JP5116249B2 - Positive electrode for alkaline storage battery - Google Patents

Positive electrode for alkaline storage battery Download PDF

Info

Publication number
JP5116249B2
JP5116249B2 JP2006104078A JP2006104078A JP5116249B2 JP 5116249 B2 JP5116249 B2 JP 5116249B2 JP 2006104078 A JP2006104078 A JP 2006104078A JP 2006104078 A JP2006104078 A JP 2006104078A JP 5116249 B2 JP5116249 B2 JP 5116249B2
Authority
JP
Japan
Prior art keywords
positive electrode
alkali
particles
hydroxide
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006104078A
Other languages
Japanese (ja)
Other versions
JP2007280711A (en
Inventor
良貴 馬場
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006104078A priority Critical patent/JP5116249B2/en
Publication of JP2007280711A publication Critical patent/JP2007280711A/en
Application granted granted Critical
Publication of JP5116249B2 publication Critical patent/JP5116249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明はアルカリ蓄電池用正極に係わり、より詳しくは、活物質として水酸化ニッケルを含むアルカリ蓄電池用正極に関する。   The present invention relates to a positive electrode for alkaline storage battery, and more particularly to a positive electrode for alkaline storage battery containing nickel hydroxide as an active material.

代表的なアルカリ蓄電池として、例えば、ニッケルカドミウム蓄電池、ニッケル水素蓄電池をあげることができ、これらの蓄電池の正極板には、非焼結式のニッケル極が用いられている。
非焼結式のニッケル極は、3次元網目状の構造を有するニッケル製の金属体と、金属体に充填された正極合剤とを備える。正極合剤は、正極活物質である水酸化ニッケル粒子と、必要に応じて添加剤粒子と、金属体にこれら粒子を付着させるための結着材とからなる。
As a typical alkaline storage battery, for example, a nickel cadmium storage battery and a nickel hydride storage battery can be cited, and a non-sintered nickel electrode is used for a positive electrode plate of these storage batteries.
The non-sintered nickel electrode includes a nickel metal body having a three-dimensional network structure and a positive electrode mixture filled in the metal body. The positive electrode mixture is composed of nickel hydroxide particles as a positive electrode active material, additive particles as necessary, and a binder for attaching these particles to a metal body.

これらの蓄電池に対しては、サイクル特性の改善が望まれており、例えば、特許文献1によれば、金属体に対する、水酸化ニッケル粒子と高次水酸化ニッケル粒子とからなる複合体粒子の充填密度を高めることによって、サイクル特性が向上する。これは、電池反応によってγ-オキシ水酸化ニッケルが生成しても、金属体における隙間が減少していることで、γ-オキシ水酸化ニッケルに吸収されるアルカリ電解液が減少するためと考えられる。
特開2004-220993号公報
For these storage batteries, improvement of cycle characteristics is desired. For example, according to Patent Document 1, filling of metal particles with composite particles composed of nickel hydroxide particles and higher-order nickel hydroxide particles is performed. By increasing the density, the cycle characteristics are improved. This is thought to be because, even when γ-nickel oxyhydroxide is generated by the battery reaction, the alkaline electrolyte absorbed by γ-nickel oxyhydroxide is reduced because the gaps in the metal body are reduced. .
JP 2004-220993 A

しかしながら、アルカリ蓄電池のサイクル特性を向上させるべくニッケル極での複合体粒子の充填密度を高めた場合、充電受け入れ性が低下してしまう。
本発明は、上記した課題に鑑みてなされ、その目的とするところは、正極合剤の充填密度が高く、良好なサイクル特性を有しながら、充電受け入れ性が確保されるアルカリ蓄電池用正極を提供することにある。
However, when the packing density of the composite particles at the nickel electrode is increased in order to improve the cycle characteristics of the alkaline storage battery, the charge acceptability is lowered.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a positive electrode for an alkaline storage battery in which charge acceptance is ensured while having a high packing density of the positive electrode mixture and having good cycle characteristics. There is to do.

上記した目的を達成するため、本発明によれば、容器内に負極及びアルカリ電解液と共に収容されるアルカリ蓄電池用正極において、3次元網目状の骨格を有する金属体と、前記金属体に3.0g/cm3以上の充填密度にて充填された正極合剤とを備え、前記正極合剤は、水酸化ニッケルを主成分として含む活物質粒子と、水酸化カルシウム、水酸化マグネシウム及び水酸化ストロンチウムからなる群より選択された少なくとも一種からなる耐アルカリ粒子と、前記耐アルカリ粒子の表面の少なくとも一部を覆い、コバルトの平均価数が2価よりも大のコバルト化合物及び前記コバルト化合物内に分布するアルカリカチオンを含む導電性の被覆層と、前記金属体に前記活物質粒子及び耐アルカリ粒子を付着させるため
の結着剤とを含有することを特徴とするアルカリ蓄電池用正極が提供される(請求項1)。
In order to achieve the above-described object, according to the present invention, in a positive electrode for an alkaline storage battery housed together with a negative electrode and an alkaline electrolyte in a container, a metal body having a three-dimensional network skeleton, and 3.0 g of the metal body. a positive electrode mixture filled at a packing density of not less than / cm 3 , the positive electrode mixture comprising active material particles containing nickel hydroxide as a main component, calcium hydroxide, magnesium hydroxide and strontium hydroxide. Alkali-resistant particles made of at least one selected from the group consisting of, and covering at least a part of the surface of the alkali-resistant particles and having an average valence of cobalt distributed within the cobalt compound and the cobalt compound A conductive coating layer containing an alkali cation and a binder for adhering the active material particles and alkali-resistant particles to the metal body A positive electrode for an alkaline storage battery which is provided (claim 1).

