JP2005135730A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2005135730A
JP2005135730A JP2003370026A JP2003370026A JP2005135730A JP 2005135730 A JP2005135730 A JP 2005135730A JP 2003370026 A JP2003370026 A JP 2003370026A JP 2003370026 A JP2003370026 A JP 2003370026A JP 2005135730 A JP2005135730 A JP 2005135730A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370026A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kumagai
潔 熊谷
Tadayoshi Tanaka
忠佳 田中
Yoshifumi Kiyoku
佳文 曲
Katsuhiko Niiyama
克彦 新山
Hiroshi Nakamura
宏 中村
Tetsuo Kadohata
哲郎 門畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003370026A priority Critical patent/JP2005135730A/en
Publication of JP2005135730A publication Critical patent/JP2005135730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery having an electrode body composed of a positive electrode supporting a positive electrode activator at a positive electrode support body on which, a positive electrode current collector is mounted; a negative electrode supporting a negative electrode activator at a negative electrode support body on which, a negative electrode current collector is mounted; and a separator, capable of obtaining sufficient preservation property even after charge/discharge cycle. <P>SOLUTION: On an alkaline storage battery having an electrode body 10 composed of a positive electrode 11 supporting a positive electrode activator at a positive electrode support body 11a on which, a positive electrode current collector 14 is mounted; a negative electrode 12 supporting a negative electrode activator at a negative electrode support body 12a on which, a negative electrode current collector 15 is mounted; a part of a separator, which is at least a neighboring area of the positive electrode supporting body or the negative electrode supporting body, is sulfonated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明はアルカリ蓄電池に係り、特に、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極と、セパレータとを備えた電極体において、上記の正極支持体に正極集電体が取り付けられると共に、上記の負極支持体に負極集電体が取り付けられてなるアルカリ蓄電池において、充放電サイクル後においても、十分な保存特性が得られるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery, and in particular, in an electrode body including a positive electrode in which a positive electrode active material is held on a positive electrode support, a negative electrode in which a negative electrode active material is held on a negative electrode support, and a separator. In the alkaline storage battery in which the positive electrode current collector is attached to the support and the negative electrode current collector is attached to the negative electrode support, sufficient storage characteristics can be obtained even after the charge / discharge cycle. It has characteristics.

従来より、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池やニッケル・水素蓄電池等が使用されている。   Conventionally, nickel / cadmium storage batteries, nickel / hydrogen storage batteries, and the like have been used as alkaline storage batteries.

また、近年においては、このようなアルカリ蓄電池が電動工具や電気自動車等に使用されるようになり、高率での充放電特性に優れた高出力のアルカリ蓄電池が要望されるようになった。   In recent years, such alkaline storage batteries have been used for electric tools, electric vehicles, and the like, and high output alkaline storage batteries excellent in charge / discharge characteristics at a high rate have been demanded.

そして、このようなアルカリ蓄電池として、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させて巻き取った電極体の端面において、上記の正極支持体や負極支持体に対してそれぞれ集電体を取り付け、正極や負極における集電性能を高めるようにしたものが提案されている(例えば、特許文献1及び特許文献2参照。)。   As such an alkaline storage battery, an electrode body wound up with a separator interposed between a positive electrode in which a positive electrode active material is held on a positive electrode support and a negative electrode in which a negative electrode active material is held on a negative electrode support. On the end faces, there have been proposed ones in which current collectors are attached to the positive electrode support and the negative electrode support, respectively, so as to enhance the current collection performance of the positive electrode and the negative electrode (for example, Patent Document 1 and Patent Document 2). reference.).

しかし、このようなアルカリ蓄電池を繰り返して充放電させると、次第に自己放電が生じやすくなり、アルカリ蓄電池の保存特性が大きく低下するという問題があった。   However, when such an alkaline storage battery is repeatedly charged and discharged, self-discharge tends to occur gradually, and the storage characteristics of the alkaline storage battery are greatly deteriorated.

また、従来においては、アルカリ蓄電池における自己放電を抑制するため、正極と負極との間に介在させるセパレータとして、オレフィン系樹脂をスルホン化させたものを用いることが提案されている(例えば、特許文献3参照。)。   Conventionally, in order to suppress self-discharge in an alkaline storage battery, it has been proposed to use a sulfonated olefin resin as a separator interposed between a positive electrode and a negative electrode (for example, Patent Documents). 3).

