JP2005243519A - Nickel hydrogen secondary battery - Google Patents

Nickel hydrogen secondary battery Download PDF

Info

Publication number
JP2005243519A
JP2005243519A JP2004053880A JP2004053880A JP2005243519A JP 2005243519 A JP2005243519 A JP 2005243519A JP 2004053880 A JP2004053880 A JP 2004053880A JP 2004053880 A JP2004053880 A JP 2004053880A JP 2005243519 A JP2005243519 A JP 2005243519A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
capacity
nickel
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053880A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamane
哲哉 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004053880A priority Critical patent/JP2005243519A/en
Publication of JP2005243519A publication Critical patent/JP2005243519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel hydrogen secondary battery in which deterioration of its cycle characteristic is suppressed although the capacity liquid ratio is small. <P>SOLUTION: In this nickel hydrogen secondary battery, a positive electrode 24 and a negative electrode 26 piled up to each another through a separator 28 is stored in an exterior can 10 with an alkali electrolyte, and nickel hydroxide particle 40 is distributed in the positive electrode 24. In this battery, when the amount of the electrolyte is expressed by V and the battery capacity is expressed by C, capacity liquid ratio V/C is 0.8 ml/Ah or less, the nickel hydroxide particle 40 has a coating layer 42 of cobalt compound, the peak of (101) plane acquired by X-ray powder diffractometry (Cu-Kα) has the half-value width of less than 0.8 degrees, and alkali oxidation treatment is applied to a coating layer 42. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はニッケル水素二次電池に関し、特に高容量化に好適したニッケル水素二次電池に関する。   The present invention relates to a nickel hydride secondary battery, and more particularly to a nickel hydride secondary battery suitable for increasing the capacity.

ニッケル水素二次電池は密封可能な外装缶を有し、外装缶内にセパレータを介して重ね合わされた正極及び負極がアルカリ電解液に収容されている。正極は、例えば多孔質構造を有した金属の基板を有し、基板には正極活物質として水酸化ニッケル粒子が分布されている。又、負極は、例えばパンチングメタルからなる基板を有し、基板には、負極活物質である水素を吸収及び放出可能な水素吸蔵合金粒子が分布されている。水酸化ニッケル粒子及び水素吸蔵合金粒子はその量によって、正極容量及び負極容量をそれぞれ規定するが、一般に、電池の過充電時に正極で発生した酸素ガスを負極で還元して電池の内圧上昇を防止すべく、正極容量よりも負極容量の方が大きく設定されるので(ノイマン式の原理)、電池容量は正極容量により規定される。   A nickel metal hydride secondary battery has a sealable outer can, and a positive electrode and a negative electrode that are overlapped in the outer can via a separator are accommodated in an alkaline electrolyte. The positive electrode includes, for example, a metal substrate having a porous structure, and nickel hydroxide particles are distributed as a positive electrode active material on the substrate. The negative electrode has a substrate made of, for example, a punching metal, and hydrogen storage alloy particles capable of absorbing and releasing hydrogen as the negative electrode active material are distributed on the substrate. Nickel hydroxide particles and hydrogen storage alloy particles define the positive electrode capacity and negative electrode capacity, respectively, depending on their amounts. In general, oxygen gas generated at the positive electrode during battery overcharge is reduced at the negative electrode to prevent an increase in the internal pressure of the battery. Therefore, since the negative electrode capacity is set larger than the positive electrode capacity (Neumann principle), the battery capacity is defined by the positive electrode capacity.

ところで、この種の電池には高容量化が強く望まれているが、外装缶の容積が限られていることから、正極容量を増大させた場合、相対的に他の構成要素、例えばアルカリ電解液量を減らさなければならず、種々の不具合が発生していた。そこで、かかる不具合を解決するために様々な技術開発が行われている(例えば、特許文献1参照)。
特許文献1が開示するアルカリ蓄電池にあっては、X線粉末回折(Cu−Kα線)によって得られる(101)面のピークの半値幅が0.8度以上である水酸化ニッケル及び亜鉛(亜鉛化合物)を含んだペーストを、金属多孔体に充填して乾燥させた正極を使用しており、このような正極によれば、正極容量に対するアルカリ電解液量の比(容量液比)が0.7ml〜2.0ml/Ahの範囲に制限されたとしても、正極活物質の利用率の低下が抑制されるものと考えられる。
特開平10−270071号公報
By the way, a high capacity is strongly desired for this type of battery. However, since the volume of the outer can is limited, when the positive electrode capacity is increased, other components such as alkaline electrolysis are relatively used. The amount of liquid had to be reduced, causing various problems. Accordingly, various technical developments have been made to solve such problems (see, for example, Patent Document 1).
In the alkaline storage battery disclosed in Patent Document 1, nickel hydroxide and zinc (zinc) having a half-value width of the peak of (101) plane obtained by X-ray powder diffraction (Cu-Kα ray) of 0.8 degrees or more. A positive electrode obtained by filling a metal porous body with a paste containing a compound) and drying the paste is used. According to such a positive electrode, the ratio of the amount of alkaline electrolyte to the positive electrode capacity (capacity liquid ratio) is 0. Even if it is limited to the range of 7 ml to 2.0 ml / Ah, it is considered that the decrease in the utilization rate of the positive electrode active material is suppressed.
JP-A-10-270071

しかしながら、特許文献1の電池には、容量液比が0.8ml/Ah以下になるとサイクル特性の低下が大きくなるという問題がある。
本発明は上述の事情に基づいてなされたものであって、その目的とするところは、容量液比が小さいにもかかわらずサイクル特性の低下が抑制されたニッケル水素二次電池を提供することにある。
However, the battery of Patent Document 1 has a problem that the cycle characteristics are greatly deteriorated when the capacity liquid ratio is 0.8 ml / Ah or less.
The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a nickel-metal hydride secondary battery in which a decrease in cycle characteristics is suppressed despite a small capacity-liquid ratio. is there.

