JPH04284369A - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery

Info

Publication number
JPH04284369A
JPH04284369A JP3074725A JP7472591A JPH04284369A JP H04284369 A JPH04284369 A JP H04284369A JP 3074725 A JP3074725 A JP 3074725A JP 7472591 A JP7472591 A JP 7472591A JP H04284369 A JPH04284369 A JP H04284369A
Authority
JP
Japan
Prior art keywords
nickel
battery
positive electrode
metal hydride
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3074725A
Other languages
Japanese (ja)
Other versions
JP2995893B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3074725A priority Critical patent/JP2995893B2/en
Publication of JPH04284369A publication Critical patent/JPH04284369A/en
Application granted granted Critical
Publication of JP2995893B2 publication Critical patent/JP2995893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a nickel-metal hydride battery in which the rise of internal resistance, the lowering of discharge capacity, and the reduction of a charge/ discharge cycle life are eliminated by preventing positive electrode expansion, following the progress of a charge/ discharge cycle, without adding cadmium to a positive electrode. CONSTITUTION:An alkaline electrolyte, containing zinc of 0.1M or more and saturated concentration or below, is used in a nickel-metal hydride storage battery composed of a negative electrode having a main body of a hydrogen storage alloy, a positive electrode having a main active material of nickel hydroxide, and an alkaline electrolyte.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水素吸蔵合金を負極に
用い、水酸化ニッケルを正極の主活物質とし、アルカリ
水溶液を電解液に用いるニッケル・金属水素化物蓄電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel/metal hydride storage battery using a hydrogen storage alloy as a negative electrode, nickel hydroxide as the main active material of a positive electrode, and an aqueous alkaline solution as an electrolyte.

【0002】0002

【従来の技術およびその課題】ニッケル・金属水素化物
電池の負極である水素吸蔵電極には、水素吸蔵合金が用
いられる。この水素吸蔵合金は、AB5 形の金属間化
合物LaNi5 、AB2 形のLaves 相金属間
化合物ZrNi2 などの成分元素を、そのほかの種々
の金属元素で置換して、アルカリ蓄電池に用いた場合の
充放電サイクル寿命特性,平衡水素圧,水素の吸蔵放出
量等の種々の特性を改良したものである。
BACKGROUND OF THE INVENTION Hydrogen storage alloys are used for hydrogen storage electrodes, which are negative electrodes of nickel metal hydride batteries. This hydrogen storage alloy has a charge/discharge cycle when used in an alkaline storage battery by replacing component elements such as AB5 type intermetallic compound LaNi5 and AB2 type Laves phase intermetallic compound ZrNi2 with various other metal elements. It has improved various characteristics such as life characteristics, equilibrium hydrogen pressure, and amount of hydrogen storage and release.

【0003】そして、この電池の正極には、従来のニッ
ケル・カドミウム電池などに用いられてきたものと同様
の焼結式や、発泡メタル式の水酸化ニッケル電極が用い
られる。
[0003]The positive electrode of this battery uses a sintered type or foamed metal type nickel hydroxide electrode similar to those used in conventional nickel-cadmium batteries.

【0004】また、この電池の電解液には、水酸化カリ
ウムや水酸化ナトリウムなどを主体とするアルカリ水溶
液が用いられる。
[0004] The electrolyte of this battery is an alkaline aqueous solution mainly containing potassium hydroxide, sodium hydroxide, or the like.

【0005】水素吸蔵電極は、水酸化カドミウム電極と
同程度の電位で作動し、しかも、体積当たりの放電容量
が水酸化カドミウム電極よりも著しく大きいものが得ら
れる。したがって、ニッケル・金属水素化物電池では、
正極と負極との容量比をニッケル・カドミウムと同程度
に保ちながら、負極板の体積を小さくし、正極板の体積
を大きくすることによって、電池の作動電圧がニッケル
・カドミウム電池とほぼ同等で、しかも、放電容量がニ
ッケル・カドミウム電池の約1.5 倍程度の高容量の
電池が得られる。
A hydrogen storage electrode operates at a potential comparable to that of a cadmium hydroxide electrode, and has a discharge capacity per volume that is significantly larger than that of a cadmium hydroxide electrode. Therefore, in a nickel metal hydride battery,
By reducing the volume of the negative plate and increasing the volume of the positive plate while keeping the capacity ratio between the positive and negative electrodes at the same level as nickel-cadmium batteries, the operating voltage of the battery is almost the same as that of nickel-cadmium batteries. Moreover, a high capacity battery with a discharge capacity about 1.5 times that of a nickel-cadmium battery can be obtained.