本発明の請求項1のアルカリ蓄電池用正極では、正極合剤の充填密度が3.0g/cm以上と高くても、導電性の被覆層を有する耐アルカリ粒子を含むことによって、正極合剤に占める活物質粒子の割合が相対的に低くなっているので、充電受け入れ性が確保される。これは以下の理由による。
正極合剤の充填密度を3.0g/cm以上に高めた場合、正極の金属体における隙間が少なくなり、金属体中のアルカリ電解液も減少する。このため、従来の正極を用いた電池では、充電時、電池反応で生成した水によって、正極の内部ほどアルカリ電解液の濃度が低下し、正極内でアルカリ電解液の濃度分布が生じる。このような濃度分布は、特に正極内部での電池反応の低下をもたらし、この結果、充電受け入れ性が低下する。
In the positive electrode for an alkaline storage battery according to claim 1 of the present invention, even if the packing density of the positive electrode mixture is as high as 3.0 g / cm 3 or more, the positive electrode mixture contains alkali-resistant particles having a conductive coating layer. Since the proportion of the active material particles occupied is relatively low, charge acceptability is ensured. This is due to the following reason.
When the filling density of the positive electrode mixture is increased to 3.0 g / cm 3 or more, the gap in the metal body of the positive electrode is reduced, and the alkaline electrolyte in the metal body is also reduced. For this reason, in a battery using a conventional positive electrode, the concentration of the alkaline electrolyte decreases toward the inside of the positive electrode due to water generated by the battery reaction during charging, and a concentration distribution of the alkaline electrolyte occurs in the positive electrode. Such a concentration distribution leads to a decrease in the battery reaction particularly inside the positive electrode, and as a result, the charge acceptability decreases.

これに対し、本発明のアルカリ蓄電池用正極では、電池反応に直接関係しない耐アルカリ粒子の存在によって、正極合剤に占める活物質粒子の割合が相対的に低くなっているため、充電時に正極内で発生する水の量が減少する。このため、正極内のアルカリ電解液が少量であっても、正極内のアルカリ電解液の濃度が水によって低下するのが抑制される。
一方、耐アルカリ粒子の導電性が低くても、耐アルカリ粒子の表面には導電性の被覆層が設けられているので、耐アルカリ粒子を含んでいても、正極内での導電性は確保される。
On the other hand, in the positive electrode for alkaline storage battery of the present invention, the ratio of the active material particles in the positive electrode mixture is relatively low due to the presence of alkali-resistant particles not directly related to the battery reaction. Reduces the amount of water generated in For this reason, even if the amount of the alkaline electrolyte in the positive electrode is small, the concentration of the alkaline electrolyte in the positive electrode is suppressed from being reduced by water.
On the other hand, even if the alkali-resistant particles have a low conductivity, a conductive coating layer is provided on the surface of the alkali-resistant particles, so that the conductivity in the positive electrode is ensured even if alkali-resistant particles are included. The

このように、正極内での導電性を確保しながらアルカリ電解液の濃度分布の発生を抑制した結果、この正極を用いたアルカリ蓄電池では、充電時、正極全体で電池反応が略均一に進行し、充電受け入れ性が向上する。
請求項2のアルカリ蓄電池用正極では、耐アルカリ粒子が、水酸化カルシウム、水酸化マグネシウム及び水酸化ストロンチウムからなる群より選択されることで、耐アルカリ粒子の原料コストが低く、正極が安価になる。
As described above, as a result of suppressing the occurrence of the concentration distribution of the alkaline electrolyte while ensuring the conductivity in the positive electrode, in the alkaline storage battery using this positive electrode, the battery reaction proceeds substantially uniformly throughout the positive electrode during charging. , Charging acceptability is improved.
In the positive electrode for an alkaline storage battery according to claim 2, the alkali-resistant particles are selected from the group consisting of calcium hydroxide, magnesium hydroxide and strontium hydroxide, so that the raw material cost of the alkali-resistant particles is low and the positive electrode is inexpensive. .

このように、正極内での導電性を確保しながらアルカリ電解液の濃度分布の発生を抑制した結果、この正極を用いたアルカリ蓄電池では、充電時、正極全体で電池反応が略均一に進行し、充電受け入れ性が向上する。
また、本発明のアルカリ蓄電池用正極では、耐アルカリ粒子が、水酸化カルシウム、水酸化マグネシウム及び水酸化ストロンチウムからなる群より選択されることで、耐アルカリ粒子の原料コストが低く、正極が安価になる。
As described above, as a result of suppressing the occurrence of the concentration distribution of the alkaline electrolyte while ensuring the conductivity in the positive electrode, in the alkaline storage battery using this positive electrode, the battery reaction proceeds substantially uniformly throughout the positive electrode during charging. , Charging acceptability is improved.
Further, in the positive electrode for alkaline storage battery of the present invention, the alkali-resistant particles are selected from the group consisting of calcium hydroxide, magnesium hydroxide and strontium hydroxide, so that the raw material cost of the alkali-resistant particles is low and the positive electrode is inexpensive. Become.