上記した目的を達成するため、請求項1の発明では、外装缶内にセパレータを介して互いに重ね合わされた正極及び負極がアルカリ電解液とともに収容され、前記正極に水酸化ニッケル粒子が分布されているニッケル水素二次電池において、前記電解液量をVとし且つ前記電池容量をCとしたときに、容量液比V/Cが0.8ml/Ah以下であり、前記水酸化ニッケル粒子は、コバルト化合物からなる被覆層を有するとともにX線粉末回折法(Cu−Kα)により得られる(101)面のピークが0.8度未満の半値幅を有し、前記被覆層にアルカリ酸化処理が施されていることを特徴としている。   In order to achieve the above object, in the invention of claim 1, a positive electrode and a negative electrode that are overlapped with each other via a separator are accommodated in an outer can together with an alkaline electrolyte, and nickel hydroxide particles are distributed on the positive electrode. In the nickel metal hydride secondary battery, when the amount of the electrolyte is V and the battery capacity is C, the capacity liquid ratio V / C is 0.8 ml / Ah or less, and the nickel hydroxide particles are cobalt compounds. A peak of (101) plane obtained by X-ray powder diffraction method (Cu-Kα) has a half width of less than 0.8 degrees, and the coating layer is subjected to an alkali oxidation treatment It is characterized by being.

上記した構成では、容量液比V/Cが0.8ml/Ah以下であっても、コバルト化合物からなる被覆層を有するとともにX線粉末回折法(Cu−Kα)により得られる(101)面のピークが0.8度未満の半値幅を有する水酸化ニッケル粒子を正極活物質として用い、且つ、被覆層にアルカリ酸化処理を施したことにより、サイクル特性の低下が抑制される。   In the above-described configuration, even when the volumetric liquid ratio V / C is 0.8 ml / Ah or less, the (101) plane obtained by the X-ray powder diffraction method (Cu-Kα) while having a coating layer made of a cobalt compound. By using nickel hydroxide particles having a half width of less than 0.8 degrees as a positive electrode active material and applying an alkaline oxidation treatment to the coating layer, deterioration of cycle characteristics is suppressed.

より詳しくは、容量液比V/Cが0.8ml/Ah以下になるまでアルカリ電解液量Vを減少させると、電池を繰り返し使用しているうちに電池反応、即ち正極及び負極における酸化還元反応に寄与可能なアルカリ電解液が枯渇し、円滑な電池反応が阻害されて電池容量が次第に低下する。しかしながら、上記した構成の電池では、ピークの半値幅の制御を介して水酸化ニッケル粒子の歪みが制御されたこと(ピーク半値幅が小さいほど歪みは小さくなる)、アルカリ酸化処理された被覆層が高い導電性を有すること等に起因して電池反応性が向上し、これにより電解液の枯渇による電池反応性の低下が補償され、容量低下が抑制されるものと考えられる。それ故、上記した構成の電池によれば、容量液比V/Cが0.8ml/Ah以下であっても、サイクル特性の低下が抑制されると考えられる。   More specifically, when the alkaline electrolyte amount V is decreased until the capacity liquid ratio V / C is 0.8 ml / Ah or less, the battery reaction, that is, the oxidation-reduction reaction in the positive electrode and the negative electrode, is repeated while the battery is used repeatedly. The alkaline electrolyte that can contribute to the battery is depleted, the smooth battery reaction is hindered, and the battery capacity gradually decreases. However, in the battery having the above-described configuration, the strain of the nickel hydroxide particles is controlled through the control of the half width of the peak (the smaller the peak half width, the smaller the strain). It is considered that the battery reactivity is improved due to the high conductivity and the like, and thereby the decrease in the battery reactivity due to the depletion of the electrolytic solution is compensated, and the decrease in the capacity is suppressed. Therefore, according to the battery having the above-described configuration, it is considered that the deterioration of the cycle characteristics is suppressed even when the capacity liquid ratio V / C is 0.8 ml / Ah or less.

以上説明したように、本発明のニッケル水素二次電池は、容量液比が小さくてもサイクル特性の低下が抑制されるので正極活物質量の増大による高容量化に好適し、産業上の価値が大である。   As described above, the nickel-metal hydride secondary battery of the present invention is suitable for increasing the capacity by increasing the amount of the positive electrode active material because the deterioration of the cycle characteristics is suppressed even if the capacity-liquid ratio is small, and has industrial value. Is big.

以下に添付の図面を参照して、本発明の一実施形態のニッケル水素二次電池を詳細に説明する。
電池AはAAサイズの円筒型電池であり、図1に示したように、上端が開口した有底円筒形状をなす外装缶10を備え、外装缶10は導電性を有した負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性を有する円板形状の蓋板14が配置され、外装缶10の開口縁をかしめ加工することにより絶縁パッキン12及び蓋板14は外装缶10の開口内にて固定されている。
Hereinafter, a nickel-hydrogen secondary battery according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
The battery A is an AA size cylindrical battery and includes an outer can 10 having a bottomed cylindrical shape with an open upper end as shown in FIG. 1, and the outer can 10 functions as a negative electrode terminal having conductivity. . Inside the opening of the outer can 10, a disc-shaped cover plate 14 having conductivity is arranged via a ring-shaped insulating packing 12, and the insulating packing 12 and the cover are formed by caulking the opening edge of the outer can 10. The plate 14 is fixed in the opening of the outer can 10.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に蓋板14の外面上には、弁体18を覆うフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18を介して蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生し、その内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。   The cover plate 14 has a gas vent hole 16 in the center, and a rubber valve element 18 is disposed on the outer surface of the cover plate 14 so as to close the gas vent hole 16. Further, a flanged cylindrical positive terminal 20 covering the valve body 18 is fixed on the outer surface of the cover plate 14, and the positive terminal 20 presses the valve body 18 against the cover plate 14. Accordingly, at the normal time, the outer can 10 is airtightly closed by the cover plate 14 via the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and the internal pressure increases, the valve body 18 is compressed, and the gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, and the positive electrode terminal 20 form a safety valve.