しかし、このようにオレフィン系樹脂をスルホン化させたものでセパレータ全体を構成した場合、セパレータへのアルカリ電解液の含浸速度が遅くなり、アルカリ電解液を注液した後、すぐにこのアルカリ蓄電池を充放電させて活性化させることができず、生産性が悪くなると共に、セパレータにアルカリ電解液が含浸されるまでの間に、負極活物質がアルカリ電解液と反応して劣化するという問題があった。
特開昭56−109456号公報 特開2001−351672号公報 特開昭64−57568号公報
However, when the entire separator is made of sulfonated olefin resin in this way, the impregnation rate of the alkaline electrolyte into the separator becomes slow, and immediately after the alkaline electrolyte is injected, the alkaline storage battery is There is a problem in that it cannot be activated by charging / discharging, the productivity deteriorates, and the anode active material reacts with the alkaline electrolyte and deteriorates until the separator is impregnated with the alkaline electrolyte. It was.
JP-A-56-109456 JP 2001-351672 A Japanese Patent Application Laid-Open No. 64-57568

この発明は、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極と、セパレータとを備えた電極体において、正極支持体に正極集電体が取り付けられると共に、負極支持体に負極集電体が取り付けられたアルカリ蓄電池における上記のような様々な問題を解決することを課題とするものであり、上記のアルカリ蓄電池を繰り返して充放電させた場合においても、自己放電が抑制されて、十分な保存特性が得られるようにすると共に、セパレータへのアルカリ電解液の含浸速度が低下することなく、すぐにこのアルカリ蓄電池を充放電させて活性化させることができるようにすることを課題とするものである。   The present invention provides an electrode body including a positive electrode in which a positive electrode active material is held on a positive electrode support, a negative electrode in which a negative electrode active material is held on a negative electrode support, and a separator, wherein the positive electrode current collector is disposed on the positive electrode support. In the case where the above-mentioned various problems in the alkaline storage battery in which the negative electrode current collector is attached to the negative electrode support is attached and the above alkaline storage battery is repeatedly charged and discharged. However, the self-discharge is suppressed so that sufficient storage characteristics can be obtained, and the alkaline storage battery is immediately charged and discharged and activated without decreasing the impregnation rate of the alkaline electrolyte into the separator. It is an object to make it possible.

ここで、正極に水酸化ニッケルを主体とする正極活物質を用いる一方、負極に水素吸蔵合金からなる負極活物質を用い、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させて巻き取った電極体の端面において、上記の正極支持体と負極支持体とにそれぞれ集電体を取り付けたアルカリ蓄電池を使用し、充放電を繰り返して行った場合、上記の各集電体の近傍におけるセパレータの部分に、負極活物質に含有されているコバルト等が析出していた。   Here, a positive electrode active material mainly composed of nickel hydroxide is used for the positive electrode, while a negative electrode active material made of a hydrogen storage alloy is used for the negative electrode, a positive electrode in which the positive electrode active material is held on the positive electrode support, and a negative electrode support In the end face of the electrode body wound with a separator interposed between the negative electrode holding the negative electrode active material, an alkaline storage battery in which a current collector is attached to each of the positive electrode support and the negative electrode support is used. When charging / discharging was repeated, cobalt or the like contained in the negative electrode active material was deposited on the separator in the vicinity of each of the current collectors.

そして、このようにコバルト等が析出した部分においてセパレータの絶縁性が低下し、これにより自己放電が生じて、アルカリ蓄電池の保存特性が低下していると考えられる。   And it is thought that the insulation of a separator falls in the part in which cobalt etc. deposited in this way, self-discharge arises by this, and the storage characteristic of an alkaline storage battery has fallen.

この発明におけるアルカリ蓄電池においては、上記のような課題を解決するため、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極と、セパレータとを備えた電極体において、上記の正極支持体に正極集電体が取り付けられると共に、上記の負極支持体に負極集電体が取り付けられてなるアルカリ蓄電池において、上記の正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの部分をスルホン化させたのである。   In order to solve the above problems, the alkaline storage battery according to the present invention includes a positive electrode in which a positive electrode active material is held on a positive electrode support, a negative electrode in which a negative electrode active material is held on a negative electrode support, and a separator. In the alkaline storage battery in which the positive electrode current collector is attached to the positive electrode support and the negative electrode current collector is attached to the negative electrode support, the positive electrode current collector and the negative electrode current collector are provided. The separator portion in the vicinity of at least one of the above was sulfonated.

また、この発明における請求項2のアルカリ蓄電池においては、上記のような課題を解決するため、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させたものが積層された状態になった電極体の片側の端面において、上記の正極支持体に面状になった正極集電体が取り付けられると共に、上記の電極体の反対側の端面において、上記の負極支持体に面状になった負極集電体が取り付けられてなるアルカリ蓄電池において、上記の正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの端部をスルホン化させたのである。   In the alkaline storage battery according to claim 2 of the present invention, in order to solve the above problems, a positive electrode in which a positive electrode active material is held on a positive electrode support and a negative electrode in which a negative electrode active material is held on a negative electrode support. A positive electrode current collector having a planar shape is attached to the positive electrode support on one end face of the electrode body in which a separator is interposed between the electrode body and the electrode body. The separator in the vicinity of at least one of the positive electrode current collector and the negative electrode current collector in an alkaline storage battery in which a planar negative electrode current collector is attached to the negative electrode support at the end surface opposite to the above The end of this was sulfonated.