【0006】このような高容量のニッケル・金属水素化
物電池では、正極板中の活物質の充填密度を高くするの
で、充放電サイクルの進行にともなって正極活物質の膨
潤の現象が顕著になり、セパレータに保持されていたア
ルカリ電解液が充放電の進行にともなって膨潤した正極
の細孔中に吸収され、セパレータ中の液量が著しく減少
するという現象が起こりやすくなる。このような現象が
起こると、電池の内部抵抗が著しく高くなり、1時間率
程度の比較的大きい電流で放電する場合に、電池の分極
が大きくなって、放電容量が低下し、充放電サイクル寿
命が短くなるという不都合が起こった。
[0006] In such high-capacity nickel metal hydride batteries, the packing density of the active material in the positive electrode plate is increased, so that the phenomenon of swelling of the positive electrode active material becomes noticeable as the charge/discharge cycle progresses. , the alkaline electrolyte held in the separator is absorbed into the swollen pores of the positive electrode as charging and discharging progresses, and the amount of liquid in the separator tends to decrease significantly. When this phenomenon occurs, the internal resistance of the battery increases significantly, and when discharging at a relatively large current of about an hourly rate, the polarization of the battery increases, reducing the discharge capacity and shortening the charge/discharge cycle life. An inconvenience occurred in that it became shorter.

【0007】この現象の原因は次のように考えられる。The cause of this phenomenon is thought to be as follows.

【0008】すなわち、水酸化ニッケルの充電生成物に
は、層間距離が小さいβ相および層間距離が大きいγ相
の2種類があり、ともに層状の結晶構造を有している。 そして、水酸化ニッケル電極を大きい電流で充電したり
、過充電電気量を大きくすると、γ相の生成量が増加し
て水酸化ニッケル電極が膨潤する。従って、正極板中の
正極活物質の充填密度を高くすると、正極板中の細孔の
体積が小さくなって、電解液と正極活物質との接触が不
均一になり、充電電流が局部的に大きくなってγ相の生
成が促進されたり、あるいは、少量のγ相が生成しても
、正極活物質の体積の増加を正極板中の細孔で吸収する
ことが困難になって、正極板の膨潤が顕著になる。
That is, there are two types of charged products of nickel hydroxide: a β phase with a small interlayer distance and a γ phase with a large interlayer distance, both of which have a layered crystal structure. When the nickel hydroxide electrode is charged with a large current or the amount of overcharged electricity is increased, the amount of γ phase produced increases and the nickel hydroxide electrode swells. Therefore, when the packing density of the positive electrode active material in the positive electrode plate is increased, the volume of the pores in the positive electrode plate becomes smaller, the contact between the electrolyte and the positive electrode active material becomes uneven, and the charging current is locally reduced. If the size of the positive electrode active material increases and the formation of γ phase is promoted, or even if a small amount of γ phase is formed, it becomes difficult for the pores in the positive electrode plate to absorb the increased volume of the positive electrode active material, and the positive electrode plate The swelling becomes noticeable.

【0009】そこで、従来のニッケル・金属水素化物蓄
電池やニッケル・カドミウム蓄電池では、このような現
象を防止するために、正極の水酸化ニッケルに水酸化カ
ドミウムを添加するものが知られている。
[0009] Therefore, in conventional nickel metal hydride storage batteries and nickel cadmium storage batteries, in order to prevent such a phenomenon, it is known that cadmium hydroxide is added to the nickel hydroxide of the positive electrode.

【0010】すなわち、水酸化カドミウムを水酸化ニッ
ケルと共沈したり、水酸化ニッケルの表面に析出させて
添加すると、充電時にγ相の生成が抑制されるので、水
酸化ニッケルの膨潤が抑制されて水酸化ニッケル電極の
充放電サイクル寿命が長くなるという効果があった。
[0010] That is, when cadmium hydroxide is co-precipitated with nickel hydroxide or added as a precipitate on the surface of nickel hydroxide, the formation of γ phase is suppressed during charging, and therefore the swelling of nickel hydroxide is suppressed. This has the effect of lengthening the charge/discharge cycle life of the nickel hydroxide electrode.

【0011】しかし、廃棄された電池に含まれるカドミ
ウムが地球の環境に及ぼす影響を懸念する考え方から、
カドミウムを含有しない蓄電池が望まれるようになって
きた。したがって、負極活物質にカドミウムを用いない
ニッケル・金属水素化物蓄電池では、正極にもカドミウ
ムを用いないものが望まれていた。
[0011] However, due to concerns about the impact that cadmium contained in discarded batteries would have on the global environment,
A storage battery that does not contain cadmium has become desirable. Therefore, it has been desired that a nickel metal hydride storage battery that does not use cadmium as a negative electrode active material also does not use cadmium as a positive electrode.

【0012】また、ニッケル・金属水素化物蓄電池が開
放式(ベント形)や半密閉式の場合には、その充電末期
から過充電領域において、負極の充電が完了するので、
負極が卑に分極する。そして、正極板にカドミウムを添
加したニッケル・金属水素化物蓄電池では、正極に添加
したカドミウムの一部が電解液に溶解し、このカドミウ
ムが、この電池の過充電の際に金属カドミウムの樹脂状
晶や苔状物として負極に析出して、電池の内部短絡を引
き起こす。
[0012] Furthermore, if the nickel/metal hydride storage battery is an open type (vent type) or semi-closed type, charging of the negative electrode is completed in the overcharge region from the end of charging.
Negative polarization is negative. In nickel/metal hydride storage batteries with cadmium added to the positive electrode plate, some of the cadmium added to the positive electrode dissolves in the electrolyte, and this cadmium forms resinous crystals of metallic cadmium when the battery is overcharged. It deposits on the negative electrode as a moss-like substance, causing an internal short circuit in the battery.