電極群2は、正極板3及び負極板4を、セパレータ5を介して渦巻状に巻回してなり、電極群2の最外周には、その渦巻き方向でみて負極板4の外端側の部位が配置され、負極板4が外装缶1の内周壁と電気的に接続されている。
外装缶1の開口端内には、リング状の絶縁性ガスケット6を介して、中央にガス抜き孔7を有する円形の蓋板8が配置されている。これら絶縁性ガスケット6及び蓋板8は、かしめ加工された外装缶1の開口端縁により固定されている。電極群2の正極板3と蓋板8の内面との間には、これらの間を電気的に接続する正極リード9が配置されている。一方、蓋板8の外面には、ガス抜き孔7を閉塞するようにゴム製の弁体10が配置され、更に、弁体10を囲むようにフランジ付きの円筒形状の正極端子11が取り付けられている。
The electrode group 2 is formed by winding a positive electrode plate 3 and a negative electrode plate 4 in a spiral shape via a separator 5, and a portion on the outer end side of the negative electrode plate 4 as viewed in the spiral direction on the outermost periphery of the electrode group 2. Is disposed, and the negative electrode plate 4 is electrically connected to the inner peripheral wall of the outer can 1.
In the opening end of the outer can 1, a circular lid plate 8 having a gas vent hole 7 in the center is disposed via a ring-shaped insulating gasket 6. The insulating gasket 6 and the cover plate 8 are fixed by the opening edge of the caulked outer can 1. Between the positive electrode plate 3 of the electrode group 2 and the inner surface of the lid plate 8, a positive electrode lead 9 that electrically connects between them is disposed. On the other hand, a rubber valve body 10 is disposed on the outer surface of the cover plate 8 so as to close the gas vent hole 7, and a cylindrical positive electrode terminal 11 with a flange is attached so as to surround the valve body 10. ing.

また、外装缶1の開口端縁上には環状の絶縁板12が配置され、正極端子11は絶縁板12を貫通して突出している。符号13は、外装チューブに付されており、外装チューブ13は絶縁板12の外周縁、外装缶1の外周面及び底壁外周縁を被覆している。
以下、正極板3及び負極板4について詳述する。
負極板4は、導電性の負極基板と、負極基板に保持された負極合剤とからなり、負極基板としては、例えば、パンチングメタルを用いることができる。
An annular insulating plate 12 is disposed on the opening edge of the outer can 1, and the positive terminal 11 protrudes through the insulating plate 12. Reference numeral 13 is attached to the outer tube, and the outer tube 13 covers the outer peripheral edge of the insulating plate 12, the outer peripheral surface of the outer can 1 and the outer peripheral edge of the bottom wall.
Hereinafter, the positive electrode plate 3 and the negative electrode plate 4 will be described in detail.
The negative electrode plate 4 includes a conductive negative electrode substrate and a negative electrode mixture held on the negative electrode substrate. As the negative electrode substrate, for example, a punching metal can be used.

負極合剤は、水素吸蔵合金粉末、結着剤、及び必要に応じて導電剤からなる。水素吸蔵合金は、負極活物質としての水素を電気化学的に吸蔵及び放出可能であり、例えば、AB型やAB3.5型の水素吸蔵合金を用いることができる。
結着剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFEディスパージョン、HPCディスパージョン及びポリアクリル酸ナトリウム等から選択された1種以上を用いることができる。また、導電剤としては、例えばカーボン粉末などを用いることができる。
The negative electrode mixture comprises a hydrogen storage alloy powder, a binder, and, if necessary, a conductive agent. The hydrogen storage alloy can electrochemically store and release hydrogen as the negative electrode active material, and for example, an AB 5 type or AB 3.5 type hydrogen storage alloy can be used.
As the binder, for example, one or more selected from carboxymethylcellulose, methylcellulose, PTFE dispersion, HPC dispersion, sodium polyacrylate, and the like can be used. In addition, as the conductive agent, for example, carbon powder can be used.

実施形態に係る正極板3は、導電性の正極基板と、正極基板に保持された正極合剤とからなる。
正極基板は、3次元網目状の骨格を有する例えばニッケル製の金属体であり、金属体の内部に3.0g/cm以上の充填密度Dにて正極合剤が充填されている。具体的には、正極合剤の充填密度Dは、正極板3の質量をWp、巻き取り前の正極板3の体積をVp、金属体の骨格の質量をWm、金属体の骨格の体積をVmとしたときに、D=(Wa-Wm)/(Vp-Vm)で示される。従って、充填密度Dが大きくなるほど、正極板3に占める正極合剤の割合が大きくなり、正極板3内の隙間は少なくなる。
The positive electrode plate 3 according to the embodiment includes a conductive positive electrode substrate and a positive electrode mixture held on the positive electrode substrate.
The positive electrode substrate is a metal body made of, for example, nickel having a three-dimensional network skeleton, and the positive electrode mixture is filled in the metal body at a packing density D of 3.0 g / cm 3 or more. Specifically, the packing density D of the positive electrode mixture is defined as follows. The mass of the positive electrode plate 3 is Wp, the volume of the positive electrode plate 3 before winding is Vp, the mass of the metal skeleton is Wm, and the volume of the metal skeleton is When Vm, D = (Wa-Wm) / (Vp-Vm). Therefore, as the packing density D increases, the proportion of the positive electrode mixture in the positive electrode plate 3 increases, and the gap in the positive electrode plate 3 decreases.

正極合剤は、図1の円内に概略的に示したけれども、活物質粒子14と、耐アルカリ粒子15と、耐アルカリ粒子15の表面の一部若しくは全部を覆う導電性の被覆層16と、これら粒子14,15を金属体に付着させるための結着剤17とを含む。
結着剤17としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFEディスパージョン及びHPCディスパージョン等から選択された1種以上を用いることができる。
Although the positive electrode mixture is schematically shown in the circle of FIG. 1, the active material particles 14, the alkali resistant particles 15, and the conductive coating layer 16 that covers a part or all of the surface of the alkali resistant particles 15; And a binder 17 for attaching these particles 14 and 15 to the metal body.
As the binder 17, for example, one or more selected from carboxymethylcellulose, methylcellulose, PTFE dispersion, HPC dispersion, and the like can be used.