ここで、上記のように正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの部分をスルホン化させるにあたり、スルホン化させる部分の幅が大きくなりすぎると、前記のようにセパレータへのアルカリ電解液の含浸速度が遅くなり、アルカリ電解液を注液した後、すぐにこのアルカリ蓄電池を充放電させて活性化させることができず、生産性が悪くなると共に、セパレータにアルカリ電解液が含浸されるまでの間に、負極活物質がアルカリ電解液と反応して劣化するため、セパレータにおいてスルホン化させる端部の幅をd、正極集電体と負極集電体との間の距離をLとした場合に、d≦0.2Lの条件を満たすようにすることが好ましい。   Here, when the portion of the separator in the vicinity of at least one of the positive electrode current collector and the negative electrode current collector is sulfonated as described above, if the width of the portion to be sulfonated becomes too large, as described above, Immediately after the alkaline electrolyte was impregnated, the alkaline storage battery could not be charged and discharged to activate it, resulting in poor productivity, and the separator was charged with alkaline electrolyte. Since the negative electrode active material is deteriorated by reacting with the alkaline electrolyte before impregnation, the width of the end to be sulfonated in the separator is d, and the distance between the positive electrode current collector and the negative electrode current collector When L is L, it is preferable to satisfy the condition of d ≦ 0.2L.

この発明におけるアルカリ蓄電池においては、上記のように正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの部分をスルホン化させるようにしたため、このアルカリ蓄電池を繰り返して充放電させた場合において、負極活物質に含まれる元素が、正極集電体や負極集電体の近傍におけるセパレータの部分に析出するのが抑制されて、自己放電が生じるのが防止され、充放電サイクル後においても、十分な保存特性が得られるようになる。   In the alkaline storage battery according to the present invention, as described above, since the separator portion in the vicinity of at least one of the positive electrode current collector and the negative electrode current collector is sulfonated, the alkaline storage battery is repeatedly charged and discharged. In this case, the element contained in the negative electrode active material is suppressed from being deposited on the separator part in the vicinity of the positive electrode current collector or the negative electrode current collector to prevent self-discharge, and even after the charge / discharge cycle Sufficient storage characteristics can be obtained.

また、この発明におけるアルカリ蓄電池においては、セパレータ全体をスルホン化させずに、上記のように正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの部分だけをスルホン化させるようにしたため、セパレータへのアルカリ電解液の含浸速度が遅くなるのが抑制され、アルカリ電解液を注液した後、すぐにこのアルカリ蓄電池を充放電させて活性化させることができて、アルカリ蓄電池の生産性が低下するのが防止されると共に、セパレータにアルカリ電解液が含浸されるまでの間に、負極活物質がアルカリ電解液と反応して劣化するのも防止されるようになる。   Further, in the alkaline storage battery according to the present invention, since the entire separator is not sulfonated, only the separator portion in the vicinity of at least one of the positive electrode current collector and the negative electrode current collector is sulfonated as described above. Suppressing the slowing down of the impregnation rate of the alkaline electrolyte into the separator, and immediately after injecting the alkaline electrolyte, the alkaline storage battery can be charged and discharged to activate the productivity of the alkaline storage battery. In addition, it is possible to prevent the negative electrode active material from reacting with the alkaline electrolyte and deteriorating before the separator is impregnated with the alkaline electrolyte.

以下、アルカリ蓄電池を用いた実験を行い、この発明におけるアルカリ蓄電池においては、充放電サイクル後においても、十分な保存特性が得られるようになることを明らかにする。   Hereinafter, an experiment using an alkaline storage battery will be conducted, and it will be clarified that sufficient storage characteristics can be obtained even after a charge / discharge cycle in the alkaline storage battery of the present invention.

この実験においては、負極活物質として、組成がMmNi3.2Co1.0Al0.7Mn0.1(但し、MmはLa:Ce:Pr:Nd=25:50:6:19の重量比になったミッシュメタルである。)で、平均粒径が約50μmになった水素吸蔵合金粒子を用いた。 In this experiment, as a negative electrode active material, the composition is MmNi 3.2 Co 1.0 Al 0.7 Mn 0.1 (where Mm is a misch metal having a weight ratio of La: Ce: Pr: Nd = 25: 50: 6: 19). )), Hydrogen storage alloy particles having an average particle size of about 50 μm were used.