外装缶10内には、略円柱状の電極群22が収容されている。より詳しくは、電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、これら正極24、負極26及びセパレータ28は、セパレータ28を介して正極24及び負極26が互いに重ね合わされた状態となるよう渦巻き状に巻回されている。正極24及び負極26については後述するけれども、電極群22のセパレータ28としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したもの用いることができる。この電池では、過充電時に正極24で発生した酸素ガスを負極26で還元すべく、正極24の容量よりも負極26の容量の方が大きく設定され、電池容量は正極24の容量により規定されている。このように正極24の容量よりも負極26の容量を大きくするために、負極26は正極24よりも長く、電極群22の最外周は負極26の一部により形成されている。この負極26の一部の外面が外装缶10の内周壁に直接接触することで、外装缶10と負極26との間が電気的に接続されている。   A substantially cylindrical electrode group 22 is accommodated in the outer can 10. More specifically, the electrode group 22 includes a strip-like positive electrode 24, a negative electrode 26, and a separator 28. The positive electrode 24, the negative electrode 26, and the separator 28 are in a state in which the positive electrode 24 and the negative electrode 26 are overlapped with each other through the separator 28. It is wound in a spiral shape. Although the positive electrode 24 and the negative electrode 26 will be described later, as the separator 28 of the electrode group 22, for example, a polyamide fiber nonwoven fabric or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used. In this battery, the capacity of the negative electrode 26 is set larger than the capacity of the positive electrode 24 in order to reduce the oxygen gas generated at the positive electrode 24 at the time of overcharging by the negative electrode 26, and the battery capacity is defined by the capacity of the positive electrode 24. Yes. Thus, in order to make the capacity of the negative electrode 26 larger than the capacity of the positive electrode 24, the negative electrode 26 is longer than the positive electrode 24, and the outermost periphery of the electrode group 22 is formed by a part of the negative electrode 26. A part of the outer surface of the negative electrode 26 is in direct contact with the inner peripheral wall of the outer can 10, whereby the outer can 10 and the negative electrode 26 are electrically connected.

また、外装缶10内には、電極群22とともに所定量のアルカリ電解液(図示せず)が収容されている。具体的には、電池内のアルカリ電解液量は、アルカリ電解液量をVとし、電池容量(正極容量)をCとしたときに、アルカリ電解液量Vを電池容量Cで除して得られる容量液比V/Cが0.8ml/Ah以下となるように設定されている。なお、アルカリ電解液としては、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液及びこれらの水溶液のうち2種以上を混合した水溶液等を用いることができる。   Further, a predetermined amount of alkaline electrolyte (not shown) is accommodated in the outer can 10 together with the electrode group 22. Specifically, the amount of alkaline electrolyte in the battery is obtained by dividing the amount of alkaline electrolyte V by the battery capacity C, where V is the amount of alkaline electrolyte and C is the battery capacity (positive electrode capacity). The volume liquid ratio V / C is set to be 0.8 ml / Ah or less. In addition, as alkaline electrolyte, sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, the aqueous solution which mixed 2 or more types among these aqueous solutions, etc. can be used, for example.

更に、外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極24及び蓋板14に接続されている。従って、正極端子20と正極24との間は、正極リード30及び蓋板14を介して電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。   Further, in the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the lid plate 14, and both ends of the positive electrode lead 30 are connected to the positive electrode 24 and the lid plate 14. Therefore, the positive electrode terminal 20 and the positive electrode 24 are electrically connected via the positive electrode lead 30 and the lid plate 14. A circular insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit provided in the insulating member 32. A circular insulating member 34 is also disposed between the electrode group 22 and the bottom of the outer can 10.

負極26は、図示しなけれども帯状をなす導電性の負極用基板を有し、この負極用基板には負極合剤が保持されている。負極用基板は、多数の貫通孔を有するシート状の金属材からなり、負極用基板には例えば、パンチングメタル、エキスパンデッドメタル、穿孔鋼板及びニッケルネット等の二次元基板を用いることができる。従って、負極合剤は、負極用基板の貫通孔内に充填されるとともに、負極用基板の両面に層状にして保持されている。   Although not shown, the negative electrode 26 has a conductive negative electrode substrate having a strip shape, and a negative electrode mixture is held on the negative electrode substrate. The negative electrode substrate is made of a sheet-like metal material having a large number of through holes. For the negative electrode substrate, for example, a two-dimensional substrate such as a punching metal, an expanded metal, a perforated steel plate, or a nickel net can be used. Accordingly, the negative electrode mixture is filled in the through holes of the negative electrode substrate and is held in layers on both surfaces of the negative electrode substrate.

