JP2017030994A - Inorganic monodisperse spherical fine particle, electrode for cell, and cell - Google Patents

Inorganic monodisperse spherical fine particle, electrode for cell, and cell Download PDF

Info

Publication number
JP2017030994A
JP2017030994A JP2015150180A JP2015150180A JP2017030994A JP 2017030994 A JP2017030994 A JP 2017030994A JP 2015150180 A JP2015150180 A JP 2015150180A JP 2015150180 A JP2015150180 A JP 2015150180A JP 2017030994 A JP2017030994 A JP 2017030994A
Authority
JP
Japan
Prior art keywords
fine particles
membrane
inorganic
spherical fine
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015150180A
Other languages
Japanese (ja)
Other versions
JP6749574B2 (en
Inventor
秀樹 益田
Hideki Masuda
秀樹 益田
崇 柳下
Takashi Yagishita
崇 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2015150180A priority Critical patent/JP6749574B2/en
Publication of JP2017030994A publication Critical patent/JP2017030994A/en
Application granted granted Critical
Publication of JP6749574B2 publication Critical patent/JP6749574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide inorganic monodisperse spherical fine particles which are characterized in that diameters thereof are 10 nm to 5 μm and they have a spinel type crystal structure, and to provide a production method thereof.SOLUTION: In a membrane emulsification process in which anode oxidation porous alumina having a hole array structure comprising arrangement of pores with uniform sizes in nanometer scale is used as an emulsification membrane, an aqueous solution in which a metal salt is dissolved in addition to a water-soluble monomer or oligomer and a polymerization initiator is used as a dispersion phase, and an oil phase to which a surfactant is added is used as a continuous phase. Precursor fine particles are produced by extruding the dispersion phase into the continuous phase via the porous alumina membrane so as to form liquid droplets, and subsequently polymerizing and solidifying the obtained liquid droplets. Spherical fine particles having a spinel type crystal structure can be produced by subjecting the obtained precursor fine particles to calcination treatment as post treatment.SELECTED DRAWING: None

Description

本発明は、ナノメーターからマイクロメータースケールでサイズが制御されたスピネル型の結晶構造をもち、電極活物質微粒子として有用な無機系単分散球形微粒子ならびに該微粒子を用いてなる電池用電極及びそれを用いた電池に関する。   The present invention relates to an inorganic monodispersed spherical fine particle having a spinel type crystal structure whose size is controlled on a nanometer to micrometer scale, and useful as an electrode active material fine particle, a battery electrode using the fine particle, and an electrode for the same It relates to the battery used.

