the negative electrode 26 and the outer can 10. This is probably because the current is concentrated on the thin portion 56 having high conductivity, and the hydrogen storage alloy contained in the thin portion 56 has deteriorated early.

実施例1及び2と、実施例4との比較から、負極26の薄肉部56の長さが、外装缶10の内周壁の円周に対して150%となると、充電時に内圧が上昇することがわかる。これは、薄肉部56が長くなったことにより、薄肉部56周辺の遊離電解液が増加し、正極で発生したガスを一時的に蓄える余剰空間が減少したためと考えられる。
これらの結果より、負極26の薄肉部56の長さは、外装缶10の内周壁の円周に対して50%以上150%以下の範囲内にあるのが好ましいことがわかり、85%以上115%以下の範囲内にあるのがより好ましく、略同一であるのが最も好ましい。
From comparison between Examples 1 and 2 and Example 4, when the length of the thin portion 56 of the negative electrode 26 is 150% of the circumference of the inner peripheral wall of the outer can 10, the internal pressure increases during charging. I understand. This is considered to be because the free electrolytic solution around the thin portion 56 increased due to the length of the thin portion 56, and the surplus space for temporarily storing the gas generated at the positive electrode decreased.
From these results, it can be seen that the length of the thin portion 56 of the negative electrode 26 is preferably in the range of 50% or more and 150% or less with respect to the circumference of the inner peripheral wall of the outer can 10. % Is more preferable, and it is most preferable that they are substantially the same.

本発明の実施形態に係る円筒型ニッケル水素二次電池の部分切欠き斜視図である。1 is a partially cutaway perspective view of a cylindrical nickel-metal hydride secondary battery according to an embodiment of the present invention. 図1の電池の横断面図である。It is a cross-sectional view of the battery of FIG. 図1の電池に用いられる負極を展開して示した斜視図である。It is the perspective view which expanded and showed the negative electrode used for the battery of FIG. 図3の負極の側面図である。It is a side view of the negative electrode of FIG.

符号の説明Explanation of symbols

26 負極
46 負極芯体
48 内側水素吸蔵合金層(内側合金層)
50 外側水素吸蔵合金層(外側合金層)
52 本体部
54 境界部
56 薄肉部
58 撥水層
26 Negative electrode 46 Negative electrode core 48 Inner hydrogen storage alloy layer (inner alloy layer)
50 Outer hydrogen storage alloy layer (outer alloy layer)
52 Body 54 Boundary 56 Thin-walled 58 Water-repellent layer

Claims (4)

導電性の円筒状外装缶と、
前記外装缶内にアルカリ電解液とともに収容され、帯状の負極芯体及びこの負極芯体に保持された活物質層を含む負極並びに正極をセパレータを介して前記負極が最外周に位置付けられるように渦巻状に巻回してなり、前記負極からなる最外周部が前記外装缶の内周壁に接する電極群と
を備えた円筒型アルカリ蓄電池において、
前記負極は、
前記電極群の内側に巻回された本体部と、
前記電極群の最外周部として巻回され、前記本体部に比べて、前記活物質層の厚みが薄い薄肉部とを含み、
前記本体部の活物質層は表面に撥水層を有する
ことを特徴とする円筒型アルカリ蓄電池。
A conductive cylindrical outer can;
The outer can is housed together with an alkaline electrolyte, and a negative electrode including a strip-shaped negative electrode core, an active material layer held on the negative electrode core, and a positive electrode are swirled so that the negative electrode is positioned on the outermost periphery through a separator. In a cylindrical alkaline storage battery comprising an electrode group that is wound in a shape and the outermost peripheral portion made of the negative electrode is in contact with the inner peripheral wall of the outer can.
The negative electrode is
A main body wound inside the electrode group;
Wound as the outermost peripheral portion of the electrode group, including a thin portion where the thickness of the active material layer is thin compared to the main body portion,
The cylindrical alkaline storage battery, wherein the active material layer of the main body has a water repellent layer on the surface.
前記本体部の活物質層は、前記薄肉部の活物質層よりも単位体積当りに多くの活物質を含むことを特徴とする請求項1に記載の円筒型アルカリ蓄電池。   2. The cylindrical alkaline storage battery according to claim 1, wherein the active material layer of the main body includes more active material per unit volume than the active material layer of the thin-walled portion. 前記薄肉部の長さは、前記外装缶の内周壁の周長さに対して85%〜115%の範囲内にあることを特徴とする請求項2に記載の円筒型アルカリ蓄電池。   3. The cylindrical alkaline storage battery according to claim 2, wherein a length of the thin wall portion is in a range of 85% to 115% with respect to a peripheral length of an inner peripheral wall of the outer can. 前記薄肉部は、前記外装缶の内周壁の周長さと略等しい長さを有することを特徴とする請求項3に記載の円筒型アルカリ蓄電池。   4. The cylindrical alkaline storage battery according to claim 3, wherein the thin portion has a length substantially equal to a peripheral length of an inner peripheral wall of the outer can. 5.
JP2003399232A 2003-11-28 2003-11-28 Cylinder-shaped alkali storage battery Pending JP2005158654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399232A JP2005158654A (en) 2003-11-28 2003-11-28 Cylinder-shaped alkali storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399232A JP2005158654A (en) 2003-11-28 2003-11-28 Cylinder-shaped alkali storage battery