そして、負極を製造するにあたっては、上記の水素吸蔵合金粒子100重量部に対して、結着剤のポリエチレンオキシドを1.0重量部の割合で加えると共にこれに少量の水を加え、これらを均一に混合させてペーストを調製し、このペーストをニッケルメッキを施したパンチングメタルからなる負極支持体の両面に均一に塗布し、これを乾燥し圧延させて、負極を作製した。   In producing the negative electrode, 100 parts by weight of the above hydrogen storage alloy particles are added with a polyethylene oxide as a binder at a ratio of 1.0 part by weight, and a small amount of water is added thereto to uniformly distribute them. A paste was prepared by mixing the paste and the paste, and the paste was uniformly applied to both surfaces of a negative electrode support made of nickel-plated punching metal, which was dried and rolled to produce a negative electrode.

また、正極を製造するにあたっては、硝酸コバルトと硝酸亜鉛とを加えた硝酸ニッケル水溶液を、多孔度85%のニッケル焼結基板からなる正極支持体に化学含浸法により含浸させて、コバルトと亜鉛とを含む水酸化ニッケルを上記の正極支持体に保持させた。その後、これを3重量%の硝酸イットリウム水溶液中に浸漬させ、さらにこれを80℃になった25重量%の水酸化ナトリウム水溶液中に浸漬させて、上記の正極支持体に保持されたコバルトと亜鉛とを含む水酸化ニッケルの表面に水酸化イットリウムの被覆層を形成して、正極を作製した。なお、この正極においては、上記の水酸化イットリウムの量が、コバルトと亜鉛とを含む水酸化ニッケルと水酸化イットリウムとの合計量に対して約3重量%になっていた。   Further, in manufacturing the positive electrode, a nickel nitrate aqueous solution in which cobalt nitrate and zinc nitrate are added is impregnated by a chemical impregnation method on a positive electrode support made of a nickel sintered substrate having a porosity of 85%, and cobalt, zinc, Nickel hydroxide containing was held on the positive electrode support. Thereafter, this was immersed in a 3% by weight yttrium nitrate aqueous solution, and further immersed in a 25% by weight sodium hydroxide aqueous solution at 80 ° C., so that cobalt and zinc held on the positive electrode support were retained. A coating layer of yttrium hydroxide was formed on the surface of nickel hydroxide containing and a positive electrode was produced. In this positive electrode, the amount of yttrium hydroxide was about 3% by weight with respect to the total amount of nickel hydroxide containing cobalt and zinc and yttrium hydroxide.

また、セパレータとしては、スルホン化させていないポリオレフィン製の不織布と、全体をスルホン化させたポリオレフィン製の不織布との2枚のセパレータを使用し、またアルカリ電解液としては、30重量%の水酸化カリウム水溶液を使用し、図1に示すような円筒型で容量が約1000mAhになったアルカリ蓄電池を作製した。   In addition, as the separator, two separators, a non-sulfonated polyolefin non-woven fabric and a polyolefin non-woven fabric non-sulphonated as a whole, were used, and the alkaline electrolyte was 30% by weight of hydroxide. Using a potassium aqueous solution, an alkaline storage battery having a cylindrical shape and a capacity of about 1000 mAh as shown in FIG. 1 was produced.

ここで、上記のアルカリ蓄電池を作製するにあたっては、図2に示すように、スルホン化させていないポリオレフィン製の不織布からなるセパレータ13aを正極11の内側に、全体をスルホン化させたポリオレフィン製の不織布からなるセパレータ13bを正極11の外側に配置させ、この2枚をセパレータ13a,13bが正極11と負極12との間に介在するようにスパイラル状に巻き取って電極体10を形成し、この電極体10の一方の端面において、上記の正極11における正極支持体11aに面状になった正極集電体14を取り付けると共に、上記の電極体10の他方の端面において、上記の負極12における負極支持体12aに面状になった負極集電体15を取り付けるようにした。   Here, in producing the above alkaline storage battery, as shown in FIG. 2, a separator 13a made of a non-sulfonated polyolefin non-woven fabric is placed inside the positive electrode 11 and the entire non-woven polyolefin non-woven fabric. The separator 13b made of the above is disposed outside the positive electrode 11, and the two sheets are spirally wound so that the separators 13a and 13b are interposed between the positive electrode 11 and the negative electrode 12, thereby forming the electrode body 10. At one end face of the body 10, a positive electrode current collector 14 having a planar shape is attached to the positive electrode support 11 a in the positive electrode 11, and the negative electrode support in the negative electrode 12 is attached to the other end face of the electrode body 10. The negative electrode current collector 15 having a planar shape was attached to the body 12a.