【0013】ニッケル・金属水素化物蓄電池が密閉式の
場合には、通常の充電では、正極の充電が完了しても負
極の充電が完了しないように、未充電の水素吸蔵合金量
を過剰になるように電池を構成する。従って、この方式
の電池の場合には、過充電時に正極から発生する酸素ガ
スが負極において全て還元されて吸収されるならば、負
極の充電が停止するので、負極が卑に分極して金属カド
ミウムの電析による内部短絡の危険がない。しかし、こ
の方式の電池では、著しい低温下では、酸素ガス吸収速
度が低下するので、発生する酸素ガスの全てを吸収する
ことができない。
[0013] When the nickel metal hydride storage battery is a sealed type, during normal charging, the amount of uncharged hydrogen storage alloy is increased so that the charge of the negative electrode is not completed even when the charge of the positive electrode is completed. Configure the battery as follows. Therefore, in the case of this type of battery, if all the oxygen gas generated from the positive electrode during overcharging is reduced and absorbed at the negative electrode, charging of the negative electrode will stop, and the negative electrode will be polarized to the base and become metal cadmium. There is no risk of internal short circuit due to electrodeposition. However, this type of battery cannot absorb all of the generated oxygen gas because the oxygen gas absorption rate decreases at extremely low temperatures.

【0014】このように、過充電時に正極から発生する
酸素ガスの全てを負極で吸収できない場合には、吸収さ
れなかった酸素ガスは電池系外に放出され、負極の未充
電の水素吸蔵合金は、その放出された酸素ガスと当量だ
け充電される。従って、酸素ガス吸収速度が小さい低温
下で過充電を続けると、負極に過剰に設けた未充電の水
素吸蔵合金が充電されて消費される。
[0014] As described above, if the negative electrode cannot absorb all of the oxygen gas generated from the positive electrode during overcharging, the unabsorbed oxygen gas will be released to the outside of the battery system, and the uncharged hydrogen storage alloy at the negative electrode will , charged by an amount equivalent to its released oxygen gas. Therefore, if overcharging is continued at low temperatures where the oxygen gas absorption rate is low, the uncharged hydrogen storage alloy provided in excess at the negative electrode will be charged and consumed.

【0015】それゆえ、密閉式ニッケル・金属水素化物
蓄電池の場合にも、正極板にカドミウムを添加すると、
酸素ガス吸収速度が小さい低温下で、この電池の過充電
を続行する場合に、負極の充電が完了して負極が卑に分
極し、金属カドミウムの電析が起こって内部短絡が起こ
る。
Therefore, even in the case of a sealed nickel/metal hydride storage battery, if cadmium is added to the positive electrode plate,
When overcharging of this battery is continued at low temperatures where the rate of oxygen gas absorption is low, charging of the negative electrode is completed and the negative electrode becomes negatively polarized, causing metal cadmium to be deposited and causing an internal short circuit.

【0016】ニッケル・金属水素化物蓄電池では、正極
にカドミウムを添加することは、過剰の未充電の水素吸
蔵合金が負極に備えられない条件下で過充電する場合に
、このように電池の内部短絡を招くので好ましくない。
In nickel-metal hydride storage batteries, the addition of cadmium to the positive electrode can thus prevent internal short circuits in the battery when overcharging under conditions where excess uncharged hydrogen storage alloy is not provided at the negative electrode. This is not desirable because it invites

【0017】従って、正極にカドミウムを添加すること
なく、充放電サイクルの進行にともなう正極の膨潤を防
止して、内部抵抗の上昇,放電容量の低下および充放電
サイクル寿命の低下を招かないニッケル・金属水素化物
電池が望まれていた。
[0017] Therefore, without adding cadmium to the positive electrode, it is possible to prevent the swelling of the positive electrode as the charge/discharge cycle progresses, thereby preventing an increase in internal resistance, a decrease in discharge capacity, and a decrease in charge/discharge cycle life. Metal hydride batteries were desired.

【0018】[0018]

【課題を解決するための手段】本発明によるニッケル・
金属水素化物蓄電池は、上述の課題を解決するために、
水素吸蔵合金を主体とする負極と、水酸化ニッケルを主
活物質とする正極と、アルカリ電解液とから構成され、
そのアルカリ電解液が0.1M以上飽和濃度以下の亜鉛
を含有するを特徴とする。
[Means for solving the problems] Nickel according to the present invention
In order to solve the above-mentioned problems, metal hydride storage batteries
It consists of a negative electrode mainly made of a hydrogen storage alloy, a positive electrode mainly made of nickel hydroxide, and an alkaline electrolyte.
The alkaline electrolyte is characterized in that it contains zinc at a saturation concentration of 0.1M or more and a saturation concentration or less.