ナノメーターからマイクロメータースケールでサイズが制御された単分散微粒子を効率的に作製する技術は、医薬品、触媒、電池等様々な分野において重要な課題とされている。とりわけ、100nm以下の均一なサイズの単分散微粒子を所望の材料で作製する技術の確立は、各種機能的応用の観点から関心を集めている。
単分散ナノ粒子の応用分野の一つとして現在大きな期待が寄せられているものの一つに、リチウムイオン二次電池をはじめとする各種蓄電デバイスの電極材料があげられる。リチウムイオン二次電池は、他の電池と比べ高電圧・高容量であることから、携帯電話やノート型パソコンをはじめ様々な携帯機器の電源として広く用いられている。しかしながら、近年の電子機器の小型化・高性能化や、電気自動車用電源への応用など適用範囲の拡大に伴い、リチウムイオン電池の軽量化かつ高エネルギー密度化に対する要望が益々高まっており、更なる電池性能の向上が焦眉の課題となっている。
現在、リチウムイオン電池の正極材料には、コバルト酸リチウムに代表されるリチウム複合酸化物からなる5〜10μmの微粒子が用いられているが、今後、これら微粒子のサイズを100nm以下まで微細化することが可能になれば、単位体積当たりの電極表面積の増加によるエネルギー密度の向上に加え、電極活物質中のリチウムイオンの拡散距離が短縮することにより、高速充放電の実現や電気自動車用電源等の用途で求められる高出力化など様々な電池性能の向上が可能になるものと期待される。
また、サイズ均一性に優れたナノ粒子を正極活物質として使用することができれば、集電体上に微粒子を細密パッキング構造で塗布することが可能となるため、微粒子間に均一なサイズの空隙を形成することができる。この空隙には導電助剤や電解質を充填できるため、微粒子サイズが微細化した場合においてもリチウムイオンの伝導パスを確保することが可能となる。また、サイズが不揃いな微粒子の場合に比べ単分散な微粒子では充填率が向上できることから、高い比表面積を有した正極形成が可能となり、更なるエネルギー密度の向上も期待できる。このような電極材料の微細化に伴う電池性能の向上は、リチウムイオン二次電池のみならず、現在研究段階にあるナトリウムイオン二次電池やマグネシウムイオン二次電池など、他の二次電池においても同様のことがいえる。
Techniques for efficiently producing monodispersed fine particles whose size is controlled from a nanometer to a micrometer scale are regarded as important issues in various fields such as pharmaceuticals, catalysts, and batteries. In particular, establishment of a technique for producing monodisperse fine particles having a uniform size of 100 nm or less with a desired material has attracted attention from the viewpoint of various functional applications.
As one of the fields of application of monodisperse nanoparticles, one of the highly anticipated applications is electrode materials for various electricity storage devices such as lithium ion secondary batteries. Lithium ion secondary batteries are widely used as power sources for various portable devices such as mobile phones and notebook personal computers because they have a higher voltage and capacity than other batteries. However, with the recent expansion of the application range such as downsizing and high performance of electronic devices and application to power sources for electric vehicles, demands for lighter and higher energy density of lithium ion batteries are increasing. Improving battery performance is a serious issue.
Currently, fine particles of 5 to 10 μm made of lithium composite oxide typified by lithium cobaltate are used as the positive electrode material for lithium ion batteries. In the future, the size of these fine particles will be reduced to 100 nm or less. In addition to improving the energy density by increasing the electrode surface area per unit volume, the diffusion distance of lithium ions in the electrode active material will be shortened, thereby realizing high-speed charging / discharging and power sources for electric vehicles, etc. It is expected that various battery performance improvements such as high output required for applications will be possible.
In addition, if nanoparticles having excellent size uniformity can be used as the positive electrode active material, it is possible to apply fine particles on the current collector in a fine packing structure. Can be formed. Since the voids can be filled with a conductive additive or an electrolyte, a lithium ion conduction path can be secured even when the fine particle size is reduced. Further, since the filling rate can be improved with monodispersed fine particles compared to fine particles with irregular sizes, it is possible to form a positive electrode having a high specific surface area, and further increase in energy density can be expected. The improvement in battery performance due to the miniaturization of electrode materials is not limited to lithium ion secondary batteries, but also to other secondary batteries such as sodium ion secondary batteries and magnesium ion secondary batteries currently in the research stage. The same can be said.

これまでに、微細な電極活物質微粒子を作製するための代表的な手法として、ボールミルを用いた機械的な微粉化法がしられている。しかしながら、ボールミルを用いた手法では、微細化に限界があり、サイズ制御を行うことは困難である。そのほかにも、原料溶液を気相中に噴霧し熱分解を行う噴霧熱分解法などいくつかの手法も提案されてきている。しかしながら、これらの手法では、装置が大掛かりであることに加え、得られる微粒子のサイズはサブミクロンスケールであり、そのサイズ制御性も不十分であった。このため、現状では、100nm以下で任意のサイズに制御された単分散な電極活物質微粒子は未だ提案されていないのが現状であり、さらにはそのような微粒子を高スループットで作製する手法は未だ確立されていないのが現状である。   Until now, as a typical method for producing fine electrode active material fine particles, a mechanical pulverization method using a ball mill has been performed. However, in the technique using a ball mill, there is a limit to miniaturization, and it is difficult to control the size. In addition, several methods such as a spray pyrolysis method in which a raw material solution is sprayed into a gas phase and pyrolysis is proposed. However, in these methods, in addition to a large apparatus, the size of the obtained fine particles is on a submicron scale, and the size controllability is insufficient. For this reason, at present, monodisperse electrode active material fine particles controlled to an arbitrary size of 100 nm or less have not been proposed yet, and a method for producing such fine particles at a high throughput has not yet been proposed. The current situation is not established.

