JP2002117859A - Alkaline battery - Google Patents
Alkaline batteryInfo
- Publication number
- JP2002117859A JP2002117859A JP2000309798A JP2000309798A JP2002117859A JP 2002117859 A JP2002117859 A JP 2002117859A JP 2000309798 A JP2000309798 A JP 2000309798A JP 2000309798 A JP2000309798 A JP 2000309798A JP 2002117859 A JP2002117859 A JP 2002117859A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- positive electrode
- weight
- manganese dioxide
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- NUJOXMJBOLGQSY-UHFFFAOYSA-N Manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 73
- -1 silver-nickel Chemical compound 0.000 claims abstract description 30
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011701 zinc Substances 0.000 claims abstract description 16
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 13
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 6
- NDVLTYZPCACLMA-UHFFFAOYSA-N Silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 80
- 229910001923 silver oxide Inorganic materials 0.000 claims description 40
- 239000002131 composite material Substances 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 239000006258 conductive agent Substances 0.000 claims description 7
- MMIGAXTWRKZSOT-UHFFFAOYSA-N manganese;oxosilver Chemical compound [Mn].[Ag]=O MMIGAXTWRKZSOT-UHFFFAOYSA-N 0.000 claims description 4
- 229910017727 AgNi Inorganic materials 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxyl anion Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract 1
- UKHWJBVVWVYFEY-UHFFFAOYSA-M silver;hydroxide Chemical compound [OH-].[Ag+] UKHWJBVVWVYFEY-UHFFFAOYSA-M 0.000 abstract 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 229910017726 AgNiO Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000003014 reinforcing Effects 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000003349 gelling agent Substances 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M Sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000011528 polyamide (building material) Substances 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004698 Polyethylene (PE) Substances 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000001771 impaired Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000036012 kel Effects 0.000 description 1
- 229910000468 manganese oxide Inorganic materials 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese(II,III) oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral Effects 0.000 description 1
- 229920001888 polyacrylic acid Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- OGFYIDCVDSATDC-UHFFFAOYSA-N silver silver Chemical compound [Ag].[Ag] OGFYIDCVDSATDC-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N tin hydride Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y02E60/12—
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二酸化マンガンを
含有する正極と、亜鉛を含有する負極とを備えたアルカ
リ電池に閻し、更に詳しくは正極の改良による重負荷特
性に優れたアルカリ電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline battery provided with a positive electrode containing manganese dioxide and a negative electrode containing zinc, and more particularly to an alkaline battery having improved heavy load by improving the positive electrode. .
【0002】[0002]
【従来の技術】小型携帯用電子機器としては様々なもの
があるが、その中でも近年、携帯用ゲーム機、デジタル
カメラの普及は目覚ましく、今後もますますその昔及が
予想される。そして、これらの電子機器の携帯用電源と
しては、二酸化マンガンを含有する正極と、亜鉛を含有
する負極とを備え、水酸化カリウム水溶液等のアルカリ
電解液を用いたアルカリ電池が広く用いられている。2. Description of the Related Art There are various types of small portable electronic devices. Among them, portable game machines and digital cameras have been remarkably popularized in recent years, and are expected to continue to be used in the future. As a portable power supply for these electronic devices, an alkaline battery including a positive electrode containing manganese dioxide and a negative electrode containing zinc and using an alkaline electrolyte such as an aqueous solution of potassium hydroxide is widely used. .
【0003】[0003]
【発明が解決しようとする課題】上述したような電子機
器は年々多機能化が進んでおり、それに伴って消費電流
が大きくなり、その電源としては重負荷特性に優れた電
池が求められるようになってきている。As the above-mentioned electronic devices have been multifunctionalized year by year, the current consumption has been increased, and batteries having excellent heavy load characteristics have been demanded as power sources. It has become to.
【0004】本発明は、このような実情に鑑みてなされ
たものであり、重負荷特性を向上させたアルカリ電池を
提供することを目的とする。The present invention has been made in view of such circumstances, and has as its object to provide an alkaline battery having improved heavy load characteristics.
【0005】[0005]
【課題を解決するための手段】本発明のアルカリ電池
は、二酸化マンガン及び導電剤とを含有する正極と、亜
鉛を含有する負極とを備え、上記正極は、酸化銀又は銀
−ニッケル複合酸化物の少なくとも一方を、二酸化マン
ガンに対し0.01重量%以上、0.5重量%未満の範
囲で含有していることを特徴とする。The alkaline battery of the present invention comprises a positive electrode containing manganese dioxide and a conductive agent, and a negative electrode containing zinc, wherein the positive electrode is made of silver oxide or a silver-nickel composite oxide. Is contained in an amount of 0.01% by weight or more and less than 0.5% by weight based on manganese dioxide.
【0006】上述したような本発明に係るアルカリ電池
では、正極に酸化銀又は銀−ニッケル複合酸化物の少な
くとも一方を含有しているため、放電反応に伴って銀
(Ag)が生成し、この銀(Ag)が正極全体の電気抵
抗を下げ、放電時の電池電圧の降下を抑制する。これに
より、このアルカリ電池では、大電流での放電において
も長時間の放電を可能にすることができる。In the alkaline battery according to the present invention as described above, since the positive electrode contains at least one of silver oxide and a silver-nickel composite oxide, silver (Ag) is generated along with the discharge reaction. Silver (Ag) lowers the electrical resistance of the entire positive electrode and suppresses a drop in battery voltage during discharge. As a result, in the alkaline battery, it is possible to discharge for a long time even when discharging with a large current.
【0007】[0007]
【発明の実施形態】以下、本発明の実施の形態について
説明する。Embodiments of the present invention will be described below.