【0019】[0019]

【作用】アルカリ電解液が0.1M以上飽和濃度以下の
亜鉛を含有すると、ニッケル・金属水素化物電池の正極
活物質たる水酸化ニッケルに水酸化カドミウムを添加し
なくても、その充電生成物におけるγ相の生成が抑制さ
れる。従って、充放電サイクルの進行にともなう水酸化
ニッケル正極板の膨潤が効果的に抑制されて、内部抵抗
の上昇が防止される。
[Effect] When the alkaline electrolyte contains zinc at a concentration of 0.1M or more and less than the saturation concentration, the charged product will Generation of γ phase is suppressed. Therefore, swelling of the nickel hydroxide positive electrode plate as the charge/discharge cycle progresses is effectively suppressed, and an increase in internal resistance is prevented.

【0020】なお、アルカリ電解液中の亜鉛の濃度が0
.1M未満の場合には、水酸化ニッケル電極のγ相の生
成を抑制する効果が小さいので好ましくない。
[0020] Note that when the concentration of zinc in the alkaline electrolyte is 0,
.. If it is less than 1M, it is not preferable because the effect of suppressing the formation of γ phase in the nickel hydroxide electrode is small.

【0021】また、KOH やNaOHのようなアルカ
リ電解液は、その濃度が1N程度よりも低くなると亜鉛
の飽和濃度が0.1Mよりも小さくなるが、このような
低濃度では、亜鉛を添加していない場合でも水酸化ニッ
ケルの充電生成物におけるγ相の生成量がもともと少な
いので、電解液に亜鉛を添加する必要がない。ただし、
このような低濃度では電解液の抵抗が大きくなって、電
池の内部抵抗が大きくなったり、電解液の凝固点が高く
なって、電池を低温下で使用できなくなる。従って、内
部抵抗が低下せず、また、低温下でも使用できる電池の
場合には、1M以上の高濃度のアルカリ電解液を用いる
必要があり、この場合には、アルカリ電解液に0.1M
以上飽和濃度以下の亜鉛を含有させた本発明の効果が得
られる。
[0021]Also, when the concentration of an alkaline electrolyte such as KOH or NaOH is lower than about 1N, the saturation concentration of zinc becomes lower than 0.1M, but at such a low concentration, it is difficult to add zinc. Even when the nickel hydroxide is not charged, the amount of γ phase produced in the charged product of nickel hydroxide is originally small, so there is no need to add zinc to the electrolyte. however,
At such a low concentration, the resistance of the electrolyte increases, resulting in an increase in the internal resistance of the battery and a high freezing point of the electrolyte, making it impossible to use the battery at low temperatures. Therefore, in the case of a battery that does not reduce internal resistance and can be used even at low temperatures, it is necessary to use an alkaline electrolyte with a high concentration of 1M or more.
The effects of the present invention can be obtained by containing zinc at a saturation concentration or lower.

【0022】また、本発明において、低温下で大電流で
過充電した場合に、アルカリ電解液に含有される亜鉛が
負極に電析しないので、内部短絡が発生しない。その理
由は、次の通りである。
Furthermore, in the present invention, when overcharging is carried out with a large current at a low temperature, zinc contained in the alkaline electrolyte is not deposited on the negative electrode, so that no internal short circuit occurs. The reason is as follows.

【0023】すなわち、アルカリ電解液中における亜鉛
の標準電極電位は、カドミウムの標準電極電位よりも約
0.4Vも卑であり、アルカリ電池に用いられる水素吸
蔵合金とカドミウムの標準電極電位は極めて近い値であ
る。 したがって、亜鉛が電析するためには、水素吸蔵電極が
約0.4Vも卑に分極しなければならない。しかし、水
素吸蔵電極は水素過電圧が著しく低いので、低温下で大
電流で密閉式電池を過充電して負極が過充電されても、
その電位が金属亜鉛の電析する値まで卑に分極しない。 したがって、正極にカドミウムを添加しなければ、金属
カドミウムも金属亜鉛も負極に電析しないので内部短絡
が起こらない。
That is, the standard electrode potential of zinc in an alkaline electrolyte is about 0.4 V less noble than that of cadmium, and the standard electrode potential of cadmium and hydrogen storage alloys used in alkaline batteries are extremely close. It is a value. Therefore, in order for zinc to be deposited, the hydrogen storage electrode must be negatively polarized by about 0.4V. However, hydrogen storage electrodes have extremely low hydrogen overvoltage, so even if a sealed battery is overcharged with a large current at low temperatures and the negative electrode is overcharged,
The potential does not polarize basely to the value at which metallic zinc is deposited. Therefore, if cadmium is not added to the positive electrode, neither metal cadmium nor metal zinc will be deposited on the negative electrode, so no internal short circuit will occur.