そして、このように正極集電体14と負極集電体15が取り付けられた電極体10を外装缶20内に収容させて、上記の負極集電体15を外装缶20内部の底面に取り付け、この外装缶20内に上記のアルカリ電解液を注液させると共に、上記の正極集電体14からリード部14aを延出させ、このリード部14aを封口体30の底部31に取り付け、この封口体30の周縁に絶縁ガスケット32を装着させて、この封口体30を上記の外装缶20の開口部に配置し、外装缶20の開口端縁をかしめて、封口体30を外装缶20に取り付けるようにした。なお、上記の封口体30においては、その底部31と正極外部端子33との間に、スプリング34と弁35とを設け、これにより電池の内圧が異常に上昇した場合に、電池内部のガスを大気に放出させるようにした。   Then, the electrode body 10 thus attached with the positive electrode current collector 14 and the negative electrode current collector 15 is accommodated in the outer can 20, and the negative electrode current collector 15 is attached to the bottom surface inside the outer can 20. The alkaline electrolyte is poured into the outer can 20, the lead portion 14 a is extended from the positive electrode current collector 14, and the lead portion 14 a is attached to the bottom 31 of the sealing body 30. Insulating gasket 32 is attached to the periphery of 30, this sealing body 30 is disposed in the opening of the above-described outer can 20, and the opening edge of the outer can 20 is caulked to attach the sealing body 30 to the outer can 20. I made it. In the sealing body 30 described above, a spring 34 and a valve 35 are provided between the bottom 31 and the positive electrode external terminal 33, so that when the internal pressure of the battery rises abnormally, the gas inside the battery is discharged. Released to the atmosphere.

なお、この実験において作製したアルカリ蓄電池においては、上記の正極集電体14と負極集電体15との間の距離Lが40mmになっていた。   In the alkaline storage battery produced in this experiment, the distance L between the positive electrode current collector 14 and the negative electrode current collector 15 was 40 mm.

そして、上記のアルカリ蓄電池を、25℃の温度条件の下で、100mAで16時間充電させた後、1000mAで1.0Vまで放電させ、これを1サイクルとして、5サイクルの充放電を繰り返して、上記のアルカリ蓄電池を活性化させた。   And after charging the alkaline storage battery at 100 mA for 16 hours under a temperature condition of 25 ° C., it was discharged to 1.0 V at 1000 mA, and this was regarded as one cycle, and charging and discharging for 5 cycles were repeated, The alkaline storage battery was activated.

ここで、上記のように活性化させたアルカリ蓄電池を、25℃の温度条件の下で、500mAで1.6時間充電させた後、500mAで1.0Vまで放電させて、保存前の放電容量Qoを測定し、再度500mAで1.6時間充電させ、このアルカリ蓄電池を45℃の温度雰囲気中において7日間放置した後、25℃の温度条件の下で、500mAで1.0Vまで放電させて、保存後の放電容量Qaを測定し、下記の式により保存後における容量維持率(%)を求め、その結果を下記の表1に示した。   Here, the alkaline storage battery activated as described above was charged at 500 mA for 1.6 hours under a temperature condition of 25 ° C., and then discharged to 1.0 V at 500 mA to obtain a discharge capacity before storage. Qo was measured and charged again at 500 mA for 1.6 hours. The alkaline storage battery was left in a temperature atmosphere at 45 ° C. for 7 days, and then discharged to 1.0 V at 500 mA under a temperature condition of 25 ° C. The discharge capacity Qa after storage was measured, the capacity retention rate (%) after storage was determined by the following formula, and the results are shown in Table 1 below.

容量維持率(%)=(Qa/Qo)×100   Capacity maintenance rate (%) = (Qa / Qo) × 100

また、上記のように活性化させたアルカリ蓄電池を、45℃の温度条件の下で、充電電流1000mAで充電深度が40%になる400mAhまで充電させた後、10Aで200mAh充電させ、10Aで200mAh放電させ、この10Aでの充放電を1サイクルとして、充放電を繰り返して行った。ここで、上記のアルカリ蓄電池においては、充電効率が放電効率に比べて低く、充電深度がサイクルの増加に伴って低下するため、1000サイクル毎に電池電圧が1Vになるまで放電させ、再び、充電電流1000mAで充電深度が40%になる400mAhまで充電させた後、10Aで200mAh充電させて、10Aで200mAh放電させるサイクルを繰り返して行い、合計1万サイクルの充放電を行った。   In addition, the alkaline storage battery activated as described above was charged to 400 mAh at a charging current of 1000 mA and a charging depth of 40% under a temperature condition of 45 ° C., then charged at 200 Ah at 10 A and 200 mAh at 10 A. The battery was discharged, and charging / discharging at 10A was taken as one cycle, and charging / discharging was repeated. Here, in the above alkaline storage battery, the charging efficiency is lower than the discharging efficiency, and the charging depth decreases as the cycle increases. Therefore, the battery is discharged every 1000 cycles until the battery voltage becomes 1 V, and is charged again. After charging up to 400 mAh at a charging depth of 40% at a current of 1000 mA, a cycle of charging at 200 Ah at 10 A and discharging at 200 mAh at 10 A was repeated for a total of 10,000 cycles of charge / discharge.