負極合剤は、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子、導電助剤及び結着剤からなる。尚、本明細書においては、説明の便宜上、水素吸蔵合金も負極活物質という。
負極合剤中に分布された水素吸蔵合金粒子は、電池の充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよく、特に限定はされないが、AB5型系、TiNi系及びTiFe系の水素吸蔵合金からなる粒子が好ましい。具体的には、例えば、LaNi5、MmNi5(Mmはミッシュメタル)、LmNi5(LmはLaを含む希土類元素から選ばれる少なくとも一種)及びこれらの合金のNiの一部をAl,Mn,Co,Ti,Cu,Zn,Zr,Cr及びB等から選択される1種以上の元素で置換した多元素系の水素吸蔵合金粒子を用いることができる。特に、一般式:LmNiwCoxMnyAlz(原子比w,x,y,zの合計値は4.80≦w+x+y+z≦5.40である)で表される組成を有する水素吸蔵合金粒子は、充放電サイクルの進行に伴う微粉化が抑制されて充放電サイクル寿命が向上するので好適である。
The negative electrode mixture includes hydrogen storage alloy particles capable of occluding and releasing hydrogen as a negative electrode active material, a conductive additive, and a binder. In the present specification, the hydrogen storage alloy is also referred to as a negative electrode active material for convenience of explanation.
The hydrogen storage alloy particles distributed in the negative electrode mixture can store hydrogen generated electrochemically in an alkaline electrolyte during battery charging, and can easily release the storage hydrogen during discharge. well, it is not particularly limited, AB 5 type system, preferably particles made of TiNi system and TiFe system hydrogen absorbing alloy. Specifically, for example, LaNi 5 , MmNi 5 (Mm is a misch metal), LmNi 5 (Lm is at least one selected from rare earth elements including La), and a part of Ni of these alloys are Al, Mn, Co , Ti, Cu, Zn, Zr, Cr, B, etc., can be used multi-element hydrogen storage alloy particles substituted with one or more elements selected from such elements. In particular, hydrogen storage alloy particles having a composition represented by the general formula: LmNiwCoxMnyAlz (the total value of atomic ratios w, x, y, z is 4.80 ≦ w + x + y + z ≦ 5.40) This is suitable because the pulverization associated with is suppressed and the charge / discharge cycle life is improved.

結着剤としては、例えば、後述する正極の結着剤として使用可能なポリマーのうちから1種又は2種以上を選択して用いることができ、また導電助剤としては、カーボンブラックや黒鉛を用いることができる。
正極24は、図1中の円内に一部を拡大して模式的に示したけれども、帯状をなす導電性の正極用基板36を有し、この基板36に正極合剤が担持されている。正極用基板36は、例えば、ニッケル、ステンレス等の金属板や、ニッケルめっきが施された樹脂等からなり、スポンジ状、繊維状、あるいはフエルト状の多孔質構造を有し、本実施形態では、スポンジ状をなした基板36の孔内に正極合剤が保持されている。
As the binder, for example, one or two or more kinds of polymers that can be used as a positive electrode binder described later can be selected and used, and as the conductive assistant, carbon black or graphite can be used. Can be used.
Although the positive electrode 24 is schematically shown in an enlarged manner in a circle in FIG. 1, the positive electrode 24 has a conductive positive electrode substrate 36 having a belt shape, and a positive electrode mixture is supported on the substrate 36. . The positive electrode substrate 36 is made of, for example, a metal plate such as nickel or stainless steel, a resin plated with nickel, or the like, and has a sponge-like, fiber-like, or felt-like porous structure. The positive electrode mixture is held in the holes of the sponge-like substrate 36.

正極合剤は、例えば、正極活物質としての水酸化ニッケルを含む複合粒子38及び結着剤からなる。
結着剤としては、疎水性及び親水性のポリマーの1種又は2種以上を用いることができ、疎水性のポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン及びゴム系ポリマーを用いることができる。なお、ゴム系ポリマーとしては、例えば、スチレンブタジエンゴム(SBR)のラテックス、アクリロニトリルブタジエンゴム(NBR)のラテックス、エチレンプロピレンジエンモノマ(EPDM)のラテックスを用いることができる。また、親水性のポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリアクリル酸ナトリウム(SPA)等のポリアクリル酸塩、ポリビニルアルコール(PVA)、ポリエチレンオキシド及びCOOX基を少なくとも一つ有するモノマーとビニルアルコールとの共重合体(但し、Xは水素、アルカリ金属、アルカリ土類金属から選ばれる元素からなる)等を用いることができる。なお、ポリエチレン、ポリプロピレン及びポリテトラフルオロエチレンはディスパージョンの形態で用いることができる。
The positive electrode mixture is composed of, for example, composite particles 38 containing nickel hydroxide as a positive electrode active material and a binder.
As the binder, one or more of hydrophobic and hydrophilic polymers can be used. Examples of the hydrophobic polymer include polytetrafluoroethylene (PTFE), polyethylene, polypropylene, and rubber-based polymers. Can be used. As the rubber polymer, for example, styrene butadiene rubber (SBR) latex, acrylonitrile butadiene rubber (NBR) latex, or ethylene propylene diene monomer (EPDM) latex can be used. Examples of hydrophilic polymers include carboxymethyl cellulose (CMC), methyl cellulose (MC), hydroxypropyl methyl cellulose (HPMC), polyacrylic acid salts such as sodium polyacrylate (SPA), polyvinyl alcohol (PVA), poly A copolymer of a monomer having at least one ethylene oxide and a COOX group and vinyl alcohol (where X is an element selected from hydrogen, an alkali metal, and an alkaline earth metal) can be used. Polyethylene, polypropylene and polytetrafluoroethylene can be used in the form of a dispersion.

複合粒子38は、水酸化ニッケル粒子40とこの水酸化ニッケル粒子40の表面に形成された被覆層42とからなる。従って、複合粒子38として正極24に分布される水酸化ニッケルの総量により正極容量(理論容量)即ち電池容量が規定され、この正極容量に基づき、上述した容量液比V/Cが0.8ml/Ah以下となるようアルカリ電解液量Vが調整される。   The composite particles 38 are composed of nickel hydroxide particles 40 and a coating layer 42 formed on the surfaces of the nickel hydroxide particles 40. Therefore, the positive electrode capacity (theoretical capacity), that is, the battery capacity is defined by the total amount of nickel hydroxide distributed as the composite particles 38 on the positive electrode 24. Based on this positive electrode capacity, the above-mentioned capacity liquid ratio V / C is 0.8 ml / The amount of alkaline electrolyte V is adjusted so as to be Ah or less.