【0024】なお、カドミウム電極の場合には、カドミ
ウムの水素過電圧が著しく高いので、充電末期にはカド
ミウム電極が著しく卑に分極する。従って、負極にカド
ミウム電極を用いる電池のアルカリ電解液に亜鉛を添加
しておくと、充電末期に卑に分極した負極板に金属亜鉛
の樹脂状晶が電析して電池の内部短絡を引き起こす不都
合がある。
[0024] In the case of a cadmium electrode, since the hydrogen overvoltage of cadmium is extremely high, the cadmium electrode is polarized to be extremely negative at the end of charging. Therefore, if zinc is added to the alkaline electrolyte of a battery using a cadmium negative electrode, resinous crystals of metallic zinc will be deposited on the negatively polarized negative electrode plate at the end of charging, causing an internal short circuit in the battery. There is.

【0025】すなわち、本願発明において、アルカリ電
解液に亜鉛を含有することの作用効果は、負極にカドミ
ウム電極を用いる電池の場合には成立せず、負極に水素
吸蔵電極を用い、正極に水酸化ニッケル電極を用いるア
ルカリ蓄電池において成立するものであり、この系の蓄
電池に特有のものである。
That is, in the present invention, the effect of containing zinc in the alkaline electrolyte does not hold in the case of a battery that uses a cadmium electrode as the negative electrode, but uses a hydrogen storage electrode as the negative electrode and hydroxide as the positive electrode. This is true in alkaline storage batteries that use nickel electrodes, and is unique to this type of storage battery.

【0026】[0026]

【実施例】本発明を好適な実施例によって説明する。 [電池A,B,C,D,EおよびF](本発明実施例)
正極板は次のようにして製作した。すなわち、多孔度が
約82%の公知の焼結ニッケル基板に、公知の化学含浸
法によって水酸化ニッケルを含浸した。この水酸化ニッ
ケルには、水酸化ニッケルと水酸化コバルトとの合計に
対して約5重量%の水酸化コバルトを共沈して添加し、
その後にこの正極板に更に水酸化ニッケルの重量に対し
て約2重量%の水酸化コバルトを単独で化学含浸法によ
って含浸し、切断した。共沈した水酸化コバルトは、主
として水酸化コバルトの充電電位を卑にして充電効率を
高くするために添加したものであり、単独で含浸した水
酸化コバルトは、主として正極板の活物質利用率を高く
するために添加したものである。
EXAMPLES The present invention will be explained by means of preferred examples. [Batteries A, B, C, D, E and F] (Embodiment of the present invention)
The positive electrode plate was manufactured as follows. That is, a known sintered nickel substrate having a porosity of about 82% was impregnated with nickel hydroxide by a known chemical impregnation method. Co-precipitated cobalt hydroxide is added to this nickel hydroxide in an amount of about 5% by weight based on the total of nickel hydroxide and cobalt hydroxide,
Thereafter, this positive electrode plate was further impregnated with about 2% by weight of cobalt hydroxide based on the weight of nickel hydroxide by a chemical impregnation method, and then cut. Co-precipitated cobalt hydroxide is mainly added to lower the charging potential of cobalt hydroxide to increase charging efficiency, and cobalt hydroxide impregnated alone mainly increases the active material utilization rate of the positive electrode plate. It was added to increase the height.

【0027】この正極板1枚の寸法は、厚さが約0.8
mm 、巾が約3.5cm 、長さが約10cmであり
、水酸化ニッケルと水酸化コバルトとが合計で約5.1
g含有されていて、これを電池に組み立てると約1.4
Ah の放電容量が得られる。
[0027] The dimensions of this positive electrode plate are approximately 0.8 in thickness.
mm, the width is about 3.5 cm, the length is about 10 cm, and the total amount of nickel hydroxide and cobalt hydroxide is about 5.1 cm.
When assembled into a battery, it contains approximately 1.4 g.
A discharge capacity of Ah is obtained.

【0028】負極板は次のようにして製作した。すなわ
ち、化学式がLmNi3.8 Co0.7 Al0.5
 の組成の水素吸蔵合金粉末(ここに、Lmは、Laの
含有率が約80重量%のランタンリッチミッシュメタル
を表す。)を機械的に粉砕し、300 メッシュの篩い
を通過したこの合金粉末と、合金粉末100重量部に対
して2重量部の導電助剤たるファーネスブラックとを、
増粘剤かつ結着剤たるポリビニルアルコールの水溶液に
分散してペーストをつくり、このペーストをニッケルメ
ッキした鉄製のパンチングメタルの両面に塗布し、乾燥
し、プレスし、切断して負極板を製作した。この負極板
1枚の寸法は、厚さが約0.5mm 、巾が約3.5c
m 、長さが約15cmであり、約10g の水素吸蔵
合金が含有されていて、この水素吸蔵電極単独では、約
3Ah の放電容量が得られる。
The negative electrode plate was manufactured as follows. That is, the chemical formula is LmNi3.8 Co0.7 Al0.5
(Here, Lm represents lanthanum-rich misch metal with a La content of approximately 80% by weight) having the composition of , 2 parts by weight of furnace black as a conductive additive per 100 parts by weight of alloy powder,
A paste was created by dispersing it in an aqueous solution of polyvinyl alcohol, which is a thickener and binder, and this paste was applied to both sides of nickel-plated iron punching metal, dried, pressed, and cut to produce a negative electrode plate. . The dimensions of one negative electrode plate are approximately 0.5 mm thick and approximately 3.5 cm wide.
m, the length is about 15 cm, and contains about 10 g of hydrogen storage alloy, and this hydrogen storage electrode alone has a discharge capacity of about 3 Ah.