特開平11−277546号公報JP-A-11-277546

電池材料をはじめとし、様々な分野に応用が期待できるナノメーターからマイクロメータースケールの微粒子を作製する手法は、液相中で原料イオンを還元する方法やゾル-ゲル法、CVD法など様々な手法が報告されている。しかしながら、既存の微粒子作製法では、通常、サイズおよび形状が制御された微粒子を得ることは難しい。サイズおよび形状が揃った微粒子が得られる場合においても、適用可能な材料が制限されるため、広範な材料に適用可能な手法は確立されていない。
したがって本発明の目的は、ナノメーターからマイクロメータースケールでサイズが制御され、電極活物質微粒子として有用な無機系単分散球形微粒子を提供するものである。
Nanometer-to-micrometer-scale microparticles that can be expected to be applied in various fields, including battery materials, are produced by various methods such as reducing raw material ions in the liquid phase, sol-gel methods, and CVD methods. Has been reported. However, it is usually difficult to obtain fine particles having a controlled size and shape by existing fine particle production methods. Even when fine particles having a uniform size and shape are obtained, applicable materials are limited, and thus a method applicable to a wide range of materials has not been established.
Accordingly, an object of the present invention is to provide inorganic monodispersed spherical fine particles which are controlled in size from nanometer to micrometer scale and are useful as electrode active material fine particles.

上記の目的を達成するために、本発明者らは、膜乳化方法による粒子の形成方法に着目し、膜乳化に用いる膜として有用な材料と細孔の形成方法について鋭意検討した結果、既存の微粒子作製手法では実現が困難であった、10nm〜5μmでサイズが制御された単分散微粒子を作製するために最適な膜を製造し、本発明を完成するに至った。
すなわち、本発明は以下の各発明を提供するものである。
1.直径が10nm〜5μm、直径の相対標準偏差が30%以下の無機系単分散球形微粒子。
2.直径の相対標準偏差の値が20%以下であることを特徴とする1に記載の無機系単分散球形微粒子。
3.膜乳化により微細な液滴が生じている状態で、該液滴を重合固化させて得られる微粒子前駆体を焼成処理することで得られることを特徴とする1または2に記載の無機系単分散球形微粒子。
4.上記膜乳化に際して用いられる膜が、ポーラスアルミナ膜であることを特徴とする1〜3のいずれかに記載の無機系単分散球形微粒子。
5.Mg、Co、Niのうち少なくとも一つを含むことを特徴とする1〜4のいずれかに記載の無機系単分散球形微粒子。
6.1〜5のいずれか1項に記載の無機系分散球形微粒子を含有することを特徴とする電池用電極。
7.6記載の電池用電極を電極として具備することを特徴とする電池。
In order to achieve the above-mentioned object, the present inventors paid attention to a method of forming particles by a membrane emulsification method, and as a result of earnestly examining a material useful as a membrane used for membrane emulsification and a method of forming pores, An optimal film for producing monodisperse fine particles whose size was controlled at 10 nm to 5 μm, which was difficult to realize by the fine particle production method, was produced, and the present invention was completed.
That is, the present invention provides the following inventions.
1. Inorganic monodisperse spherical fine particles having a diameter of 10 nm to 5 μm and a relative standard deviation of the diameter of 30% or less.
2. 2. The inorganic monodispersed spherical fine particles according to 1, wherein the value of the relative standard deviation of the diameter is 20% or less.
3. 3. The inorganic monodispersion according to 1 or 2, which is obtained by firing a fine particle precursor obtained by polymerizing and solidifying the liquid droplets in a state where fine liquid droplets are generated by film emulsification Spherical fine particles.
4). 4. The inorganic monodispersed spherical fine particles according to any one of 1 to 3, wherein the membrane used for membrane emulsification is a porous alumina membrane.
5). The inorganic monodispersed spherical fine particles according to any one of 1 to 4, which contain at least one of Mg, Co, and Ni.
A battery electrode comprising the inorganic dispersed spherical fine particles according to any one of 6.1 to 5.
A battery comprising the battery electrode according to 7.6 as an electrode.