活物質粒子14は、水酸化ニッケルを主成分とする水酸化ニッケル粒子14aを核として、水酸化ニッケル粒子14aの表面の少なくとも一部若しくは全部が、導電性の被覆層14bで覆われている。水酸化ニッケル粒子14aの水酸化ニッケルは、ニッケルの平均価数が2価よりも大きな高次水酸化ニッケルであってもよく、コバルト及び亜鉛が固溶した水酸化ニッケル若しくは高次水酸化ニッケルであってもよい。   The active material particles 14 have nickel hydroxide particles 14a mainly composed of nickel hydroxide as nuclei, and at least part or all of the surfaces of the nickel hydroxide particles 14a are covered with a conductive coating layer 14b. The nickel hydroxide of the nickel hydroxide particles 14a may be high-order nickel hydroxide having an average valence of nickel larger than divalent, and is nickel hydroxide or high-order nickel hydroxide in which cobalt and zinc are dissolved. There may be.

活物質粒子14の被覆層14bは、導電性のコバルト化合物を主成分として含み、好ましくは、コバルト化合物は、コバルトの平均価数が2価以上の高次コバルト化合物であり、且つ、例えばNa+等のアルカリカチオンを含む。
耐アルカリ粒子15は、アルカリ電解液に対して略安定な化合物からなる。略安定であるとは、アルカリ電解液に対して不溶乃至難溶であり、且つ、アルカリ電解液との化学的及び電気化学的な反応性が低いことをいう。具体的には、このような化合物として、水酸化カルシウム、水酸化マグネシウム及び水酸化ストロンチウムからなる群より選択された少なくとも1種又は2種以上を用いる。換言すれば、アルカリ土類金属の水酸化物が好ましく、これらのうち、水酸化カルシウムを用いるのがより好ましい。
The coating layer 14b of the active material particles 14 contains a conductive cobalt compound as a main component. Preferably, the cobalt compound is a higher-order cobalt compound having an average valence of cobalt of 2 or more, and, for example, Na + And alkali cations.
The alkali resistant particles 15 are made of a compound that is substantially stable with respect to the alkaline electrolyte. Substantially stable means that it is insoluble or hardly soluble in an alkaline electrolyte and has low chemical and electrochemical reactivity with the alkaline electrolyte. Specifically, as such a compound, calcium hydroxide, Ru with at least one or more, two or selected from the group consisting of magnesium hydroxide and strontium hydroxide. In other words, alkaline earth metal hydroxides are preferred, and among these, calcium hydroxide is more preferred.

耐アルカリ粒子15の形状及び大きさは特に限定されないけれども、耐アルカリ粒子15は、例えば、平均粒径が3μm以上30μm以下の略球状をなす。
耐アルカリ粒子15の表面の少なくとも一部若しくは全部を覆う被覆層16は、コバルトの平均価数が2価以上の高次コバルト化合物を主成分として含み、この高次コバルト化合物は、例えばNa等のアルカリカチオンを含む。即ち、被覆層16の全域に渡りアルカリカチオンが分布している。
Although the shape and size of the alkali-resistant particles 15 are not particularly limited, the alkali-resistant particles 15 have, for example, a substantially spherical shape with an average particle diameter of 3 μm to 30 μm.
The coating layer 16 covering at least part or all of the surface of the alkali-resistant particles 15 contains a higher-order cobalt compound having an average cobalt valence of 2 or more as a main component, and this higher-order cobalt compound is, for example, Na + or the like. Of alkali cations. That is, alkali cations are distributed over the entire coating layer 16.

上記した正極板3は、例えば、水酸化ニッケル粉末、導電剤、結着剤、及び水を混練して正極用スラリを調製し、この正極用スラリが塗着・充填された金属体を、スラリの乾燥を経てから圧延・裁断して作製することができる。
また、被覆層16は、例えば、アルカリ水溶液中で耐アルカリ粒子15の表面に水酸化コバルト化合物を析出させた後、水酸化コバルトが析出した耐アルカリ粒子15をアルカリ水溶液及び酸素が存在する高温下で撹拌処理(アルカリ熱処理)して形成することができる。
The positive electrode plate 3 is prepared, for example, by kneading nickel hydroxide powder, a conductive agent, a binder, and water to prepare a positive electrode slurry, and a metal body coated and filled with the positive electrode slurry is formed by slurry. After being dried, it can be rolled and cut.
Further, the coating layer 16 is formed, for example, by precipitating a cobalt hydroxide compound on the surface of the alkali-resistant particles 15 in an alkaline aqueous solution, and then subjecting the alkali-resistant particles 15 from which the cobalt hydroxide has precipitated to a high temperature at which an alkaline aqueous solution and oxygen exist. And can be formed by stirring treatment (alkali heat treatment).

上述したニッケル水素蓄電池の正極板3では、正極合剤の充填密度Dが3.0g/cm以上と高くても、耐アルカリ粒子15を含むことにより、正極合剤に占める活物質粒子14の割合が相対的に低くなっているので、充電受け入れ性が確保される。これは以下の理由による。
正極合剤の充填密度Dを3.0g/cm以上に高めた場合、正極板の金属体における隙間が少なくなり、金属体中のアルカリ電解液も減少する。このため、従来の電池では、充電時、電池反応で生成した水によって、正極板の内部ほどアルカリ電解液の濃度が低下し、正極板内でアルカリ電解液の濃度分布が生じる。このような濃度分布は、特に正極板内部での電池反応の低下をもたらし、この結果、充電受け入れ性が低下する。
In the above-described positive electrode plate 3 of the nickel-metal hydride storage battery, even if the packing density D of the positive electrode mixture is as high as 3.0 g / cm 3 or more, the proportion of the active material particles 14 in the positive electrode mixture is obtained by including the alkali-resistant particles 15. Is relatively low, charging acceptability is ensured. This is due to the following reason.
When the packing density D of the positive electrode mixture is increased to 3.0 g / cm 3 or more, the gap in the metal body of the positive electrode plate is reduced, and the alkaline electrolyte in the metal body is also reduced. For this reason, in the conventional battery, the concentration of the alkaline electrolyte is lowered toward the inside of the positive electrode plate due to water generated by the battery reaction during charging, and a concentration distribution of the alkaline electrolyte is generated in the positive electrode plate. Such a concentration distribution results in a decrease in battery reaction particularly inside the positive electrode plate, and as a result, charge acceptability decreases.