【0029】セパレータには、厚さが約0.15mmで
巾が約39mmのポリサルフォン製不織布に界面活性剤
によって親水処理を施したものを用いた。
The separator used was a polysulfone nonwoven fabric with a thickness of about 0.15 mm and a width of about 39 mm, which was treated with a surfactant to make it hydrophilic.

【0030】そして、上記の正極板1枚と負極板1枚と
を、セパレータ1枚を介して捲回し、ニッケルメッキを
施した鉄製で、外径が約16.3mmの円筒形ケースに
これを挿入し、濃度がそれぞれ0.68M (これは、
亜鉛のほぼ飽和濃度である。)、0.6M、0.4M、
0.3M、0.2M、および0.1Mの亜鉛を溶解した
7Mの濃度のKOH アルカリ電解液を注入してから、
正極端子を兼ねる安全弁付きの蓋を装着して、それぞれ
本発明の密閉形ニッケル・金属水素化物蓄電池A,B,
C,D,EおよびFを製作した。電池の高さは約42m
mである。 [電池G](比較例)アルカリ電解液に含有される亜鉛
の濃度を0.05M とする他は、本発明の電池Bと同
じ構成にして、比較のためのニッケル・金属水素化物蓄
電池Gを製作した。 [電池H](従来例)アルカリ電解液に亜鉛を添加しな
いことのほかは、本発明の電池Bと同じ構成にして、従
来の密閉形ニッケル・金属水素化物蓄電池Hを製作した
。 [電池I](従来例)本発明の電池Bの正極板に、さら
に公知の化学含浸法によって水酸化カドミウムを単独で
含浸し、その水酸化カドミウムの添加率を、水酸化ニッ
ケルと水酸化コバルトとの合計に対して3重量%とした
。そして、この正極板を用いること、およびアルカリ電
解液に亜鉛を添加しないことのほかは、本発明の電池B
と同じにして、ニッケル・金属水素化物蓄電池Iを製作
した。
Then, one positive electrode plate and one negative electrode plate were wound together with one separator in between, and placed in a cylindrical case made of nickel-plated iron and having an outer diameter of about 16.3 mm. and the concentration is 0.68M (this is
This is almost the saturation concentration of zinc. ), 0.6M, 0.4M,
After injecting a 7M concentration KOH alkaline electrolyte with 0.3M, 0.2M, and 0.1M zinc dissolved in it,
Sealed nickel/metal hydride storage batteries A, B,
C, D, E and F were manufactured. The height of the battery is approximately 42m
It is m. [Battery G] (Comparative Example) A nickel metal hydride storage battery G for comparison was made with the same configuration as Battery B of the present invention except that the concentration of zinc contained in the alkaline electrolyte was 0.05M. Manufactured. [Battery H] (Conventional Example) A conventional sealed nickel-metal hydride storage battery H was manufactured with the same configuration as Battery B of the present invention except that zinc was not added to the alkaline electrolyte. [Battery I] (Conventional example) The positive electrode plate of Battery B of the present invention is further impregnated with cadmium hydroxide alone by a known chemical impregnation method, and the addition rate of cadmium hydroxide is changed to nickel hydroxide and cobalt hydroxide. The amount was 3% by weight based on the total amount. The battery B of the present invention, except for using this positive electrode plate and not adding zinc to the alkaline electrolyte,
Nickel metal hydride storage battery I was manufactured in the same manner as above.

【0031】以上のAからIの9種類のニッケル・金属
水素化物電池をそれぞれ2個ずつ製作し、それぞれ1個
の電池を、25℃において、それぞれ0.7Aの電流で
2.5 時間充電し、端子電圧が0.8Vに到達するま
で1.4Aの電流で放電するという条件で、充放電サイ
クル試験をおこなった。
Two of each of the above nine types of nickel metal hydride batteries A to I were manufactured, and each battery was charged for 2.5 hours at 25° C. with a current of 0.7 A. A charge/discharge cycle test was conducted under the condition that the battery was discharged at a current of 1.4 A until the terminal voltage reached 0.8 V.

【0032】この充放電サイクル試験の2 サイクル目
および200 サイクル目の内部抵抗および放電容量、
ならびに充放電サイクル寿命(「放電容量が2 サイク
ル目の放電容量の60% に減少するまでの充放電サイ
クル数」と定義する)を表1に示す。
[0032] Internal resistance and discharge capacity at the 2nd cycle and 200th cycle of this charge/discharge cycle test,
Table 1 also shows the charge/discharge cycle life (defined as "the number of charge/discharge cycles until the discharge capacity decreases to 60% of the second cycle discharge capacity").