【0008】図1は本発明に係るアルカリ電池の一構成
例を示す縦断面図である。このアルカリ電池1は、電池
缶2と、正極部3と、セパレータ4と、負極合剤5と、
ガスケット6と、補強板7と、負極端子8と、集電ピン
9とを備えている。FIG. 1 is a longitudinal sectional view showing an example of the configuration of an alkaline battery according to the present invention. The alkaline battery 1 includes a battery can 2, a positive electrode section 3, a separator 4, a negative electrode mixture 5,
A gasket 6, a reinforcing plate 7, a negative electrode terminal 8, and a current collecting pin 9 are provided.
【0009】電池缶2は、例えば鉄からなりその表面に
ニッケルめっきが施されており、アルカリ電池1の正極
端子10を兼ねている。The battery can 2 is made of, for example, iron and the surface thereof is plated with nickel, and also serves as the positive electrode terminal 10 of the alkaline battery 1.
【0010】正極部3は、正極活物質である二酸化マン
ガンと、導電剤である黒鉛粉末と、電解液である水酸化
カリウム水溶液とからなる正極合剤が、中空円筒状に成
形され電池缶2の内部に積層されてなる。The positive electrode part 3 is formed into a hollow cylindrical shape by mixing a positive electrode mixture comprising manganese dioxide as a positive electrode active material, graphite powder as a conductive agent, and an aqueous solution of potassium hydroxide as an electrolytic solution. It is laminated inside.
【0011】そして、本実施の形態に係るアルカリ電池
1では、正極部3に、酸化銀(Ag 2O)又は銀−ニッ
ケル複合酸化物(AgNiO2)の少なくとも一方が含
有されており、その含有量は、正極活物質である上記二
酸化マンガンに対し、0.01重量%以上、0.5重量
%未満の範囲である。Then, the alkaline battery according to the present embodiment
In No. 1, silver oxide (Ag TwoO) or silver-ni
Kel composite oxide (AgNiOTwo) At least one of
And the content thereof is the same as that of the above-mentioned positive electrode active material.
0.01% by weight or more, 0.5% by weight based on manganese oxide
%.
【0012】セパレータ4は、ビニロンやレーヨン等の
不織布からなり、有底の中空円筒状をしており、正極部
3の中空部の内側に配置される。The separator 4 is made of a nonwoven fabric such as vinylon or rayon, has a hollow cylindrical shape with a bottom, and is disposed inside the hollow portion of the positive electrode portion 3.
【0013】負極合剤5は、負極活物質となる粒状亜鉛
と、水酸化カリウム水溶液を使用した電解液と、粒状亜
鉛と電解液とをゲル状として均一に分散させておくため
のゲル化剤とからなる。ゲル化剤としては例えばポリア
クリル酸樹脂又はポリアクリル酸ナトリウム等が用いら
れる。そして、この負極合剤5は、ゲル状態で、セパレ
ータ4の内空間に充填される。The negative electrode mixture 5 includes a particulate zinc as a negative electrode active material, an electrolytic solution using an aqueous potassium hydroxide solution, and a gelling agent for uniformly dispersing the particulate zinc and the electrolytic solution in a gel state. Consists of As the gelling agent, for example, polyacrylic acid resin or sodium polyacrylate is used. Then, the negative electrode mixture 5 is filled into the inner space of the separator 4 in a gel state.
【0014】ここで、上記粒状亜鉛は、アルミニウム、
ガリウム、インジウム、タリウム、錫、鉛、ビスマス、
カドミウム等のIIb族からVb族に亘る典型金属元素か
ら選ばれる少なくとも1種以上をそれぞれ1000pp
m以下の範囲で含み、水銀を含まない無汞化亜鉛合金が
用いられる。Here, the granular zinc is aluminum,
Gallium, indium, thallium, tin, lead, bismuth,
At least one selected from the group consisting of typical metal elements ranging from Group IIb to Group Vb such as cadmium,
m and a mercury-free zinc alloy containing no mercury.
【0015】そして、正極部3とセパレータ4と負極合
剤5とが内部に収納された電池缶2の開口部には、ガス
ケット6がこの開口部を封口するために嵌合されてお
り、さらにガスケット6を覆うように補強板7と負極端
子8とが取り付けられている。ここで、ガスケット6は
合成樹脂からなり、例えばナイロン6,6等のポリアミ
ド樹脂等からなる。補強板7及び負極端子8は、例えば
表面にニッケルめっきを施した鉄板やステンレス鋼等か
らなる。なお、電池缶2の開口部はガスケット6の外周
部を覆うように内側にカシメ加工され、密封される。A gasket 6 is fitted into the opening of the battery can 2 in which the positive electrode part 3, the separator 4, and the negative electrode mixture 5 are housed to seal the opening. A reinforcing plate 7 and a negative electrode terminal 8 are attached so as to cover the gasket 6. The gasket 6 is made of a synthetic resin, for example, a polyamide resin such as nylon 6,6. The reinforcing plate 7 and the negative electrode terminal 8 are made of, for example, an iron plate or stainless steel whose surface is plated with nickel. The opening of the battery can 2 is caulked inward so as to cover the outer peripheral portion of the gasket 6, and is sealed.
【0016】集電ピン9は、例えばその表面に錫めっき
が施された真鍮等からなり、負極端子8の内側に溶接な
どによって電気的に接続され、補強板7が取り付けられ
たガスケット6の中央貫通孔に圧入されている。The current collecting pin 9 is made of, for example, brass or the like whose surface is tin-plated, is electrically connected to the inside of the negative electrode terminal 8 by welding or the like, and has a central portion of the gasket 6 to which the reinforcing plate 7 is attached. It is press fit into the through hole.