本発明の無機系単分散球形微粒子は、ナノメーターからマイクロメータースケールでサイズが制御され、電極活物質微粒子として有用なものである。   The inorganic monodispersed spherical fine particles of the present invention are useful as electrode active material fine particles having a size controlled from a nanometer to a micrometer scale.

図1は、本発明の無機系単分散微粒子の製造方法における工程を摸式的に示す模式図である。FIG. 1 is a schematic diagram schematically showing the steps in the method for producing inorganic monodispersed fine particles of the present invention. 図2は、実施例1で得られたMgCo24の前駆体微粒子の電子顕微鏡写真(図面代用写真)である。FIG. 2 is an electron micrograph (drawing substitute photograph) of the precursor particles of MgCo 2 O 4 obtained in Example 1. 図3は、実施例1で得られたMgCo24の電子顕微鏡写真(図面代用写真)である。FIG. 3 is an electron micrograph (drawing substitute photo) of MgCo 2 O 4 obtained in Example 1. 図4は、実施例1における細孔径の異なるポーラスアルミナを用いて作製されたMgCo24のサイズ分布を測定した結果を示すチャートである。FIG. 4 is a chart showing the results of measuring the size distribution of MgCo 2 O 4 produced using porous alumina having different pore diameters in Example 1.

以下、本発明をさらに詳細に説明する。
本発明の無機系単分散球形微粒子は、特定の直径を有し、特定の直径の相対標準偏差を有することを特徴とする。
Hereinafter, the present invention will be described in more detail.
The inorganic monodisperse spherical fine particles of the present invention are characterized by having a specific diameter and a relative standard deviation of the specific diameter.

<粒子の構成成分>
本発明の無機系単分散球形微粒子の構成成分は、無機系材料であれば特に制限されてないが、Mg、Co、Ni、Mn、V、Zn、W、Ti、Fe、Al、Si等を含有するのが好ましく、さらにはMg、Co、Niのうち少なくとも一つを含むのが好ましい。
さらに具体的には、MgCo24、MgNiMnO4、Co34、V、ZnO、NiO、WO等をその構成成分とするのが好ましく、さらに好ましくは、MgCo24、MgNiMnO4、Co34、である。
また上述の無機系材料の他に、通常この種の微粒子に添加される等の添加剤を発明の所望の効果を阻害しない範囲で添加することもできる。
<Constituent components of particles>
The components of the inorganic monodispersed spherical fine particles of the present invention are not particularly limited as long as they are inorganic materials, but include Mg, Co, Ni, Mn, V, Zn, W, Ti, Fe, Al, Si, and the like. It is preferably contained, and further preferably contains at least one of Mg, Co, and Ni.
More specifically, MgCo 2 O 4 , MgNiMnO 4 , Co 3 O 4 , V 2 O 5 , ZnO, NiO, WO 3 and the like are preferably used as the constituent components, and more preferably MgCo 2 O 4 , MgNiMnO 4 , Co 3 O 4 .
In addition to the inorganic materials described above, additives such as those usually added to this kind of fine particles can be added within a range that does not impair the desired effect of the invention.