【0033】また、AからIまでの9種類の電池の残り
のそれぞれ1個を、25℃において、それぞれ0.7A
の電流で2.5 時間充電してから、温度を−10 ℃
に低下させ、2.8Aの電流で10時間過充電して、電
池の内部短絡の発生の有無を調べた。その結果も併せて
表1に示す。
[0033] Also, the remaining one of each of the nine types of batteries A to I was heated to 0.7A at 25°C.
Charge for 2.5 hours at a current of -10 °C.
The battery was overcharged at a current of 2.8 A for 10 hours, and the occurrence of an internal short circuit in the battery was examined. The results are also shown in Table 1.

【0034】[0034]

【表1】 表1から次のことが明らかである。[Table 1] The following is clear from Table 1.

【0035】まず、2サイクル目の内部抵抗および放電
容量は、どの電池にも大きい差異が認められない。しか
し、200 サイクル目の内部抵抗および放電容量と、
充放電サイクル寿命には、次のような著しい差異が認め
られる。
First, no large difference was observed in the internal resistance and discharge capacity in the second cycle among the batteries. However, the internal resistance and discharge capacity at the 200th cycle,
The following significant differences in charge/discharge cycle life are observed.

【0036】すなわち、正極板にカドミウムを添加する
ことなく、アルカリ電解液に含有される亜鉛の濃度が0
.1M以上である本発明による電池A,B,C,D,E
およびFは、正極板にカドミウムを添加しアルカリ電解
液に亜鉛を添加しない従来品Iと比較して、200 サ
イクル目の内部抵抗が同程度の低い値であり、その放電
容量が同程度の大きい値であり、充放電サイクル寿命が
同程度以上の長い値である。
That is, without adding cadmium to the positive electrode plate, the concentration of zinc contained in the alkaline electrolyte is 0.
.. Batteries A, B, C, D, E according to the present invention which are 1M or more
and F have the same low internal resistance at the 200th cycle and the same large discharge capacity as the conventional product I, which has cadmium added to the positive electrode plate and no zinc added to the alkaline electrolyte. It is a long value with a charge/discharge cycle life of the same or higher value.

【0037】一方、正極板にカドミウムを添加すること
なく、アルカリ電解液に含有される亜鉛の濃度が0.1
Mよりも低い比較電池Gや従来電池Hは、アルカリ電解
液に含有される亜鉛の濃度が0.1M以上の本発明電池
A,B,C,D,EおよびFや、正極板にカドミウムを
添加した従来例と比較して、200 サイクル目の内部
抵抗が高く、その放電容量が小さく、充放電サイクル寿
命が短い。
On the other hand, without adding cadmium to the positive electrode plate, the concentration of zinc contained in the alkaline electrolyte is 0.1.
Comparative battery G and conventional battery H, which are lower than M, include batteries A, B, C, D, E, and F of the present invention in which the concentration of zinc contained in the alkaline electrolyte is 0.1 M or more, and batteries containing cadmium in the positive electrode plate. Compared to the conventional example in which the compound was added, the internal resistance at the 200th cycle is high, the discharge capacity is small, and the charge/discharge cycle life is short.

【0038】また、低温下で過充電を続行した場合には
、正極板にカドミウムを添加した従来電池Iに内部短絡
が発生したが、正極板にカドミウムを添加しない本発明
電池A〜F、比較電池Gおよび従来電池Hには、内部短
絡が発生していない。
Furthermore, when overcharging was continued at low temperatures, an internal short circuit occurred in conventional battery I in which cadmium was added to the positive electrode plate, but in comparison with batteries A to F of the present invention in which cadmium was not added to the positive electrode plate. No internal short circuit occurred in battery G and conventional battery H.

【0039】従って、本発明の構成のニッケル・金属水
素化物蓄電池は、低温下で大電流で過充電した場合の電
池の内部短絡を招くカドミウムを正極板に添加すること
なく、しかも充放電サイクルの進行に伴う内部抵抗の増
加、放電容量の低下、および充放電サイクル寿命の減少
を効果的に抑制できるといえる。
Therefore, the nickel/metal hydride storage battery constructed according to the present invention does not contain cadmium added to the positive electrode plate, which causes an internal short circuit in the battery when overcharged with a large current at low temperatures, and also has a short charging/discharging cycle. It can be said that it is possible to effectively suppress the increase in internal resistance, decrease in discharge capacity, and decrease in charge/discharge cycle life as the battery progresses.

【0040】なお、本実施例では、水素吸蔵合金として
、化学式がLmNi3.8 Co0.7 Al0.5 
の組成のものを用いたが、その他の稀土類系AB5 形
水素吸蔵合金、Laves 相水素吸蔵合金、TiNi
合金などのような従来のニッケル・金属水素化物蓄電池
に用いられてきた水素吸蔵合金の場合にも、本発明の効
果は上記実施例と同様に得られる。
In this example, the hydrogen storage alloy has the chemical formula LmNi3.8 Co0.7 Al0.5
However, other rare earth type AB5 type hydrogen storage alloys, Laves phase hydrogen storage alloys, TiNi
Even in the case of hydrogen storage alloys such as alloys used in conventional nickel/metal hydride storage batteries, the effects of the present invention can be obtained in the same manner as in the above embodiments.