これに対し、上述したニッケル水素蓄電池の正極板3では、電池反応に直接関係しない耐アルカリ粒子15の存在によって、正極合剤に占める活物質粒子14の割合が相対的に低くなっているため、充電時に正極板3内で発生する水の量が減少する。このため、正極板3内のアルカリ電解液が少量であっても、正極板3内のアルカリ電解液の濃度が水によって低下するのが抑制される。   On the other hand, in the positive electrode plate 3 of the nickel hydride storage battery described above, the proportion of the active material particles 14 in the positive electrode mixture is relatively low due to the presence of the alkali-resistant particles 15 not directly related to the battery reaction. The amount of water generated in the positive electrode plate 3 during charging is reduced. For this reason, even if there is little alkaline electrolyte in the positive electrode plate 3, it is suppressed that the density | concentration of the alkaline electrolyte in the positive electrode plate 3 falls with water.

一方、耐アルカリ粒子15の導電性が低くくても、耐アルカリ粒子15の表面には導電性の被覆層16が設けられているので、耐アルカリ粒子15を含んでいても、正極板3内での導電性は確保される。
このように、正極板3内での導電性を確保しながらアルカリ電解液の濃度分布の発生を抑制した結果、このニッケル水素蓄電池では、充電時、正極板3全体で電池反応が略均一に進行し、充電受け入れ性が向上する。
On the other hand, even if the alkali-resistant particles 15 have a low conductivity, the conductive coating layer 16 is provided on the surface of the alkali-resistant particles 15. The conductivity at is ensured.
Thus, as a result of suppressing the generation of the concentration distribution of the alkaline electrolyte while ensuring the conductivity in the positive electrode plate 3, in this nickel metal hydride storage battery, the battery reaction proceeds substantially uniformly throughout the positive electrode plate 3 during charging. In addition, charge acceptability is improved.

また、上述したニッケル水素蓄電池の正極板3では、耐アルカリ粒子が、水酸化カルシウム、水酸化マグネシウム及び水酸化ストロンチウム等からなる群から選択された1種以上からなり、耐アルカリ粒子の原料コストが低く、電池が安価になる。
本発明のアルカリ蓄電池用正極は、上記した一実施形態に限定されることはなく、種々変形が可能であり、例えば、ニッケルカドミウム蓄電池等の他のアルカリ蓄電池にも適用可能である。
Also, the positive electrode plate 3 of the nickel-metal hydride storage battery described above, alkali resistance particles, calcium hydroxide, Ri Do from one or more selected from the group consisting of magnesium hydroxide and strontium hydroxide, etc., the raw material cost of alkali-resistant particles The battery is cheaper.
The positive electrode for alkaline storage battery of the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, it can be applied to other alkaline storage batteries such as a nickel cadmium storage battery.

一実施形態では、電池は円筒形であったけれども、角形であってもよく、電池の機械的構造は特に限定されない。
一実施形態では、正極合剤の充填密度Dの上限は、特に限定されないけれども、3.4g/cm以下の範囲にあるのが好ましい。この範囲では、アルカリ電解液の濃度分布発生が特に有効に抑制されるからである。
In one embodiment, the battery has a cylindrical shape, but may have a square shape, and the mechanical structure of the battery is not particularly limited.
In one embodiment, the upper limit of the packing density D of the positive electrode mixture is not particularly limited, but is preferably in the range of 3.4 g / cm 3 or less. This is because in this range, the concentration distribution of the alkaline electrolyte is particularly effectively suppressed.

一実施形態では、活物質粒子14、耐アルカリ粒子15及び被覆層16の合計質量に占める耐アルカリ粒子15及び被覆層16の質量の比率は、特に限定されないけれども、2%以上12%以下であるのが好ましい。2%未満では、正極板3でのアルカリ電解液の濃度分布発生を十分に抑制することができず、12%を超えると、正極板3の容量が低下してしまうからである。   In one embodiment, the ratio of the mass of the alkali resistant particles 15 and the coating layer 16 to the total mass of the active material particles 14, the alkali resistant particles 15 and the coating layer 16 is not particularly limited, but is 2% or more and 12% or less. Is preferred. If it is less than 2%, the concentration distribution of the alkaline electrolyte in the positive electrode plate 3 cannot be sufficiently suppressed, and if it exceeds 12%, the capacity of the positive electrode plate 3 decreases.

一実施形態では、正極合剤は、活物質粒子14、耐アルカリ粒子15、被覆層16及び結着剤のみを含んでいたけれども、正極板3の特性を改善する他の添加剤を少量含んでいてもよい。   In one embodiment, the positive electrode mixture includes only the active material particles 14, the alkali resistant particles 15, the coating layer 16, and the binder, but includes a small amount of other additives that improve the characteristics of the positive electrode plate 3. May be.

実施例1
1.正極板
(1)活物質粒子
13.1gの硫酸コバルトを含む水溶液1リットルに、亜鉛:2.5質量%、コバルト:1質量%が固溶した水酸化ニッケル粉末を入れ、これを攪拌しながらモル濃度が1Mの水酸化ナトリウム水溶液を徐々に滴下した。これによって、水酸化ニッケル粒子の表面に水酸化コバルトを析出させ、水酸化コバルトが析出した水酸化ニッケル粒子を分取して洗浄、乾燥させた。
Example 1
1. Positive electrode plate (1) Active material particles
13.1 g of an aqueous solution containing cobalt sulfate is added to a nickel hydroxide powder in which 2.5% by mass of zinc and 1% by mass of cobalt are dissolved, and the aqueous solution of sodium hydroxide having a molar concentration of 1M is gradually added while stirring the powder. It was dripped in. As a result, cobalt hydroxide was precipitated on the surface of the nickel hydroxide particles, and the nickel hydroxide particles on which the cobalt hydroxide was precipitated were separated, washed and dried.