複合粒子38の水酸化ニッケル粒子40としては、実質的に純粋な水酸化ニッケル粒子、又は、亜鉛及びコバルトの何れか一方若しくは両方が共沈された水酸化ニッケル粒子を用いることができる。ただし、この電池に用いられる水酸化ニッケル粒子40のピーク半値幅は0.8°未満であり、好ましくは、0.4°以上0.75°以下の範囲内に入っている。このピーク半値幅とは、水酸化ニッケル粒子40にCu−Kα線を用いたX線粉末回折法を適用し、水酸化ニッケルの(101)面からの反射強度を、回折角2θを変化させながら測定して得られるピークの半値幅である。   As the nickel hydroxide particles 40 of the composite particles 38, substantially pure nickel hydroxide particles or nickel hydroxide particles in which either one or both of zinc and cobalt are co-precipitated can be used. However, the peak half-value width of the nickel hydroxide particles 40 used in this battery is less than 0.8 °, and preferably falls within the range of 0.4 ° or more and 0.75 ° or less. The peak half-value width is obtained by applying an X-ray powder diffraction method using Cu—Kα rays to the nickel hydroxide particles 40 and changing the reflection intensity from the (101) plane of nickel hydroxide while changing the diffraction angle 2θ. This is the half width of the peak obtained by measurement.

一方、複合粒子38の被覆層42は、アルカリ酸化処理されたコバルト化合物からなり、良好な導電性を有する。より詳しくは、この被覆層42は、水酸化ニッケル粒子40の表面に三酸化二コバルト(Co23)、コバルト金属(Co)、一酸化コバルト(CoO)及び水酸化コバルト(Co(OH)2)等のコバルト化合物を析出させた後に、このコバルト化合物の析出物にアルカリ酸化処理を施すことにより形成することができる。従って、アルカリ酸化処理によって、この被覆層42にはその表面から内部に亘り、例えばNa+等のアルカリカチオンが分布されている。 On the other hand, the coating layer 42 of the composite particles 38 is made of an alkali-oxidized cobalt compound and has good conductivity. More specifically, the coating layer 42 is formed on the surface of the nickel hydroxide particles 40 with dicobalt trioxide (Co 2 O 3 ), cobalt metal (Co), cobalt monoxide (CoO), and cobalt hydroxide (Co (OH)). After depositing a cobalt compound such as 2 ), it can be formed by subjecting the precipitate of the cobalt compound to an alkali oxidation treatment. Therefore, alkali cations such as Na + are distributed on the coating layer 42 from the surface to the inside by the alkali oxidation treatment.

上述した電池では、容量液比V/Cが0.8ml/Ah以下であるにもかかわらず、サイクル特性の低下が抑制されるので、電池容量Cの増大即ち高容量化に好適する。より詳しくは、電池容量Cを増大させるためには、正極活物質を増量すべく正極24の体積を増大させる必要があるが、正極24の体積を増大させた場合、アルカリ電解液を収容するための空間を、一定容積の電池内に十分に確保することができなくなるので、アルカリ電解液量Vを減少させねばならない。しかし、容量液比V/Cが0.8ml/Ah以下になるまでアルカリ電解液量Vを減少させると、電池を繰り返し使用しているうちに電池反応、即ち正極及び負極における酸化還元反応に寄与可能なアルカリ電解液が枯渇し、円滑な電池反応が阻害されて電池容量が次第に低下する。このため従来の電池では、容量液比V/Cが0.8ml/Ah以下になるとサイクル特性が大きく低下した。これに対し、上述の電池は、ピーク半値幅が0.8°未満の水酸化ニッケル粒子40を用い、且つ、この水酸化ニッケル粒子の表面にアルカリ酸化処理されたコバルト化合物からなる被覆層42を形成したことにより、そのメカニズムは明らかではないけれどもサイクル特性の低下が抑制され、高容量化に好適する。おそらくは、ピーク半値幅の制御を介して水酸化ニッケル粒子40の歪みが制御されたこと(ピーク半値幅が小さいほど歪みは小さくなる)、アルカリ酸化処理された被覆層42は導電性が高いこと等に起因して、上述の電池では電池反応性が向上し、これにより電解液の枯渇による電池反応性の低下が補償されるものと考えられる。   The above-described battery is suitable for increasing the battery capacity C, that is, increasing the capacity because the decrease in cycle characteristics is suppressed even though the capacity liquid ratio V / C is 0.8 ml / Ah or less. More specifically, in order to increase the battery capacity C, it is necessary to increase the volume of the positive electrode 24 in order to increase the amount of the positive electrode active material. However, when the volume of the positive electrode 24 is increased, the alkaline electrolyte is accommodated. Therefore, the amount of the alkaline electrolyte V must be reduced. However, if the alkaline electrolyte amount V is decreased until the capacity liquid ratio V / C becomes 0.8 ml / Ah or less, it contributes to the battery reaction, that is, the oxidation-reduction reaction in the positive electrode and the negative electrode while the battery is repeatedly used. The possible alkaline electrolyte is depleted, the smooth battery reaction is inhibited, and the battery capacity gradually decreases. For this reason, in the conventional battery, when the capacity liquid ratio V / C is 0.8 ml / Ah or less, the cycle characteristics are greatly deteriorated. On the other hand, the battery described above uses nickel hydroxide particles 40 having a peak half-value width of less than 0.8 °, and the surface of the nickel hydroxide particles has a coating layer 42 made of a cobalt compound subjected to alkali oxidation treatment. Although the mechanism is not clear by the formation, the deterioration of the cycle characteristics is suppressed, which is suitable for increasing the capacity. Probably, the distortion of the nickel hydroxide particles 40 was controlled through the control of the peak half width (the smaller the peak half width, the smaller the strain), the alkali-oxidized coating layer 42 has high conductivity, etc. Due to this, it is considered that the battery reactivity is improved in the above-described battery, and this compensates for a decrease in battery reactivity due to depletion of the electrolyte.