【0017】ここで、正極に二酸化マンガン、負極に亜
鉛を含有する従来のアルカリ電池では、放電によって以
下に示すような電池反応が起こる。Here, in a conventional alkaline battery containing manganese dioxide for the positive electrode and zinc for the negative electrode, the following battery reaction occurs by discharging.
【0018】 2MnO2+Zn+H2O → 2MnOOH+ZnO (1) 一方、上述したように、正極部3に酸化銀又は銀−ニッ
ケル複合酸化物を含有する本実施の形態に係るアルカリ
電池1では、放電に伴い、上記(1)式に加えて、式
(2)又は式(3)に示すような電池反応が起こる。2MnO 2 + Zn + H 2 O → 2MnOOH + ZnO (1) On the other hand, as described above, in the alkaline battery 1 according to the present embodiment in which the positive electrode portion 3 contains silver oxide or a silver-nickel composite oxide, In addition to the above formula (1), a battery reaction as shown in formula (2) or formula (3) occurs.
【0019】 Ag2O+Zn → 2Ag+ZnO (2) AgNiO2+Zn+H2O → Ag+Ni(OH)2+ZnO (3) このように、本実施の形態に係るアルカリ電池1では、
放電反応によって銀(Ag)が生成する。このAgは良
導体であるため、このAgは、正極部3中の導電剤とし
てはたらく。すなわち、放電時にはこのAgが正極部3
の全体としての電気抵抗を下げるため、放電時の内部抵
抗増加に伴う電圧降下、すなわちIRドロップを抑制
し、結果としてIRドロップの影響の大きい大電流放電
の特性、つまり重負荷特性を向上させることができる。Ag 2 O + Zn → 2Ag + ZnO (2) AgNiO 2 + Zn + H 2 O → Ag + Ni (OH) 2 + ZnO (3) Thus, in the alkaline battery 1 according to the present embodiment,
Silver (Ag) is generated by the discharge reaction. Since this Ag is a good conductor, this Ag acts as a conductive agent in the positive electrode portion 3. That is, at the time of discharge, the Ag
In order to reduce the electric resistance as a whole, the voltage drop due to the increase of the internal resistance at the time of discharge, that is, the IR drop is suppressed, and as a result, the characteristics of the large current discharge greatly affected by the IR drop, that is, the heavy load characteristics are improved. Can be.
【0020】このような酸化銀又は銀−ニッケル複合酸
化物の含有量は、正極部3中に正極活物質として含有さ
れている二酸化マンガンに対して0.01重量%以上、
0.5重量%未満の範囲とする。また、上記酸化銀と銀
−ニッケル複合酸化物とを併せて用いる場合において
も、それらの総含有量が、正極部中の二酸化マンガンに
対して0.01重量%以上、0.5重量%未満の範囲と
する。The content of such a silver oxide or silver-nickel composite oxide is 0.01% by weight or more based on manganese dioxide contained in the positive electrode portion 3 as a positive electrode active material.
The range is less than 0.5% by weight. Also, when the silver oxide and the silver-nickel composite oxide are used in combination, the total content thereof is 0.01% by weight or more and less than 0.5% by weight based on manganese dioxide in the positive electrode portion. Range.
【0021】酸化銀及び/又は銀−ニッケル複合酸化物
の含有量が、正極部中の二酸化マンガンに対して0.0
1重量%よりも少ないと、放電反応により生成される銀
(Ag)の量が少なく、正極部3全体の電気抵抗を下げ
てアルカリ電池1の重負荷特性を向上させる効果が十分
ではない。アルカリ電池1の重負荷特性を向上させる効
果は、酸化銀又は銀−ニッケル複合酸化物の含有量が多
い程大きくなる。The content of silver oxide and / or silver-nickel composite oxide is 0.0
If the amount is less than 1% by weight, the amount of silver (Ag) generated by the discharge reaction is small, and the effect of reducing the electric resistance of the entire positive electrode portion 3 and improving the heavy load characteristics of the alkaline battery 1 is not sufficient. The effect of improving the heavy load characteristics of the alkaline battery 1 increases as the content of silver oxide or silver-nickel composite oxide increases.
【0022】しかしながら、酸化銀又は銀−ニッケル複
合酸化物の含有量が多すぎるのは好ましくない。However, it is not preferable that the content of silver oxide or silver-nickel composite oxide is too large.
【0023】酸化銀又は銀−ニッケル複合酸化物は、ア
ルカリ性電解液に僅かではあるが溶解し、電解液中に銀
イオンとして存在する。電解液中に溶解した銀イオン
は、負極の亜鉛と反応して自己放電を起こし、電池の放
電容量の低下や水素ガス発生に伴う電池内圧の上昇を引
き起こす原因となってしまう。溶解した銀イオンが負極
に達するのを阻止するためには、セロハン、ポリエチレ
ングラフトフィルムなど、銀イオンの移動を阻止するこ
とができるセパレータを使用するのが効果的であるが、
その反面、セパレータのイオン導電性が損なわれてしま
うため、良好な重負荷特性が望まれる場合には好ましく
ない。The silver oxide or the silver-nickel composite oxide is slightly dissolved in the alkaline electrolyte and exists as silver ions in the electrolyte. Silver ions dissolved in the electrolytic solution react with zinc in the negative electrode to cause self-discharge, which causes a reduction in the discharge capacity of the battery and an increase in the internal pressure of the battery due to the generation of hydrogen gas. In order to prevent the dissolved silver ions from reaching the negative electrode, it is effective to use a separator that can prevent the movement of silver ions, such as cellophane and a polyethylene graft film.