乾燥させた水酸化コバルト付きの水酸化ニッケル粒子に対して、25質量%の水酸化ナトリウム水溶液を質量比で10倍量加えてから、空気が存在する85℃の温度下で8時間攪拌するアルカリ熱処理を施した。このアルカリ熱処理により、水酸化コバルトはナトリウムを含有するとともに高次化され、コバルトの平均価数が2価以上になり、被覆層を形成する。それから、被覆層付き水酸化ニッケル粒子を分取、水洗および脱水し、この後65℃で乾燥させた。これによって、亜鉛及びコバルトが固溶した水酸化ニッケル粒子を核とし、水酸化ニッケル粒子の表面が1質量%のナトリウムを含有する高次コバルト化合物の被覆層で覆われている活物質粒子を得た。   Alkali which is stirred for 8 hours at a temperature of 85 ° C where air is present after adding 10% by weight of 25% by weight sodium hydroxide aqueous solution to the dried nickel hydroxide particles with cobalt hydroxide Heat treatment was applied. By this alkali heat treatment, the cobalt hydroxide contains sodium and is highly ordered, so that the average valence of cobalt becomes 2 or more and forms a coating layer. Then, the nickel hydroxide particles with a coating layer were collected, washed with water and dehydrated, and then dried at 65 ° C. As a result, active material particles in which nickel hydroxide particles in which zinc and cobalt are solid-solved are used as nuclei and the surfaces of the nickel hydroxide particles are covered with a coating layer of a higher cobalt compound containing 1% by mass of sodium are obtained. It was.

(2)被覆層付きの耐アルカリ粒子
平均粒径が10μmの水酸化カルシウム粒子(耐アルカリ粒子)を分散させたアルカリ水溶液に、攪拌しながらモル濃度が1Mの水酸化ナトリウム水溶液及び1リットル当たり13.1gの硫酸コバルトを含む硫酸コバルト水溶液を徐々に滴下した。これによって、水酸化カルシウム粒子の表面に水酸化コバルトを析出させ、この水酸化コバルトが析出した水酸化カルシウム粒子を分取して洗浄、乾燥させた。ここで、水酸化コバルト付きの水酸化カルシウム粒子において、水酸化コバルトの質量割合は7質量%であった。
(2) Alkali Resistant Particles with Coating Layer 13.1 Molar aqueous solution of sodium hydroxide having a molar concentration of 1M and 1 liter with stirring in an alkaline aqueous solution in which calcium hydroxide particles (alkali resistant particles) having an average particle size of 10 μm are dispersed. A cobalt sulfate aqueous solution containing g of cobalt sulfate was gradually added dropwise. As a result, cobalt hydroxide was precipitated on the surface of the calcium hydroxide particles, and the calcium hydroxide particles on which the cobalt hydroxide was precipitated were collected, washed and dried. Here, in the calcium hydroxide particles with cobalt hydroxide, the mass ratio of cobalt hydroxide was 7 mass%.

乾燥させた水酸化コバルト付きの水酸化カルシウム粒子に対して、25質量%の水酸化ナトリウム水溶液を質量比で10倍量加えてから、空気が存在する85℃の温度下で8時間攪拌するアルカリ熱処理を施した。このアルカリ熱処理により、水酸化コバルトはナトリウムを含有するとともに高次化され、コバルトの平均価数が2価以上の被覆層になる。それから、アルカリ熱処理した被覆層付き水酸化カルシウムを分取、水洗および脱水し、この後65℃で乾燥させた。これによって、水酸化カルシウム粒子からなる耐アルカリ粒子と、耐アルカリ粒子の表面を覆い、1質量%のナトリウムを含有する高次コバルト化合物の被覆層とを得た。   Alkali which is stirred for 8 hours at a temperature of 85 ° C where air is present after adding 10% by weight of 25% by weight aqueous sodium hydroxide solution to the dried calcium hydroxide particles with cobalt hydroxide Heat treatment was applied. By this alkali heat treatment, cobalt hydroxide contains sodium and is highly ordered, so that a coating layer having an average valence of cobalt of 2 or more is obtained. Then, the calcium hydroxide with a coating layer that had been subjected to alkaline heat treatment was separated, washed with water and dehydrated, and then dried at 65 ° C. As a result, alkali-resistant particles composed of calcium hydroxide particles and a coating layer of a higher cobalt compound covering the surface of the alkali-resistant particles and containing 1% by mass of sodium were obtained.

(3)正極板の作製
得られた活物質粒子90質量部に、被覆層付きの耐アルカリ粒子を10質量部混合した。そして、この混合粒子に結着剤としてのメチルセルロースを0.2質量%含む水溶液を50質量部添加して混合し、正極合剤スラリとした。
それから、多孔度95%のニッケル金属体に対して、正極合剤スラリを充填して乾燥させた後、圧延及び裁断を行い、充填密度が3.0g/cmのAAサイズ用の正極板(非焼結式のニッケル極)を作製した。
(3) Preparation of positive electrode plate 90 parts by mass of the obtained active material particles were mixed with 10 parts by mass of alkali-resistant particles with a coating layer. Then, 50 parts by mass of an aqueous solution containing 0.2% by mass of methylcellulose as a binder was added to the mixed particles and mixed to obtain a positive electrode mixture slurry.
Then, after filling a nickel metal body with a porosity of 95% with a positive electrode mixture slurry and drying, rolling and cutting are performed, and a positive electrode plate for AA size with a packing density of 3.0 g / cm 3 A sintered nickel electrode) was prepared.