Publications (1)

Publication Number Publication Date
JP2005158654A true JP2005158654A (en) 2005-06-16

Family

ID=34723840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399232A Pending JP2005158654A (en) 2003-11-28 2003-11-28 Cylinder-shaped alkali storage battery

Country Status (1)

Country Link
JP (1) JP2005158654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055920A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Anode for alkaline storage battery and alkaline storage battery
WO2011001892A1 (en) * 2009-07-01 2011-01-06 ダイキン工業株式会社 Hydrogen storage alloy electrode and nickel hydrogen battery
JP2011129463A (en) * 2009-12-21 2011-06-30 Sanyo Electric Co Ltd Cadmium anode for alkaline secondary battery
EP3553853A1 (en) * 2018-04-13 2019-10-16 FDK Corporation Negative electrode for alkaline secondary battery, and alkaline secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055920A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Anode for alkaline storage battery and alkaline storage battery
WO2011001892A1 (en) * 2009-07-01 2011-01-06 ダイキン工業株式会社 Hydrogen storage alloy electrode and nickel hydrogen battery
CN102473906A (en) * 2009-07-01 2012-05-23 大金工业株式会社 Hydrogen storage alloy electrode and nickel hydrogen battery
JP5413460B2 (en) * 2009-07-01 2014-02-12 ダイキン工業株式会社 Hydrogen storage alloy electrode and nickel metal hydride battery
JP2011129463A (en) * 2009-12-21 2011-06-30 Sanyo Electric Co Ltd Cadmium anode for alkaline secondary battery
EP3553853A1 (en) * 2018-04-13 2019-10-16 FDK Corporation Negative electrode for alkaline secondary battery, and alkaline secondary battery
JP2019186125A (en) * 2018-04-13 2019-10-24 Fdk株式会社 Negative electrode for alkaline secondary battery and alkaline secondary battery
US11043664B2 (en) 2018-04-13 2021-06-22 Fdk Corporation Negative electrode for alkaline secondary battery, and alkaline secondary battery
JP7125218B2 (en) 2018-04-13 2022-08-24 Fdk株式会社 Negative electrode for alkaline secondary battery and alkaline secondary battery

Similar Documents

Publication Publication Date Title
US8048558B2 (en) Cylindrical nickel-zinc cell with negative can
JP4179943B2 (en) Cylindrical alkaline storage battery
WO2017090219A1 (en) Cylindrical battery
WO2017168963A1 (en) Nickel-hydrogen battery
US8563164B2 (en) Cylindrical type alkaline storage battery
JP4439220B2 (en) Cylindrical alkaline storage battery and cylindrical nickel metal hydride secondary battery
JP4359098B2 (en) Cylindrical alkaline storage battery
JPH09283133A (en) Nickel electrodefor alkaline storage battery and manufacture thereof
JP2005158654A (en) Cylinder-shaped alkali storage battery
JP4923389B2 (en) Sealed storage battery
EP2533330A1 (en) Negative electrode for a nickel-hydrogen rechargeable battery and a nickel-hydrogen rechargeable battery using the same
US11038238B2 (en) Alkaline secondary battery
JP4359099B2 (en) Cylindrical alkaline storage battery
JP2005056675A (en) Cylindrical alkaline battery
WO2021192978A1 (en) Alkaline storage battery
JP2013122862A (en) Cylindrical alkaline storage battery
JP5812421B2 (en) Cylindrical battery, lid structure
JP2005050771A (en) Battery
JP4383229B2 (en) Nickel metal hydride secondary battery
JP2004063325A (en) Cylindrical storage battery
JP2006019083A (en) Cylindrical alkaline battery
JP2001006724A (en) Cylindrical alkaline secondary battery
JP2000268888A (en) Air battery
JP2000138070A (en) Cylindrical alkaline secondary battery