On the other hand, the ion conductivity of the separator is impaired, which is not preferable when good heavy load characteristics are desired.
【0024】よって、本実施の形態に係るアルカリ電池
のように、不織布からなるセパレータを用いる場合に
は、酸化銀及び/又は銀−ニッケル複合酸化物の含有量
を上述したような、二酸化マンガンに対して0.01重
量%以上、0.5重量%未満の範囲にすることによっ
て、自己放電に伴う電池の放電容量の低下や電池内圧の
上昇を防止することができる。Therefore, when a non-woven fabric separator is used as in the alkaline battery according to the present embodiment, the content of silver oxide and / or silver-nickel composite oxide is reduced to that of manganese dioxide as described above. By setting the content in the range of 0.01% by weight or more and less than 0.5% by weight, it is possible to prevent a decrease in the discharge capacity of the battery and an increase in the internal pressure of the battery due to self-discharge.
【0025】なお、本発明は、上述した実施の形態で例
に挙げた円筒型のアルカリ電池1に限定されるものでは
なく、電池の形状、材料等、本発明の趣旨を逸脱しない
範囲で変更可能である。It should be noted that the present invention is not limited to the cylindrical alkaline battery 1 exemplified in the above-described embodiment, but may be changed in the shape and material of the battery without departing from the spirit of the present invention. It is possible.
【0026】[0026]
【実施例】つぎに、本発明の効果を確認すべく行った実
施例について説明するが、本発明はこれに限定されるも
のではない。EXAMPLES Next, examples will be described in which the effects of the present invention are confirmed, but the present invention is not limited to these examples.
【0027】・酸化銀の含有量に関する考察 まず、サンプル1〜サンプル14では、正極部に添加す
る酸化銀の量を変えてアルカリ電池を作製し、それらの
電池について特性を評価した。Consideration on Silver Oxide Content First, in Samples 1 to 14, alkaline batteries were prepared by changing the amount of silver oxide added to the positive electrode portion, and the characteristics of these batteries were evaluated.
【0028】まず、二酸化マンガン(MnO2)と酸化
銀(Ag2O)との混合物を100重量部と、黒鉛を7
重量部と、40重量%の水酸化カリウム水溶液を6.5
重量部とを十分混合して正極合剤とし、これを外径13
mm、内径9.5mm、高さ15mmの中空円筒状に加
圧成形して正極ペレットを作製した。電池の作製におい
ては、この中空円筒状の正極ペレットを3個重ねて単三
形の電池缶内に挿入し、さらにこの正極ベレットを加圧
して電池缶内壁へ圧接固着して正極部とした。なお、上
記二酸化マンガンと酸化銀との混合量は、後掲する表1
に示す割合とした。First, 100 parts by weight of a mixture of manganese dioxide (MnO 2 ) and silver oxide (Ag 2 O) and 7 parts of graphite were used.
Parts by weight and 6.5% by weight of a 40% by weight aqueous solution of potassium hydroxide.
Parts by weight and a positive electrode mixture having an outer diameter of 13
A positive electrode pellet was produced by pressure molding into a hollow cylindrical shape having a diameter of 9.5 mm, an inner diameter of 9.5 mm and a height of 15 mm. In the production of the battery, three hollow cylindrical positive electrode pellets were stacked and inserted into an AA battery can, and the positive electrode bellet was further pressurized and fixed to the inner wall of the battery can to form a positive electrode portion. The mixing amount of manganese dioxide and silver oxide is shown in Table 1 below.
The ratio was as shown in the figure.
【0029】次に、上記正極部の内側に、ビニロンとレ
ーヨンの混抄よりなる厚さ0.15mm、目付量50g
/m2の不織布を用いて有底円筒状に加工したものを挿
入した。さらにその内空間に、粒状亜鉛を100重量部
と、酸化亜鉛を0.05重量部と、ゲル化剤を1重量部
と、40重量%の水酸化カリウム水溶液を50重量部と
を混合して作製されるゲル状の負極合剤を充填した。Next, a 0.15 mm-thickness of 50 g of a mixture of vinylon and rayon was formed inside the positive electrode portion.
/ M 2 was processed into a bottomed cylindrical shape using a nonwoven fabric. Further, 100 parts by weight of granular zinc, 0.05 parts by weight of zinc oxide, 1 part by weight of a gelling agent, and 50 parts by weight of a 40% by weight aqueous solution of potassium hydroxide were mixed in the inner space. The produced gelled negative electrode mixture was filled.
【0030】なお、、粒状亜鉛は、アルミニウム(30
ppm)、ビスマス(150ppm)、インジウム(5
00ppm)を含有し、水銀を含有しない無汞化亜鉛粒
子で、ゲル化剤にはポリアクリル酸ナトリウム(三洋化
成工業製「サンフレツシュDK−500」)とポリアク
リル酸樹脂(昭和電工製「力−ボポール941」)を重
量比3:1で混合したものを用いた。The granular zinc is made of aluminum (30
ppm), bismuth (150 ppm), indium (5 ppm)
Mercury-free zinc particles containing mercury-free sodium polyacrylate ("Sanfresh DK-500" manufactured by Sanyo Chemical Industries) and polyacrylic resin ("Power" manufactured by Showa Denko) as gelling agents. -Bopol 941 ") at a weight ratio of 3: 1.