上述の電池は、通常の方法により製造することができるけれども、以下では正極24の作製方法の一例について説明する。
まず、ピーク半値幅が0.8°未満の水酸化ニッケル粒子40を用意する。このような水酸化ニッケル粒子は、硫酸ニッケル水溶液とアンモニア水とを反応容器内の水に加え、液のpHをアルカリ水溶液を添加して調整した後、所定時間攪拌混合することにより沈殿物として得ることができる。なお、反応時の液のpHを低く保持するほど、ピーク半値幅を小さくすることができる。また、亜鉛及びコバルトを共沈するには、硫酸亜鉛水溶液及び硫酸コバルト水溶液を更に液に添加すればよい。
Although the above-described battery can be manufactured by a normal method, an example of a method for manufacturing the positive electrode 24 will be described below.
First, nickel hydroxide particles 40 having a peak half width less than 0.8 ° are prepared. Such nickel hydroxide particles are obtained as a precipitate by adding an aqueous nickel sulfate solution and aqueous ammonia to the water in the reaction vessel, adjusting the pH of the solution by adding an alkaline aqueous solution, and then stirring and mixing for a predetermined time. be able to. In addition, a peak half value width can be made small, so that pH of the liquid at the time of reaction is kept low. In order to coprecipitate zinc and cobalt, an aqueous zinc sulfate solution and an aqueous cobalt sulfate solution may be further added to the solution.

次に、得られた水酸化ニッケル粉末40と水酸化コバルト粉末とを混合し、これにアルカリ水溶液を添加した後、酸化雰囲気下にて加熱処理する。このアルカリ酸化熱処理により、水酸化ニッケル粒子40の表面にアルカリ酸化処理されたコバルト化合物からなる被覆層42が形成され、複合粒子38を得ることができる。なお、被覆層42の作成の際、水酸化コバルト粉末に代えて、一酸化コバルト粉末又は金属コバルト粉末を用いてもよい。   Next, the obtained nickel hydroxide powder 40 and cobalt hydroxide powder are mixed, and an alkaline aqueous solution is added thereto, followed by heat treatment in an oxidizing atmosphere. By this alkali oxidation heat treatment, a coating layer 42 made of a cobalt compound that has been subjected to alkali oxidation treatment is formed on the surface of the nickel hydroxide particles 40, and composite particles 38 can be obtained. In forming the coating layer 42, cobalt monoxide powder or metal cobalt powder may be used instead of the cobalt hydroxide powder.

この後、得られた複合粒子38及び結着剤に水を加えて混合したペーストを用意し、このペーストを正極用基板36となる多孔質構造のニッケル板に充填してから乾燥させ、そして、このニッケル板を圧延・裁断して正極24を作製することができる。
本発明は、上記した一実施形態に限定されることはなく、種々変形が可能であり、例えば、円筒形状の外装缶10に代えて角型形状の外装缶を用いても良い。ただし、この電池はAAサイズの円筒型二次電池に好適する。
Thereafter, a paste is prepared by adding water to the obtained composite particles 38 and the binder, and the paste is filled in a porous nickel plate to be the positive electrode substrate 36, and then dried. The nickel plate can be rolled and cut to produce the positive electrode 24.
The present invention is not limited to the above-described embodiment, and can be variously modified. For example, a rectangular outer can may be used instead of the cylindrical outer can 10. However, this battery is suitable for an AA size cylindrical secondary battery.

そして、上記した一実施形態においては、負極活物質として水素吸蔵合金を用いたけれども、水素吸蔵合金に代えてカドミウム化合物を用いることにより電池をニッケルカドミウム二次電池としてもよい。ただし、電池の容量向上にはニッケル水素二次電池が好適する。
また、上記した一実施形態においては、正極合剤が複合粒子及び結着剤からなるが、正極合剤に導電助剤として、三酸化二コバルト(Co23)、コバルト金属(Co)、一酸化コバルト(CoO)及び水酸化コバルト(Co(OH)2)等のコバルト化合物を更に添加してもよい。
In the above-described embodiment, the hydrogen storage alloy is used as the negative electrode active material, but the battery may be a nickel cadmium secondary battery by using a cadmium compound instead of the hydrogen storage alloy. However, a nickel-hydrogen secondary battery is suitable for improving the battery capacity.
Further, in the above-described embodiment, the positive electrode mixture is composed of composite particles and a binder, but as a conductive auxiliary agent for the positive electrode mixture, dicobalt trioxide (Co 2 O 3 ), cobalt metal (Co), Cobalt compounds such as cobalt monoxide (CoO) and cobalt hydroxide (Co (OH) 2 ) may be further added.

実施例1〜6及び比較例1〜19
1.電池の組み立て
(1)実施例1〜6及び比較例1〜14
実施例1〜6及び比較例1〜14として、図1に示した構成を有し、電池容量Cが2600mAhであるAAサイズの円筒型ニッケル水素二次電池を組立てた。
Examples 1-6 and Comparative Examples 1-19
1. Battery assembly (1) Examples 1-6 and Comparative Examples 1-14
As Examples 1-6 and Comparative Examples 1-14, AA size cylindrical nickel-hydrogen secondary batteries having the configuration shown in FIG. 1 and having a battery capacity C of 2600 mAh were assembled.

ただし、正極作製の際、実施例及び比較例毎に、表1に示したピーク半値幅を有する水酸化ニッケル粒子を用いた(表1参照)。なお、表1のピーク半値幅は、表2に示した測定条件にてX線粉末回折法により測定した値である。
また、外装缶へのアルカリ電解液の注液の際、実施例及び比較例毎に、表1に示した容量液比V/Cとなるようにアルカリ電解液量を調整した。なお、電池容量Cは、水酸化ニッケル1gあたりの容量を289mAhとして求められる正極の理論容量である。
However, during the production of the positive electrode, nickel hydroxide particles having a peak half-value width shown in Table 1 were used for each of Examples and Comparative Examples (see Table 1). The peak half-value width in Table 1 is a value measured by the X-ray powder diffraction method under the measurement conditions shown in Table 2.
Further, when the alkaline electrolyte was poured into the outer can, the amount of the alkaline electrolyte was adjusted so that the volume ratio V / C shown in Table 1 was obtained for each of the examples and the comparative examples. The battery capacity C is the theoretical capacity of the positive electrode obtained with a capacity per gram of nickel hydroxide of 289 mAh.