<粒子の形状>
本発明の無機系単分散球形微粒子は、各粒子の直径が10nm〜5μm、好ましくは50nm〜1μmの球形の粒子であり、直径の相対標準偏差が30%以下、好ましくは20%以下である。
ここで、粒子の直径は電子顕微鏡観察をすることで測定することができる。
また、粒子の直径の相対標準偏差は、直径のばらつきを示す相対標準偏差(標準偏差/平均直径)の値であり、微粒子のサイズを計測し粒度分布を作成することで算出することができる。
また、本発明における結晶構造はスピネル型の結晶構造であるのが好ましい。その場合、上記構成成分としてはMgCo24、MgNiMnO4、が特に好ましく用いられる。本発明における「スピネル型の結晶構造」とは、いわゆるスピネル(MgAl24)と同様の結晶構造を有する正常スピネル型と、逆スピネル型、乱れスピネル型のいずれをも含む概念である。
<Particle shape>
The inorganic monodispersed spherical fine particles of the present invention are spherical particles having a diameter of 10 nm to 5 μm, preferably 50 nm to 1 μm, and the relative standard deviation of the diameter is 30% or less, preferably 20% or less.
Here, the diameter of the particles can be measured by observation with an electron microscope.
The relative standard deviation of the particle diameter is a value of the relative standard deviation (standard deviation / average diameter) indicating the variation in diameter, and can be calculated by measuring the size of the fine particles and creating a particle size distribution.
The crystal structure in the present invention is preferably a spinel crystal structure. In that case, MgCo 2 O 4 and MgNiMnO 4 are particularly preferably used as the constituent components. The “spinel crystal structure” in the present invention is a concept including both a normal spinel type having a crystal structure similar to so-called spinel (MgAl 2 O 4 ), an inverse spinel type, and a disordered spinel type.

<粒子の製造方法>
本発明の無機系単分散球形微粒子は、所望の金属塩を含んだハイドロゲルあるいはポリマー微粒子を調整し、これに焼成処理を施すことで作製することができ、さらに好ましくは陽極酸化ポーラスアルミナを用いた膜乳化プロセスを用いることもできる。具体的には、以下の各工程を行うことにより製造することができる。
すなわち、
金属板を陽極酸化して細孔が多数規則的に配列された金属酸化物膜を製造する膜製造工程、
モノマーと金属塩とを分散相溶液に溶解してなる分散相と、該分散相が滴下され分散相を液中に分散させるための連続相であって、界面活性剤を連続相用溶液に溶解してなる溶液からなる連続相とを、それぞれ調整し、得られた分散相を、上記膜を通過させて連続相中に投入することにより行う膜乳化工程、
膜乳化工程により連続相中に微細な分散相の液滴が生じている状態で、加温または紫外光照射することにより分散相の液滴を重合固化させる重合固化工程
重合固化された微粒子前駆体を、乾燥し、所定の温度で所定時間焼成する乾燥焼成工程
を行うことにより得ることができる。
すなわち、本発明の無機系単分散球形微粒子は、膜乳化により微細な液滴が生じている状態で、該液滴を重合固化させて得られる微粒子前駆体を焼成処理することで得られる粒子であるのが好ましく、さらには、上記膜乳化に際して用いられる膜が、後述するポーラスアルミナ膜であることが好ましい。
以下、さらに詳述する。
<Method for producing particles>
The inorganic monodispersed spherical fine particles of the present invention can be prepared by preparing hydrogel or polymer fine particles containing a desired metal salt and subjecting them to firing treatment, more preferably using anodized porous alumina. A conventional membrane emulsification process can also be used. Specifically, it can be produced by performing the following steps.
That is,
A film manufacturing process for manufacturing a metal oxide film in which a large number of pores are regularly arranged by anodizing a metal plate;
A disperse phase obtained by dissolving a monomer and a metal salt in a disperse phase solution, and a continuous phase for dropping the disperse phase and dispersing the disperse phase in the liquid, wherein the surfactant is dissolved in the continuous phase solution. A membrane emulsification step which is carried out by adjusting each of the continuous phases consisting of the solution thus obtained, and introducing the obtained dispersed phase into the continuous phase through the membrane,
Polymerization and solidification process in which droplets of dispersed phase are polymerized and solidified by heating or irradiation with ultraviolet light in the state where fine dispersed phase droplets are generated in the continuous phase by the membrane emulsification process. Polymerized and solidified fine particle precursor Can be obtained by performing a drying and baking step of drying and baking at a predetermined temperature for a predetermined time.
That is, the inorganic monodispersed spherical fine particles of the present invention are particles obtained by firing a fine particle precursor obtained by polymerizing and solidifying the liquid droplets in a state where fine liquid droplets are generated by film emulsification. It is preferable that the membrane used for the membrane emulsification is a porous alumina membrane described later.
The details will be described below.