【0031】最後に、電池缶の開口部を、ガスケットに
補強板と集電ピンと負極端子が取り付けられた封口部材
により封口して、単三形アルカリ電池とした。なお、ガ
スケットは、ポリアミド樹脂からなる成形体を用いた。
また、補強板は、表面にニッケルめっきを施した鉄鋼板
からなるものを用いた。また、また、負極端子は、表面
にニッケルめっきを施した鉄鋼板を冷間加工した成形品
を用いた。また、集電ピンは表面に錫めっきを施した真
鍮からなるものを用いた。Finally, the opening of the battery can was sealed with a sealing member in which a reinforcing plate, a current collecting pin, and a negative electrode terminal were attached to a gasket to obtain an AA alkaline battery. The gasket used was a molded body made of a polyamide resin.
The reinforcing plate used was a steel plate having a surface plated with nickel. Further, as the negative electrode terminal, a molded product obtained by cold-working an iron steel plate having a surface plated with nickel was used. The current collecting pin used was made of brass whose surface was tin-plated.
【0032】正極部中に添加される酸化銀の添加量(対
二酸化マンガン+酸化銀比)を表1に示す割合としたこ
と以外は同様にして、単三形の円筒形アルカリ電池を作
製した。An AA cylindrical alkaline battery was fabricated in the same manner except that the amount of silver oxide added to the positive electrode (the ratio of manganese dioxide to silver oxide) was set to the ratio shown in Table 1. .
【0033】そして、以上のようにして作製されたサン
プル1〜サンプル14の電池について、電池の内部抵抗
を測定した後、放電試験を行った。放電試験としては、
23℃の環境下にて、1500mAの電流で、電池電圧
が1.0Vになるまで放電を行った。その後更に、放電
後の内部抵抗を測定した。The batteries of Samples 1 to 14 produced as described above were subjected to a discharge test after measuring the internal resistance of the batteries. As a discharge test,
The battery was discharged at a current of 1500 mA under an environment of 23 ° C. until the battery voltage reached 1.0 V. Thereafter, the internal resistance after the discharge was further measured.
【0034】また、サンプル1〜サンプル14の電池を
60℃で20日間保存し、保存後の電池内のガス量、及
び1500mAの電流で電池電圧が1.0Vになるまで
放電させたときの放電容量を調べた。それらの結果を表
1に示す。The batteries of Samples 1 to 14 were stored at 60 ° C. for 20 days, and the amount of gas in the batteries after storage, and the discharge when the battery was discharged at a current of 1500 mA until the battery voltage reached 1.0 V. The capacity was checked. Table 1 shows the results.
【0035】[0035]
【表1】 [Table 1]
【0036】表1からも明らかなように、酸化銀の含有
量が大きくなるほど、放電後の内部抵抗が小さく、かつ
放電容量が大きくなること、特に酸化銀の含有量が二酸
化マンガンに対して0.01重量%以上の場合にその効
果が顕著に現れることがわかった。これは、放電反応に
よって電気伝導性の高い銀(Ag)が生成したためであ
ると考えられる。As is clear from Table 1, the higher the content of silver oxide, the lower the internal resistance after discharge and the greater the discharge capacity. In particular, the content of silver oxide is 0% with respect to manganese dioxide. It was found that the effect was remarkably exhibited when the content was 0.01% by weight or more. This is considered to be because silver (Ag) having high electric conductivity was generated by the discharge reaction.
【0037】また、保存後においては、電池内のガス量
は、酸化銀の含有量が二酸化マンガンに対して0.5重
量%未満ではほぼ一定であるが、0.5重量%を越える
と急激に大きくなることがわかった。また、保存後の放
電容量についても、酸化銀の含有量が二酸化マンガンに
対して0.5重量%未満では大きな放電容量劣化は見ら
れないが、0.5重量%を越えると放電容量の劣化が大
きくなることがわかった。これは、アルカリ電解液中に
溶解した銀イオンが負極の亜鉛と反応して水素ガスが発
生し、負極合剤中に気泡を作ることによる負極合剤中の
電気伝導性の低下が、その原因になったものと考えられ
る。After storage, the gas amount in the battery is almost constant when the content of silver oxide is less than 0.5% by weight relative to manganese dioxide, but sharply when the content exceeds 0.5% by weight. It turned out to be bigger. Regarding the discharge capacity after storage, no significant deterioration of the discharge capacity is observed when the content of silver oxide is less than 0.5% by weight with respect to manganese dioxide. Was found to be larger. This is because the silver ions dissolved in the alkaline electrolyte react with the zinc of the negative electrode to generate hydrogen gas, and the electric conductivity in the negative electrode mixture decreases due to the formation of bubbles in the negative electrode mixture. It is thought that it became.
【0038】以上の結果から、酸化銀の含有量は、正極
部の二酸化マンガンに対して0.01重量%以上、0.
5重量%未満の範囲とすることが好ましいことかわかっ
た。 ・銀−ニッケル複合酸化物の含有量に関する考察 つぎに示す、サンプル15〜サンプル27では、正極部
に添加する銀−ニッケル複合酸化物の量を変えてアルカ
リ電池を作製し、それらの電池について特性を評価し
た。From the above results, the content of silver oxide was 0.01% by weight or more based on the manganese dioxide in the positive electrode part, and the content of silver oxide was 0.1%.
It has been found that it is preferable to set the range to less than 5% by weight. -Consideration on the content of silver-nickel composite oxide In the following samples 15 to 27, alkaline batteries were prepared by changing the amount of silver-nickel composite oxide added to the positive electrode portion, and the characteristics of those batteries were measured. Was evaluated.