2.負極板
公知の水素吸蔵合金粉末に、結着剤としてのポリエチレンオキサイド等、および、適量の水を加えて混合して負極合剤スラリを作製した。それから、パンチングメタルに対して、負極合剤スラリを塗着して乾燥させた後、圧延及び裁断を行い、AAサイズ用の負極板(水素吸蔵合金極)を作製した。
2. Negative electrode plate Polyethylene oxide as a binder and an appropriate amount of water were added to a known hydrogen storage alloy powder and mixed to prepare a negative electrode mixture slurry. Then, a negative electrode mixture slurry was applied to the punching metal and dried, followed by rolling and cutting to produce a negative electrode plate (hydrogen storage alloy electrode) for AA size.

3.電池の組立て
得られた正極板及び負極板を、セパレータとして厚さ0.2mmのポリプロピレン製不織布を介して渦巻状に巻回して電極群を作製し、外装缶にこの電極群を挿入するとともに、KOH、LiOH及びNaOHを合計で7mol/l含むアルカリ水溶液を注液し、容量2100mAhのAAサイズのニッケル水素蓄電池を作製した。
3. Assembling the battery The obtained positive electrode plate and negative electrode plate were spirally wound as a separator through a polypropylene non-woven fabric having a thickness of 0.2 mm to produce an electrode group, and this electrode group was inserted into an outer can, and KOH Then, an alkaline aqueous solution containing 7 mol / l of LiOH and NaOH in total was injected to prepare an AA size nickel-metal hydride storage battery with a capacity of 2100 mAh.

実施例2及び比較例1〜3
圧延時の金属体の圧縮率、即ち正極板の厚さを調整し、正極合剤の充填密度を表1に示すように変化させたこと以外は実施例1の場合と同様にして、実施例2及び比較例1〜3のニッケル水素蓄電池を作製した。
比較例4〜8
正極合剤スラリに被覆層付きの耐アルカリ粒子を添加しなかったこと以外は実施例1,2又は比較例1〜3の場合と同様にして、容量2100mAhのAAサイズのニッケル水素蓄電池を比較例4〜8として作製した。
Example 2 and Comparative Examples 1-3
In the same manner as in Example 1, except that the compression ratio of the metal body during rolling, that is, the thickness of the positive electrode plate was adjusted and the packing density of the positive electrode mixture was changed as shown in Table 1. 2 and Comparative Examples 1 to 3 were produced.
Comparative Examples 4-8
AA-size nickel-metal hydride storage battery with a capacity of 2100 mAh was compared with the comparative example except that no alkali-resistant particles with a coating layer were added to the positive electrode mixture slurry. It produced as 4-8.

4.評価試験
組立てた実施例及び比較例の各電池に、温度25℃の環境において、0.1Itの充電電流で15時間充電した後、0.2Itの放電電流で終止電圧1.0Vまで放電させる初期活性化処理を施した。初期活性化処理した電池について、以下の評価を行った。
(1)サイクル特性
初期活性化処理した各電池を、温度25℃の環境において、0.1Itの充電電流で16時間充電してから、同じく温度25℃の環境において、1Itの放電電流で1.0Vの放電終止電圧まで放電させる充放電サイクルを200回繰り返した。この200回後での各電池の内部抵抗をサイクル特性として測定した。この測定結果を、実施例3の値を100としたときの指数表示にて表1に示す。なお、表1の値が大きいほど、内部抵抗がより小さかったことを表す。
4). Evaluation test Initial activation treatment in which each battery of the assembled example and comparative example was charged with a charge current of 0.1 It for 15 hours in an environment at a temperature of 25 ° C. and then discharged to a final voltage of 1.0 V with a discharge current of 0.2 It. Was given. The following evaluation was performed about the battery which carried out the initial activation process.
(1) Cycle characteristics Each initially activated battery was charged for 16 hours at a charging current of 0.1 It in an environment at a temperature of 25 ° C. The charge / discharge cycle for discharging to the end-of-discharge voltage was repeated 200 times. The internal resistance of each battery after 200 times was measured as cycle characteristics. The measurement results are shown in Table 1 in terms of an index when the value of Example 3 is 100. In addition, it represents that internal resistance was so small that the value of Table 1 was large.

(2)充電受け入れ性
初期活性化処理した各電池を、温度25℃の環境において、0.1Itの充電電流で16時間充電してから、同じく温度25℃の環境において、1Itの放電電流で1.0Vの放電終止電圧まで放電させ、このときの放電容量C0を測定した。この後、温度60℃の環境において、0.1Itの充電電流で16時間充電した後、温度25℃の環境において、1Itの放電電流で1.0Vの放電終止電圧まで放電させ、このときの放電容量C1を測定した。温度25℃で充電したときの放電容量C0に対する、温度60℃で充電したときの放電容量C1の比(C1/C0)を、実施例1の値を100とした指数表示にて表1に示す。なお、表1の値が大きいほど、比(C1/C0)がより大きかったことを表す。
(2) Charging acceptability Each initially activated battery was charged at a charging current of 0.1 It for 16 hours in an environment at a temperature of 25 ° C., and then 1.0 V at a discharging current of 1 It in the same environment at a temperature of 25 ° C. The discharge capacity C0 at this time was measured. Then, after charging for 16 hours at a charging current of 0.1 It in an environment of a temperature of 60 ° C., it is discharged to a discharge end voltage of 1.0 V with a discharging current of 1 It in an environment of a temperature of 25 ° C., and the discharge capacity C1 at this time Was measured. The ratio of the discharge capacity C1 when charged at a temperature of 60 ° C. (C1 / C0) to the discharge capacity C0 when charged at a temperature of 25 ° C. is shown in Table 1 as an index with the value of Example 1 being 100. . In addition, it represents that ratio (C1 / C0) was so large that the value of Table 1 was large.