【0041】また本実施例では、負極板にペースト式の
水素吸蔵電極を用い、正極板に焼結式の水酸化ニッケル
電極を用いる場合について説明したが、この他に、負極
板として、水素吸蔵合金を発泡ニッケルなどの耐アルカ
リ性の導電性3次元多孔体に充填するものや、水素吸蔵
合金の焼結体を用いる場合や、正極板として、活物質を
発泡ニッケルなどの耐アルカリ性3次元多孔体に充填し
たものを用いる場合にも、実施例同様に本発明の作用効
果が得られる。
[0041]Also, in this embodiment, a case where a paste type hydrogen storage electrode is used for the negative electrode plate and a sintered type nickel hydroxide electrode is used for the positive electrode plate is described. In cases where the alloy is filled into an alkali-resistant conductive three-dimensional porous material such as foamed nickel, when a sintered body of a hydrogen-absorbing alloy is used, or when the active material is filled in an alkali-resistant three-dimensional porous material such as foamed nickel as a positive electrode plate. Even in the case of using a container filled with , the effects of the present invention can be obtained in the same manner as in the embodiments.

【0042】さらに、本実施例では、密閉式のニッケル
・金属水素化物蓄電池の場合の本発明の作用効果を説明
したが、正極板にカドミウムを添加しないことによって
、低温下で過充電した場合の内部短絡が防止される作用
効果は、開放式(ベント形)や、半密閉式のニッケル・
金属水素化物蓄電池を過充電した場合にも、全く同様に
得られる。
Furthermore, in this example, the effect of the present invention in the case of a sealed nickel/metal hydride storage battery was explained, but by not adding cadmium to the positive electrode plate, the effect of overcharging at low temperature is improved. The effect of preventing internal short circuits is the open type (vented type) and semi-closed type nickel
Exactly the same result can be obtained when a metal hydride storage battery is overcharged.

【0043】[0043]

【発明の効果】以上述べたように、本発明のニッケル・
金属水素化物蓄電池は、過剰の未充電の水素吸蔵合金が
負極に備えられない条件下で過充電する場合に、電池の
内部短絡を招いたり、環境汚染を招くカドミウムを正極
に添加することなく、充放電サイクルの進行にともなう
内部抵抗の増加による充放電サイクル寿命の低下を効果
的に抑制したニッケル・金属水素化物蓄電池を提供する
ことができる。
[Effects of the Invention] As described above, the nickel of the present invention
Metal hydride storage batteries can be used without adding cadmium to the positive electrode, which can cause internal short circuits in the battery or cause environmental pollution when overcharging under conditions where excess uncharged hydrogen storage alloy cannot be present in the negative electrode. It is possible to provide a nickel/metal hydride storage battery that effectively suppresses a decrease in charge/discharge cycle life due to an increase in internal resistance as the charge/discharge cycle progresses.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金を主体とする負極と、水酸化
ニッケルを主活物質とする正極と、アルカリ電解液とか
ら構成されるニッケル・金属水素化物蓄電池において、
該アルカリ電解液が0.1M以上飽和濃度以下の亜鉛を
含有することを特徴とするニッケル・金属水素化物蓄電
池。
Claim 1: A nickel metal hydride storage battery comprising a negative electrode mainly composed of a hydrogen storage alloy, a positive electrode mainly composed of nickel hydroxide, and an alkaline electrolyte,
A nickel/metal hydride storage battery, wherein the alkaline electrolyte contains zinc at a saturation concentration of 0.1 M or more and less than a saturation concentration.
JP3074725A 1991-03-13 1991-03-13 Nickel / metal hydride storage battery Expired - Lifetime JP2995893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074725A JP2995893B2 (en) 1991-03-13 1991-03-13 Nickel / metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074725A JP2995893B2 (en) 1991-03-13 1991-03-13 Nickel / metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH04284369A true JPH04284369A (en) 1992-10-08
JP2995893B2 JP2995893B2 (en) 1999-12-27

Family

ID=13555490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074725A Expired - Lifetime JP2995893B2 (en) 1991-03-13 1991-03-13 Nickel / metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP2995893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291510A (en) * 2000-04-06 2001-10-19 Hitachi Maxell Ltd Alkaline storage battery
JP2010073424A (en) * 2008-09-17 2010-04-02 Gs Yuasa Corporation Nickel hydrogen storage battery
JP2018166072A (en) * 2017-03-28 2018-10-25 株式会社Gsユアサ Power storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291510A (en) * 2000-04-06 2001-10-19 Hitachi Maxell Ltd Alkaline storage battery
JP2010073424A (en) * 2008-09-17 2010-04-02 Gs Yuasa Corporation Nickel hydrogen storage battery
JP2018166072A (en) * 2017-03-28 2018-10-25 株式会社Gsユアサ Power storage element

Also Published As

Publication number Publication date
JP2995893B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP2001143745A (en) Nickel hydrogen storage battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH0797504B2 (en) Sealed alkaline storage battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH04212269A (en) Alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3071026B2 (en) Metal hydride storage battery
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JPS6097560A (en) Sealed type alkaline storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12