【0039】正極部において、酸化銀の代わりに銀−二
ッケル複合酸化物であるAgNiO 2を用い、その添加
量(対二酸化マンガン比)を表2に示すように変えたこ
と以外は、上述した方法と同様にして電池を作製し、こ
れをサンプル15〜サンプル27とした。In the positive electrode portion, silver-silver was used instead of silver oxide.
AgNiO which is a nickel composite oxide TwoAnd its addition
Amount (ratio of manganese dioxide) was changed as shown in Table 2.
A battery was prepared in the same manner as described above except for
These were designated as Samples 15 to 27.
【0040】このように作製したサンプル15〜サンプ
ル27の電池についても、上記と同様に、放電試験及び
放電試験前後での電池の内部抵抗測定と、60℃で20
日間保存した後の放電試験及び同条件での保存後の電池
内のガス量測定を行った。結果を表2に示す。Similarly to the above, the batteries of Samples 15 to 27 produced in this manner were subjected to a discharge test and measurement of the internal resistance of the batteries before and after the discharge test.
A discharge test after storage for one day and a gas amount measurement in the battery after storage under the same conditions were performed. Table 2 shows the results.
【0041】[0041]
【表2】 [Table 2]
【0042】酸化銀を含有させた場合と同じく、正極部
に銀−ニッケル複合酸化物(AgNiO2)を二酸化マ
ンガンに対して0.01重量%以上含有させると効果的
であることがわかった。酸化銀と同様、放電反応によっ
て電気伝導性の高い銀(Ag)が生成したためであると
考えられる。保存後においてもその傾向は酸化銀を含有
させた場合と同じで、電池内のガス量は、AgNiO2
の含有量が二酸化マンガン含有量に対して0.5重量%
を越えると急激に大きくなり、また保存後の放電容量に
ついても、AgNiO2の含有量が二酸化マンガンに対
して0.5重量%を越えると放電容量の劣化が大きくな
ることがわかった。As in the case where silver oxide was contained, it was found to be effective if the positive electrode portion contained 0.01% by weight or more of silver-nickel composite oxide (AgNiO 2 ) based on manganese dioxide. It is considered that this is because silver (Ag) having high electric conductivity was generated by the discharge reaction as in the case of silver oxide. Even after storage, the tendency is the same as when silver oxide is contained, and the gas amount in the battery is AgNiO 2
Content is 0.5% by weight based on the manganese dioxide content
It was also found that the discharge capacity after storage increased rapidly, and that the deterioration of the discharge capacity became large when the content of AgNiO 2 exceeded 0.5% by weight with respect to manganese dioxide.
【0043】このとき、AgNiO2の含有量の増加に
伴う電池内のガス量増加傾向が、酸化銀を含有させた場
合よりも若干小さくなっているが、これは、銀イオンが
アルカリ電解液中に溶解し負極の亜鉛と反応して水素ガ
スを発生させる反面、AgNiO2は水素ガスとの反応
性が良いために、電池内で発生した水素ガスの一部を吸
収したためと考えられる。At this time, the tendency of the gas amount in the battery to increase with the increase in the content of AgNiO 2 is slightly smaller than that in the case where silver oxide is contained. It is thought that AgNiO 2 absorbed some of the hydrogen gas generated in the battery because it had good reactivity with the hydrogen gas, while it dissolved in the negative electrode and reacted with the zinc of the negative electrode to generate hydrogen gas.
【0044】以上の結果から、銀−ニッケル複合酸化物
(AgNiO2)の含有量は、正極部の二酸化マンガン
含有量に対して0.01重量%以上、0.5重量%未満
の範囲とすることが好ましいことがわかった。From the above results, the content of the silver-nickel composite oxide (AgNiO 2 ) is in the range of 0.01% by weight or more and less than 0.5% by weight based on the manganese dioxide content of the positive electrode portion. Was found to be preferable.
【0045】・酸化銀及び銀−ニッケル複合酸化物の混
合添加効果について 以上の結果より、正極部に酸化銀又は銀−ニッケル複合
酸化物を含有させる場合、その含有量は、どちらも正極
部中の二酸化マンガンに対して0.01重量%以上、
0.5重量%未満の範囲とすることが好ましいことがわ
かった。このことから、これらの物質を使用したことに
よる効果はほぼ同程度であると考えられる。従って、酸
化銀又は銀−ニッケル複合酸化物のどちらか一方を単独
で正極部に含有させるのではなく、これらの物質の両方
を正極部に含有させる場合についても、これらの物質を
単独で含有させた場合と同程度、すなわち正極部中の二
酸化マンガンに対して0.01重量%以上、0.5重量
%未満の範囲とすることが好ましいと考えられる。-Effect of mixing and adding silver oxide and silver-nickel composite oxide From the above results, when silver oxide or silver-nickel composite oxide is contained in the positive electrode part, the content of both is in the positive electrode part. 0.01% by weight or more based on manganese dioxide of
It has been found that the content is preferably in the range of less than 0.5% by weight. From this, it is considered that the effect of using these substances is almost the same. Therefore, instead of containing either one of silver oxide or silver-nickel composite oxide alone in the positive electrode part, when both of these substances are contained in the positive electrode part, these substances are contained alone. It is considered to be preferable that the amount is in the range of 0.01% by weight or more and less than 0.5% by weight based on manganese dioxide in the positive electrode portion.