(2)比較例15〜19
比較例15〜19として、正極作製の際、水酸化ニッケル粒子の表面にアルカリ酸化処理されたコバルト化合物からなる被覆層を形成せず、その代わりに、正極合剤(ペースト)に対して水酸化ニッケル粒子100重量部あたり水酸化コバルト8重量部を添加した以外は、実施例4〜6及び比較例3、4とそれぞれ同様にして、円筒型ニッケル水素二次電池を組立てた。
(2) Comparative Examples 15-19
As Comparative Examples 15 to 19, during the production of the positive electrode, the surface of the nickel hydroxide particles was not formed with a coating layer made of an alkali-oxidized cobalt compound. Instead, the positive electrode mixture (paste) was hydroxylated. Cylindrical nickel metal hydride secondary batteries were assembled in the same manner as in Examples 4 to 6 and Comparative Examples 3 and 4 except that 8 parts by weight of cobalt hydroxide was added per 100 parts by weight of nickel particles.

2.電池のサイクル特性評価試験
得られた実施例及び比較例の各電池にまず初充放電を施した。次に、これらの電池に、1It(2600mA)でのΔV充電工程、1時間の休止工程及び1It(2600mA)での終止電圧1.0Vまでの放電工程を1サイクルとする充放電サイクルを繰り返し行った。この充放電サイクルの間、1サイクル毎に各電池の放電容量を測定し、放電容量が初期の放電容量の60%となったときのサイクル数を数えた。この結果を表1及び図2に示す。
2. Battery Cycle Characteristic Evaluation Test Each battery of the obtained Examples and Comparative Examples was first charged and discharged. Next, these batteries were repeatedly subjected to a charge / discharge cycle in which a ΔV charging step at 1 It (2600 mA), a one-hour resting step, and a discharging step up to a final voltage of 1.0 V at 1 It (2600 mA) were performed as one cycle. It was. During this charge / discharge cycle, the discharge capacity of each battery was measured every cycle, and the number of cycles when the discharge capacity reached 60% of the initial discharge capacity was counted. The results are shown in Table 1 and FIG.

Figure 2005243519
Figure 2005243519

Figure 2005243519
Figure 2005243519

表1及び図2からは以下のことが明らかである。
(1)水酸化ニッケル粒子のピーク半値幅に拘わらず、容量液比V/Cが小さくなるのに伴ない、放電容量が初期の放電容量の60%となるまでのサイクル数(以下、単にサイクル数という)は減少する。
(2)特に、ピーク半値幅が0.8°以上の水酸化ニッケル粒子を用いた場合(比較例5〜9及び比較例10〜14)、容量液比V/Cが0.8ml/Ah以下、特に0.7ml/Ah以下になるとサイクル数が大きく減少する。
The following is clear from Table 1 and FIG.
(1) Regardless of the peak half-value width of nickel hydroxide particles, the number of cycles until the discharge capacity reaches 60% of the initial discharge capacity as the capacity liquid ratio V / C decreases (hereinafter simply referred to as cycle) Number) decreases.
(2) In particular, when nickel hydroxide particles having a peak half width of 0.8 ° or more are used (Comparative Examples 5 to 9 and Comparative Examples 10 to 14), the volume ratio V / C is 0.8 ml / Ah or less. In particular, the number of cycles is greatly reduced at 0.7 ml / Ah or less.

(3)これに対して、ピーク半値幅が0.8°未満の水酸化ニッケル粒子を用いた場合(実施例1〜6及び比較例1〜4)、容量液比V/Cが0.8ml/Ah以下になってもサイクル数の減少率は大きくなっていない。つまり、ピーク半値幅が0.8°未満の水酸化ニッケル粒子を用いた場合には、0.8°以上の水酸化ニッケル粒子を用いた場合に比べて、容量液比V/Cが0.8ml/Ah以下の範囲でのサイクル特性の低下が抑制されている。そしてこの結果として、容量液比V/Cが0.8ml/Ah以下の範囲では、ピーク半値幅が0.8°未満の水酸化ニッケル粒子を用いた実施例1〜6の電池は、ピーク半値幅が0.8°以上の水酸化ニッケル粒子を用いた比較例5〜7及び比較例10〜12の電池に比べ、そのサイクル数が大きくなっている。 (3) On the other hand, when nickel hydroxide particles having a peak half-width of less than 0.8 ° are used (Examples 1 to 6 and Comparative Examples 1 to 4), the volume liquid ratio V / C is 0.8 ml. Even when the ratio is less than / Ah, the rate of decrease in the number of cycles does not increase. That is, when nickel hydroxide particles having a peak half-value width of less than 0.8 ° are used, the capacity liquid ratio V / C is 0. 0 as compared with the case of using nickel hydroxide particles of 0.8 ° or more. A decrease in cycle characteristics in the range of 8 ml / Ah or less is suppressed. As a result, in the range where the capacity liquid ratio V / C is 0.8 ml / Ah or less, the batteries of Examples 1 to 6 using nickel hydroxide particles having a peak half-value width of less than 0.8 ° Compared to the batteries of Comparative Examples 5 to 7 and Comparative Examples 10 to 12 using nickel hydroxide particles having a value width of 0.8 ° or more, the number of cycles is large.