Figure 0005116249
Figure 0005116249

表1からわかるように、耐アルカリ粒子を添加した実施例1及び2は、充填密度は同じであるものの耐アルカリ粒子を添加していない比較例7又は8に比べて、同程度のサイクル特性を有する一方、優れた充電受け入れ性を有する。   As can be seen from Table 1, Examples 1 and 2 to which alkali-resistant particles were added had the same cycle characteristics as those of Comparative Example 7 or 8 where the packing density was the same but no alkali-resistant particles were added. On the other hand, it has excellent charge acceptability.

本発明の実施形態に係るアルカリ蓄電池用正極を適用した円筒型ニッケル水素蓄電池の部分切欠き斜視図であり、円内は、正極合剤を概略的に示す。It is a partial notch perspective view of the cylindrical nickel-metal hydride storage battery to which the positive electrode for alkaline storage batteries which concerns on embodiment of this invention is applied, and the inside of a circle shows a positive electrode mixture roughly.

符号の説明Explanation of symbols

1 外装缶(容器)
3 正極板
14 活物質粒子
15 耐アルカリ粒子
16 被覆層
1 Exterior can (container)
3 Positive electrode plate 14 Active material particles 15 Alkali resistant particles 16 Coating layer

Claims (1)

容器内に負極及びアルカリ電解液と共に収容されるアルカリ蓄電池用正極において、
3次元網目状の骨格を有する金属体と、
前記金属体に3.0g/cm3以上の充填密度にて充填された正極合剤と
を備え、
前記正極合剤は、
水酸化ニッケルを主成分として含む活物質粒子と、
水酸化カルシウム、水酸化マグネシウム及び水酸化ストロンチウムからなる群より選択された少なくとも一種からなる耐アルカリ粒子と、
前記耐アルカリ粒子の表面の少なくとも一部を覆い、コバルトの平均価数が2価よりも大のコバルト化合物及び前記コバルト化合物内に分布するアルカリカチオンを含む導電性の被覆層と、
前記金属体に前記活物質粒子及び耐アルカリ粒子を付着させるための結着剤と
を含有することを特徴とするアルカリ蓄電池用正極。
In the positive electrode for alkaline storage battery accommodated in the container together with the negative electrode and the alkaline electrolyte,
A metal body having a three-dimensional network skeleton;
A positive electrode mixture filled in the metal body at a packing density of 3.0 g / cm 3 or more,
The positive electrode mixture is
Active material particles containing nickel hydroxide as a main component;
Alkali-resistant particles comprising at least one selected from the group consisting of calcium hydroxide, magnesium hydroxide and strontium hydroxide ;
A conductive coating layer that covers at least a part of the surface of the alkali-resistant particles and includes a cobalt compound having an average valence of cobalt larger than 2 and an alkali cation distributed in the cobalt compound;
A positive electrode for an alkaline storage battery, comprising: a binder for adhering the active material particles and alkali-resistant particles to the metal body.
JP2006104078A 2006-04-05 2006-04-05 Positive electrode for alkaline storage battery Expired - Fee Related JP5116249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104078A JP5116249B2 (en) 2006-04-05 2006-04-05 Positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104078A JP5116249B2 (en) 2006-04-05 2006-04-05 Positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007280711A JP2007280711A (en) 2007-10-25
JP5116249B2 true JP5116249B2 (en) 2013-01-09

Family

ID=38681953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104078A Expired - Fee Related JP5116249B2 (en) 2006-04-05 2006-04-05 Positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5116249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054328B (en) * 2018-01-05 2023-11-07 泉州劲鑫电子有限公司 High-temperature quick-charging nickel-hydrogen power battery and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150925A (en) * 1992-11-02 1994-05-31 Matsushita Electric Ind Co Ltd Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JPH08130010A (en) * 1994-10-28 1996-05-21 Furukawa Battery Co Ltd:The Manufacture of nickel electrode for nickel-hydrogen secondary battery
JP3808193B2 (en) * 1997-01-10 2006-08-09 松下電器産業株式会社 Nickel positive electrode for alkaline storage battery and manufacturing method thereof
JP3643673B2 (en) * 1997-05-29 2005-04-27 三洋電機株式会社 Nickel electrode active material for alkaline storage battery, method for producing the same, and alkaline storage battery

Also Published As

Publication number Publication date
JP2007280711A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP2007149646A (en) Nickel metal hydride storage battery
JP2007149647A (en) Nickel hydrogen storage battery
JP2011233423A (en) Alkaline storage battery
JP6422111B2 (en) Nickel metal hydride secondary battery
JP6730055B2 (en) Negative electrode for alkaline secondary battery, alkaline secondary battery including the negative electrode, and method for producing the negative electrode
US20210305559A1 (en) Positive electrode for alkaline secondary battery, and alkaline secondary battery
JP6947541B2 (en) Non-sintered positive electrode for alkaline secondary battery and alkaline secondary battery equipped with this non-sintered positive electrode
JP5116249B2 (en) Positive electrode for alkaline storage battery
JP2016149299A (en) Nickel hydrogen secondary battery
JP6996960B2 (en) Nickel metal hydride rechargeable battery
JPH09139230A (en) Alkaline secondary battery
JP2017021896A (en) Method for producing hydrogen storage alloy powder and nickel hydrogen secondary battery
JP4121438B2 (en) Negative electrode for nickel-metal hydride secondary battery and sealed nickel-metal hydride secondary battery using the same
JP6049048B2 (en) Nickel metal hydride secondary battery
JP5309479B2 (en) Alkaline storage battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2001236930A (en) Secondary alkaline battery
JP2024131037A (en) Nickel-metal hydride secondary battery
JPH11288734A (en) Alkaline secondary battery
JP2008084738A (en) Non-sintered positive electrode for alkaline storage battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JP2005243519A (en) Nickel hydrogen secondary battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2001307722A (en) Alkaline secondary battery
JP2004296240A (en) Nickel hydrogen secondary battery, and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370