【0046】・黒鉛添加量について 正極部において、二酸化マンガンに対する黒鉛の添加量
を、後掲する表3に示すように変えたこと以外は、サン
プル9と同様に電池を作製し、これをサンプル28〜サ
ンプル39とした。また、二酸化マンガンに対する黒鉛
の添加量を、後掲する表4に示すように変えたこと以外
は、サンプルlと同様に電池を作製し、これをサンプル
40〜サンプル51とした。これらの電池において、放
電試験を行った。Regarding the amount of graphite added A battery was prepared in the same manner as Sample 9 except that the amount of graphite added to manganese dioxide in the positive electrode portion was changed as shown in Table 3 below. ~ Sample 39. Also, batteries were prepared in the same manner as in Sample 1 except that the amount of graphite added to manganese dioxide was changed as shown in Table 4 below, and these were designated as Samples 40 to 51. A discharge test was performed on these batteries.
【0047】放電試験は、上記と同様、23℃の環境下
にて1500mAの電流で電池電圧か1.0Vになるま
で放電するもの(A:重負荷放電)、23℃の環境下に
て100mAの電流で電池電圧が1.0Vになるまで放
電するもの(B:軽負荷放電)の2種類とした。サンプ
ル28〜サンプル39の結果を表3に示し、サンプル4
0〜サンプル51の結果を表4に示す。In the discharge test, the battery was discharged at a current of 1500 mA in an environment of 23 ° C. until the battery voltage reached 1.0 V (A: heavy load discharge), and a discharge test of 100 mA was performed in an environment of 23 ° C. (B: light load discharge) that discharges until the battery voltage becomes 1.0 V with the above current. Table 3 shows the results of Samples 28 to 39 and Sample 4
Table 4 shows the results of Samples 0 to 51.
【0048】[0048]
【表3】 [Table 3]
【0049】[0049]
【表4】 [Table 4]
【0050】表3から、正極部に酸化銀を含有した場合
において、黒鉛含有量が、二酸化マンガンと酸化銀の総
含有量に対し4重量%以上とした場合に、重負荷放電及
び軽負荷放電ともに高い放電容量を示すことがわかっ
た。4重量%よりも少ないと十分な電気伝導性が得られ
ず、9重量%を越えると正極活物質である二酸化マンガ
ンの含有量が少なくなりすぎることから軽負荷での放電
において放電容量の低下が顕著になってしまう。黒鉛含
有量のより好ましい範囲は、二酸化マンガンと酸化銀の
総含有量に対し5重量%以上、8重量%以下である。As can be seen from Table 3, when the positive electrode portion contains silver oxide and the graphite content is 4% by weight or more with respect to the total content of manganese dioxide and silver oxide, heavy load discharge and light load discharge occur. It was found that both exhibited high discharge capacities. If the amount is less than 4% by weight, sufficient electric conductivity cannot be obtained. If the amount exceeds 9% by weight, the content of manganese dioxide, which is a positive electrode active material, becomes too small. It will be noticeable. A more preferable range of the graphite content is 5% by weight or more and 8% by weight or less based on the total content of manganese dioxide and silver oxide.
【0051】また、表4から、酸化銀を含有しない場合
においても、酸化銀を含有した場合と同様な現象が見ら
れるが、酸化銀を含有しない場合では、重負荷放電にお
いて高い放電容量を示す黒鉛含有量の範囲が、二酸化マ
ンガンに対して7重量%〜10重量%と、酸化銀を含有
する場合よりも高含有量側になっていることがわかっ
た。From Table 4, it can be seen that even when silver oxide was not contained, the same phenomenon as that when silver oxide was contained was observed, but when silver oxide was not contained, a high discharge capacity was exhibited in heavy load discharge. It was found that the range of the graphite content was 7% by weight to 10% by weight based on manganese dioxide, which was higher than the case where silver oxide was contained.
【0052】酸化銀を含有する場合は、酸化銀を含有し
ない場合よりも少ない黒鉛含有量で十分高い放電容量を
実現できるため、軽負荷から重負荷領域に互って高い放
電容量を維持する電池を提供することができることがわ
かった。When silver oxide is contained, a sufficiently high discharge capacity can be achieved with a smaller graphite content than when silver oxide is not contained, so that a battery that maintains a high discharge capacity from light load to heavy load region. Was found to be able to provide.
【0053】[0053]
【発明の効果】本発明に係る電池では、正極部に酸化銀
又は銀−ニッケル複合酸化物の少なくとも一方を含有す
るので、放電反応に伴って電気伝導性の高い銀(Ag)
が生成し、この銀(Ag)が正極部中の導電剤として機
能し、放電時の電池内部抵抗の上昇を抑制する。その結
果、特に放電末期の内部抵抗増加に伴う電圧降下、すな
わちIRドロップを抑制し、IRドロップの影響を大き
く受ける大電流放電時の特性、つまり重負荷特性を向上
させることができる。According to the battery of the present invention, since the positive electrode contains at least one of silver oxide and silver-nickel composite oxide, silver (Ag) having high electric conductivity accompanying the discharge reaction is obtained.
Are generated, and this silver (Ag) functions as a conductive agent in the positive electrode portion, and suppresses an increase in internal resistance of the battery during discharging. As a result, it is possible to suppress a voltage drop due to an internal resistance increase at the end of discharge, that is, an IR drop, and to improve a characteristic at the time of a large current discharge greatly affected by the IR drop, that is, a heavy load characteristic.
【0054】従って、本発明では、二酸化マンガン及び
導電剤を含有する正極と、亜鉛を含有する負極と、不織
布からなるセパレータとを備えたアルカリ電池におい
て、重負荷特性に優れた電池を実現することができる。Accordingly, the present invention provides an alkaline battery having a positive electrode containing manganese dioxide and a conductive agent, a negative electrode containing zinc, and a separator made of a nonwoven fabric, which is excellent in heavy load characteristics. Can be.