(4)一方、ピーク半値幅が0.75°の水酸化ニッケル粒子を用いているけれども、コバルト化合物からなり且つアルカリ酸化処理が施された被覆層を水酸化ニッケル粒子に形成しなかった比較例15〜19では、容量液比V/Cが0.8ml/Ah以下になると、そのサイクル数が大きく減少している。
(5)以上の結果より、ピーク半値幅が0.8°未満の水酸化ニッケル粒子を用い、当該水酸化ニッケル粒子にコバルト化合物からなり且つアルカリ酸化処理が施された被覆層を形成することによって、容量液比V/Cが0.8ml/Ah以下、特に0.7ml/Ah以下の範囲にて、電池のサイクル特性の低下を抑制可能なことがわかる。
(4) On the other hand, although nickel hydroxide particles having a peak half width of 0.75 ° were used, a comparative example in which a coating layer made of a cobalt compound and subjected to an alkali oxidation treatment was not formed on nickel hydroxide particles In 15 to 19, when the volume liquid ratio V / C is 0.8 ml / Ah or less, the number of cycles is greatly reduced.
(5) From the above results, by using nickel hydroxide particles having a peak half-value width of less than 0.8 °, the nickel hydroxide particles are formed of a cobalt compound and subjected to alkali oxidation treatment. It can be seen that, when the capacity liquid ratio V / C is 0.8 ml / Ah or less, particularly 0.7 ml / Ah or less, it is possible to suppress the deterioration of the cycle characteristics of the battery.

本発明の実施形態に係る円筒型ニッケル水素二次電池の部分切欠き斜視図である。1 is a partially cutaway perspective view of a cylindrical nickel-metal hydride secondary battery according to an embodiment of the present invention. 実施例及び比較例の各電池についてのサイクル特性評価試験結果を示したグラフである。It is the graph which showed the cycle characteristic evaluation test result about each battery of an Example and a comparative example.

符号の説明Explanation of symbols

10 外装缶
24 正極
26 負極
28 セパレータ
40 水酸化ニッケル粒子
42 被覆層
DESCRIPTION OF SYMBOLS 10 Exterior can 24 Positive electrode 26 Negative electrode 28 Separator 40 Nickel hydroxide particle 42 Coating layer

Claims (1)

外装缶内にセパレータを介して互いに重ね合わされた正極及び負極がアルカリ電解液とともに収容され、前記正極に水酸化ニッケル粒子が分布されているニッケル水素二次電池において、
前記電解液量をVとし且つ前記電池容量をCとしたときに、容量液比V/Cが0.8ml/Ah以下であり、
前記水酸化ニッケル粒子は、コバルト化合物からなる被覆層を有するとともに、X線粉末回折法(Cu−Kα)により得られる(101)面のピークが0.8度未満の半値幅を有し、
前記被覆層にアルカリ酸化処理が施されている
ことを特徴とするニッケル水素二次電池。
In a nickel metal hydride secondary battery in which a positive electrode and a negative electrode overlapped with each other through a separator in an outer can are accommodated together with an alkaline electrolyte, and nickel hydroxide particles are distributed on the positive electrode,
When the amount of the electrolytic solution is V and the battery capacity is C, the capacity liquid ratio V / C is 0.8 ml / Ah or less,
The nickel hydroxide particles have a coating layer made of a cobalt compound, and the peak of the (101) plane obtained by the X-ray powder diffraction method (Cu-Kα) has a half width of less than 0.8 degrees,
A nickel-metal hydride secondary battery, wherein the coating layer is subjected to an alkali oxidation treatment.
JP2004053880A 2004-02-27 2004-02-27 Nickel hydrogen secondary battery Pending JP2005243519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053880A JP2005243519A (en) 2004-02-27 2004-02-27 Nickel hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053880A JP2005243519A (en) 2004-02-27 2004-02-27 Nickel hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JP2005243519A true JP2005243519A (en) 2005-09-08

Family

ID=35025016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053880A Pending JP2005243519A (en) 2004-02-27 2004-02-27 Nickel hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2005243519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129429A (en) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd Non-sintering alkaline secondary battery and non-sintering alkaline secondary battery charging set
JP2013178883A (en) * 2012-02-28 2013-09-09 Sanyo Electric Co Ltd Alkaline storage battery and alkaline storage battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129429A (en) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd Non-sintering alkaline secondary battery and non-sintering alkaline secondary battery charging set
JP2013178883A (en) * 2012-02-28 2013-09-09 Sanyo Electric Co Ltd Alkaline storage battery and alkaline storage battery system

Similar Documents

Publication Publication Date Title
EP3413381B1 (en) Non-sintered positive electrode for alkaline secondary battery and alkaline secondary battery including non-sintered positive electrode
JPH10214604A (en) Battery and nickel hydrogen secondary battery
JP2005243519A (en) Nickel hydrogen secondary battery
JP3567021B2 (en) Alkaline secondary battery
JPH09139230A (en) Alkaline secondary battery
WO2017169163A1 (en) Negative electrode for alkali secondary cell and alkali secondary cell including negative electrode
JPH09115519A (en) Alkaline secondary battery
JP3393978B2 (en) Alkaline secondary battery
JP2002117857A (en) Hydrogen storing metal alloy electrode, and manufacturing method of nickel hydrogen secondary battery and hydrogen storage alloy electrode
JP2001236930A (en) Secondary alkaline battery
JP3343470B2 (en) Manufacturing method of alkaline secondary battery
JP2004031140A (en) Square alkaline secondary battery
JPH1097865A (en) Alkali storage battery and its manufacture
JP2024000748A (en) Positive electrode plate for alkaline battery, and alkaline battery
JPH10275620A (en) Positive electrode for alkaline storage battery, alkaline storage battery, and manufacture of alkaline storage battery
JPH09102308A (en) Alkaline secondary battery
JPH10154525A (en) Manufacture of alkaline storage battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JPH1140183A (en) Battery
JPH09129222A (en) Manufacture of alkaline secondary battery
JPH10289728A (en) Alkaline secondary battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery
JPH0982354A (en) Manufacture of alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090902