そして、このように充放電サイクルを行ったアルカリ蓄電池についても、充放電サイクルを行う前における上記の活性化させただけのアルカリ蓄電池の場合と同様にして、容量維持率を求め、その結果を下記の表1に示した。   And also about the alkaline storage battery which performed the charging / discharging cycle in this way, similarly to the case of the above-mentioned activated alkaline storage battery before performing the charging / discharging cycle, the capacity retention rate was obtained, and the result is shown below. It showed in Table 1.

Figure 2005135730
Figure 2005135730

この結果から明らかなように、上記のような充放電サイクルを行った後のアルカリ蓄電池においては、容量維持率が著しく低下しており、保存特性が非常に悪くなっていた。   As is clear from this result, in the alkaline storage battery after the charge / discharge cycle as described above was performed, the capacity retention rate was remarkably reduced, and the storage characteristics were very poor.

そして、上記の充放電サイクルを行う前のアルカリ蓄電池と、充放電サイクルを行った後のアルカリ蓄電池とを分解して、それぞれ上記の各セパレータ13a,13bを取り出して目視により観察した結果、全体をスルホン化させたポリオレフィン製の不織布からなるセパレータ13bにおいては、充放電サイクル前後の何れにおいても析出物が殆ど存在していなかった。   And as a result of disassembling the alkaline storage battery before performing said charging / discharging cycle and the alkaline storage battery after performing said charging / discharging cycle, taking out each said separator 13a, 13b, and observing visually, respectively, In the separator 13b made of a sulfonated polyolefin nonwoven fabric, almost no precipitate was present before and after the charge / discharge cycle.

これに対して、スルホン化させていないポリオレフィン製の不織布からなるセパレータ13aにおいては、充放電サイクル前後の何れにおいても析出物の存在が確認され、充放電サイクル前では、このセパレータ13aに析出物が少量均一に存在していたのに対して、充放電サイクル後では、正極集電体14と負極集電体15との近傍部分に多量の析出物が存在していた。   On the other hand, in the separator 13a made of a non-sulfonated polyolefin nonwoven fabric, the presence of precipitates was confirmed both before and after the charge / discharge cycle. Although a small amount was present uniformly, a large amount of precipitates existed in the vicinity of the positive electrode current collector 14 and the negative electrode current collector 15 after the charge / discharge cycle.

そして、充放電サイクル前後におけるスルホン化させていないポリオレフィン製の不織布からなるセパレータ13aについて、それぞれ正極集電体14から3mm離れた部分Aと、負極集電体15から3mm離れた部分Bと、正極集電体14及び負極集電体15からそれぞれ20mm離れた中間部分CとにおけるCo量を、蛍光X線測定により測定し、その結果を下記の表2に示した。   And about the separator 13a which consists of a non-sulfonated polyolefin nonwoven fabric before and after the charge / discharge cycle, a part A 3 mm away from the positive electrode current collector 14, a part B 3 mm away from the negative electrode current collector 15, and a positive electrode The amount of Co in the intermediate portion C 20 mm away from each of the current collector 14 and the negative electrode current collector 15 was measured by fluorescent X-ray measurement. The results are shown in Table 2 below.

Figure 2005135730
Figure 2005135730

この結果から明らかなように、サイクル前後における上記のセパレータ13aを比較すると、正極集電体14から3mm離れた部分A及び負極集電体15から3mm離れた部分Bにおいては、正極集電体14と負極集電体15との中間部分Cに比べて、サイクル後におけるCo量の増加が非常に大きくなっていた。   As is clear from this result, when the separators 13a before and after the cycle are compared, in the portion A 3 mm away from the positive electrode current collector 14 and the portion B 3 mm away from the negative electrode current collector 15, the positive electrode current collector 14 Compared with the intermediate portion C between the negative electrode current collector 15 and the negative electrode current collector 15, the increase in the amount of Co after the cycle was very large.