【図1】本発明に係るアルカリ電池の一構成例を示す縦
断面図である。FIG. 1 is a longitudinal sectional view showing one configuration example of an alkaline battery according to the present invention.
1 アルカリ電池、 2 電池缶、 3 正極部、 4
セパレータ、 5負極剤、 6 ガスケット、 7
補強板、 8 負極端子板、 9 集電ピン、 10
正極端子1 Alkaline battery, 2 Battery can, 3 Positive electrode part, 4
Separator, 5 negative electrode agent, 6 gasket, 7
Reinforcing plate, 8 Negative terminal plate, 9 Current collecting pin, 10
Positive terminal
Claims (4)
極と、亜鉛を含有する負極と、不織布からなるセパレー
タとを備え、 上記正極は、酸化銀又は銀−ニッケル複合酸化物の少な
くとも一方を、上記二酸化マンガンに対し0.01重量
%以上、0.5重量%未満の範囲で含有していることを
特徴とするアルカリ電池。A positive electrode containing manganese dioxide and a conductive agent, a negative electrode containing zinc, and a separator made of a nonwoven fabric, wherein the positive electrode comprises at least one of silver oxide and a silver-nickel composite oxide, An alkaline battery characterized by being contained in an amount of 0.01% by weight or more and less than 0.5% by weight based on manganese dioxide.
O2であることを特徴とする請求項1記載のアルカリ電
池。2. The silver-nickel composite oxide is AgNi.
Alkaline battery according to claim 1, characterized in that the O 2.
し、上記酸化銀と上記上記銀−ニッケル複合酸化物とを
併せて0.01重量%以上、0.5重量%未満の範囲で
含有していることを特徴とする請求項1記載のアルカリ
電池。3. The positive electrode contains the silver oxide and the silver-nickel composite oxide in a range of 0.01% by weight or more and less than 0.5% by weight based on the manganese dioxide. The alkaline battery according to claim 1, wherein
ガンと酸化銀及び/又は銀−ニッケル複合酸化物との総
含有量に対し4重量%以上、9重量%以下の範囲で黒鉛
を含有していることを特徴とする請求項1記載のアルカ
リ電池。4. The positive electrode contains graphite as a conductive agent in a range of 4% by weight or more and 9% by weight or less based on the total content of manganese dioxide and silver oxide and / or silver-nickel composite oxide. The alkaline battery according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309798A JP2002117859A (en) | 2000-10-10 | 2000-10-10 | Alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309798A JP2002117859A (en) | 2000-10-10 | 2000-10-10 | Alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002117859A true JP2002117859A (en) | 2002-04-19 |
Family
ID=18789885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000309798A Withdrawn JP2002117859A (en) | 2000-10-10 | 2000-10-10 | Alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002117859A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6991875B2 (en) | 2002-08-28 | 2006-01-31 | The Gillette Company | Alkaline battery including nickel oxyhydroxide cathode and zinc anode |
JP2006185649A (en) * | 2004-12-27 | 2006-07-13 | Dowa Mining Co Ltd | Battery positive electrode material |
JP2013168259A (en) * | 2012-02-15 | 2013-08-29 | Hitachi Maxell Ltd | Flat alkaline battery and manufacturing method therefor |
JP2013182843A (en) * | 2012-03-05 | 2013-09-12 | Hitachi Maxell Ltd | Flat alkaline battery and method of manufacturing the same |
-
2000
- 2000-10-10 JP JP2000309798A patent/JP2002117859A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6991875B2 (en) | 2002-08-28 | 2006-01-31 | The Gillette Company | Alkaline battery including nickel oxyhydroxide cathode and zinc anode |
JP2006185649A (en) * | 2004-12-27 | 2006-07-13 | Dowa Mining Co Ltd | Battery positive electrode material |
JP2013168259A (en) * | 2012-02-15 | 2013-08-29 | Hitachi Maxell Ltd | Flat alkaline battery and manufacturing method therefor |
JP2013182843A (en) * | 2012-03-05 | 2013-09-12 | Hitachi Maxell Ltd | Flat alkaline battery and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5626957B2 (en) | Alkaline electrochemical cell | |
US7465518B2 (en) | Cell with copper oxide cathode | |
JP5240897B2 (en) | Alkaline battery | |
US20060046135A1 (en) | Alkaline battery with MnO2/NiOOH active material | |
JP2007515764A (en) | Battery cathode | |
JP4024538B2 (en) | Alkaline battery with improved anode | |
JP2005310616A (en) | Alkaline battery | |
JP5172181B2 (en) | Zinc alkaline battery | |
JP2005276698A (en) | Alkaline battery | |
US8206851B2 (en) | AA alkaline battery and AAA alkaline battery | |
JP5455182B2 (en) | Alkaline battery | |
JP6734155B2 (en) | Alkaline battery | |
EP1817809A2 (en) | Electrochemical cell | |
JP2002117859A (en) | Alkaline battery | |
JP5419256B2 (en) | Alkaline battery | |
US8283069B2 (en) | Zinc-alkaline battery | |
JP4253172B2 (en) | Sealed nickel zinc primary battery | |
JP5019634B2 (en) | Alkaline battery | |
JP2009043417A (en) | Cylindrical alkaline battery | |
JP2010044906A (en) | Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery | |
JP2001068121A (en) | Cylindrical alkaline battery | |
JP3505824B2 (en) | Flat alkaline battery | |
JP3968248B2 (en) | Aluminum battery | |
JP2007220373A (en) | Sealed alkaline zinc primary cell | |
US20090291362A1 (en) | Flat-type alkaline primary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080108 |