そして、上記のサイクル後におけるセパレータ13aにおいて、このようにCoが多く析出された正極集電体14や負極集電体15に近い両端部でショートが生じ、上記のように容量維持率が著しく低下したものと思われる。   Then, in the separator 13a after the above cycle, a short circuit occurs at both ends near the positive electrode current collector 14 and the negative electrode current collector 15 where a large amount of Co is thus deposited, and the capacity retention rate is significantly reduced as described above. It seems to have done.

このため、この発明におけるアルカリ蓄電池のように、正極と負極との間に介在させるセパレータにおいて、正極集電体と負極集電体の少なくとも一方に近い端部をスルホン化させると、全体をスルホン化させたポリオレフィン製の不織布からなるセパレータ13bの場合と同様に、充放電サイクル後においてもその端部にCo等が析出するのが抑制され、充放電サイクル後における保存特性が向上すると考えられる。   For this reason, in the separator interposed between the positive electrode and the negative electrode as in the alkaline storage battery according to the present invention, when the end portion close to at least one of the positive electrode current collector and the negative electrode current collector is sulfonated, the whole is sulfonated. As in the case of the separator 13b made of a polyolefin non-woven fabric, it is considered that Co and the like are prevented from precipitating at the end portions even after the charge / discharge cycle, and the storage characteristics after the charge / discharge cycle are improved.

また、この発明におけるアルカリ蓄電池のように、正極と負極との間に介在させるセパレータにおいて、正極集電体と負極集電体の少なくとも一方に近い端部だけをスルホン化させると、全体をスルホン化させたポリオレフィン製の不織布からなるセパレータ13bに比べて、セパレータへのアルカリ電解液の含浸速度が速くなり、アルカリ電解液を注液した後、すぐにこのアルカリ蓄電池を充放電させて活性化させることができると共に、セパレータにアルカリ電解液が含浸されるまでの間に、負極活物質がアルカリ電解液と反応して劣化するのも防止されるようになる。   In addition, in the separator interposed between the positive electrode and the negative electrode as in the alkaline storage battery in the present invention, if only the end portion close to at least one of the positive electrode current collector and the negative electrode current collector is sulfonated, the whole is sulfonated. Compared to the separator 13b made of a nonwoven fabric made of polyolefin, the impregnation rate of the alkaline electrolyte into the separator is increased, and immediately after the alkaline electrolyte is injected, the alkaline storage battery is charged and discharged and activated. It is possible to prevent the negative electrode active material from reacting with the alkaline electrolyte and deteriorating before the separator is impregnated with the alkaline electrolyte.

この発明の実験において作製したアルカリ蓄電池の概略説明図である。It is a schematic explanatory drawing of the alkaline storage battery produced in the experiment of this invention. この発明の実験において、スルホン化させていないポリオレフィン製の不織布からなるセパレータを正極の内側に、全体をスルホン化させたポリオレフィン製の不織布からなるセパレータを正極の外側に配置させ、この2枚をセパレータが正極と負極との間に介在するようにスパイラル状に巻き取って電極体を形成する状態を示した展開図である。In the experiment of the present invention, a separator made of a non-sulfonated polyolefin non-woven fabric was placed inside the positive electrode, and a separator made of a non-sulphated polyolefin non-woven fabric was placed outside the positive electrode. FIG. 5 is a development view showing a state in which an electrode body is formed by winding in a spiral shape so that is interposed between a positive electrode and a negative electrode.

符号の説明Explanation of symbols

10 電極体
11 正極
11a 正極支持体
12 負極
12a 負極支持体
13a スルホン化させていないポリオレフィン製の不織布からなるセパレータ
13b 、全体をスルホン化させたポリオレフィン製の不織布からなるセパレータ
14 正極集電体
15 負極集電体
L 正極集電体と負極集電体との間の距離
DESCRIPTION OF SYMBOLS 10 Electrode body 11 Positive electrode 11a Positive electrode support body 12 Negative electrode 12a Negative electrode support body 13a Separator 13b which consists of the nonwoven fabric made from the polyolefin which is not sulfonated, Separator which consists of the nonwoven fabric made from the polyolefin which made the whole sulfonate 14 Positive electrode collector 15 Negative electrode Current collector L Distance between the positive electrode current collector and the negative electrode current collector

Claims (4)

正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極と、セパレータとを備えた電極体において、上記の正極支持体に正極集電体が取り付けられると共に、上記の負極支持体に負極集電体が取り付けられてなるアルカリ蓄電池において、上記の正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの部分をスルホン化させたことを特徴とするアルカリ蓄電池。   In an electrode body comprising a positive electrode in which a positive electrode active material is held on a positive electrode support, a negative electrode in which a negative electrode active material is held on a negative electrode support, and a separator, a positive electrode current collector is attached to the positive electrode support. In addition, in the alkaline storage battery in which the negative electrode current collector is attached to the negative electrode support, the separator portion in the vicinity of at least one of the positive electrode current collector and the negative electrode current collector is sulfonated. Alkaline storage battery. 正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させたものが積層された状態になった電極体の片側の端面において、上記の正極支持体に面状になった正極集電体が取り付けられると共に、上記の電極体の反対側の端面において、上記の負極支持体に面状になった負極集電体が取り付けられてなるアルカリ蓄電池において、上記の正極集電体と負極集電体との少なくとも一方の近傍におけるセパレータの端部をスルホン化させたことを特徴とするアルカリ蓄電池。   One end face of the electrode body in which a positive electrode in which a positive electrode active material is held on a positive electrode support and a negative electrode in which a negative electrode active material is held on a negative electrode support are stacked In addition, a planar positive electrode current collector is attached to the positive electrode support, and a negative electrode current collector is attached to the negative electrode support on the opposite end surface of the electrode body. An alkaline storage battery, wherein an end portion of the separator in the vicinity of at least one of the positive electrode current collector and the negative electrode current collector is sulfonated. 請求項2に記載したアルカリ蓄電池において、上記のセパレータにおいてスルホン化させる端部の幅をd、正極集電体と負極集電体との間の距離をLとした場合に、d≦0.2Lの条件を満たすことを特徴とするアルカリ蓄電池。   3. The alkaline storage battery according to claim 2, wherein d ≦ 0.2L, where d is a width of an end portion to be sulfonated in the separator, and L is a distance between the positive electrode current collector and the negative electrode current collector. An alkaline storage battery characterized by satisfying the following conditions. 請求項1〜請求項3の何れか1項に記載したアルカリ蓄電池において、上記の正極に水酸化ニッケルを主成分とする正極活物質を用いると共に、上記の負極に水素吸蔵合金からなる負極活物質を用いたことを特徴とするアルカリ蓄電池。   The alkaline storage battery according to any one of claims 1 to 3, wherein a positive electrode active material mainly composed of nickel hydroxide is used for the positive electrode, and a negative electrode active material made of a hydrogen storage alloy for the negative electrode. An alkaline storage battery characterized by using.
JP2003370026A 2003-10-30 2003-10-30 Alkaline storage battery Pending JP2005135730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370026A JP2005135730A (en) 2003-10-30 2003-10-30 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370026A JP2005135730A (en) 2003-10-30 2003-10-30 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2005135730A true JP2005135730A (en) 2005-05-26

Family

ID=34647158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370026A Pending JP2005135730A (en) 2003-10-30 2003-10-30 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2005135730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899653B2 (en) 2013-09-30 2018-02-20 Gs Yuasa International Ltd. Alkaline storage battery, and method for producing alkaline storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186896A (en) * 1997-09-04 1999-03-30 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11317213A (en) * 1998-02-23 1999-11-16 Japan Vilene Co Ltd Porous body for introducing new atomic group containing sulfur, method for introducing the sulfur containing atomic group of the porous body, and separator for battery
JP2000251922A (en) * 1999-02-25 2000-09-14 Sanyo Electric Co Ltd Sealed storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186896A (en) * 1997-09-04 1999-03-30 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11317213A (en) * 1998-02-23 1999-11-16 Japan Vilene Co Ltd Porous body for introducing new atomic group containing sulfur, method for introducing the sulfur containing atomic group of the porous body, and separator for battery
JP2000251922A (en) * 1999-02-25 2000-09-14 Sanyo Electric Co Ltd Sealed storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899653B2 (en) 2013-09-30 2018-02-20 Gs Yuasa International Ltd. Alkaline storage battery, and method for producing alkaline storage battery

Similar Documents

Publication Publication Date Title
US7820330B2 (en) Alkaline storage battery and method for producing the same
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JP2003249222A (en) Nickel/hydrogen storage battery
JP3744716B2 (en) Sealed alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
US6489059B2 (en) Alkaline storage battery and positive electrode used for the alkaline storage battery
JP2004281289A (en) Alkaline storage battery
JP5213312B2 (en) Alkaline storage battery
JP2002304991A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP2005135730A (en) Alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP4030381B2 (en) Nickel metal hydride storage battery
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP4573609B2 (en) Alkaline storage battery
JP2001283902A (en) Alkaline battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JP2005116381A (en) Alkaline storage battery
JPS63126163A (en) Alkaline storage battery
CN115411265A (en) Hydrogen storage alloy negative electrode and nickel-hydrogen secondary battery comprising hydrogen storage alloy negative electrode
JP2004288436A (en) Alkaline accumulator
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2006228547A (en) Nickel-hydrogen storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629