(膜製造工程)
膜製造工程は、金属板を陽極酸化することにより行う工程であり、この膜製造工程により得られる膜、例えば、当該膜が陽極酸化されたポーラスアルミナである場合、該ポーラスアルミナは、アルミニウムを酸性電解液中で陽極酸化することで得られるホールアレー構造材料であり、サイズのそろった細孔が膜面に対して垂直に配向した多孔質膜である。
用いられる金属板としては 純度99.99%のアルミニウム板等が挙げられる。この板の厚みは10 〜0.05mmとするのが好ましい。
陽極酸化は、金属板の表面に突起が規則的に配列された構造を持つモールドを押し付け、金属板表面に微細な凹凸パターンを形成するテクスチャリング処理を行い、次いで酸性電解液、−3℃〜 80℃の温度条件で、1分〜100時間 10〜 500Vで通電することで行うことができる。
上記モールドに形成された突起の大きさは金属板に形成する細孔の所望の孔径に応じて任意であり、各実施例において使用される程度の大きさの孔を形成できる大きさとするのが好ましい。また、突起の間隔は、300〜1000nm周期とするのが好ましく、さらに好ましくは400〜700nmである。
上記モールドの形成材料はSiC、Ni等を挙げることができる。
上記電解液としてはリン酸、シュウ酸,硫酸,クエン酸のうちいずれか一つ以上を含んだ水溶液を用いることができる。
また、上記陽極酸化の終了後、ヨウ素飽和メタノール溶液を用いて地金部分の除去を行った後、陽極酸化により形成された有底細孔における底部を、アルゴンイオンミリング装置等を用いて除去することによりスルーホールメンブレンである膜乳化用の膜を得ることができる。
得られた膜は、さらに必要に応じて所望の孔径となるように、10wt%リン酸水溶液等の緩衝液中に所定時間浸漬して、孔径拡大処理を施すこともできる。このように、所望の粒子径に応じて膜の細孔径を変化させる。
(Membrane manufacturing process)
The film manufacturing process is a process performed by anodizing a metal plate. When the film obtained by this film manufacturing process, for example, the film is anodized porous alumina, the porous alumina acidifies aluminum. It is a hole array structure material obtained by anodizing in an electrolytic solution, and is a porous film in which fine-sized pores are oriented perpendicular to the film surface.
Examples of the metal plate used include an aluminum plate having a purity of 99.99%. The thickness of this plate is preferably 10 to 0.05 mm.
Anodizing is performed by pressing a mold having a structure in which protrusions are regularly arranged on the surface of the metal plate, and performing a texturing process to form a fine uneven pattern on the surface of the metal plate, and then an acidic electrolyte, It can be performed by energizing at 10 to 500 V for 1 minute to 100 hours under a temperature condition of 80 ° C.
The size of the protrusions formed on the mold is arbitrary according to the desired hole diameter of the pores formed on the metal plate, and the size should be such that a hole having a size as large as that used in each embodiment can be formed. preferable. Moreover, it is preferable that the space | interval of a processus shall be 300-1000 nm period, More preferably, it is 400-700 nm.
Examples of the material for forming the mold include SiC and Ni.
As the electrolytic solution, an aqueous solution containing at least one of phosphoric acid, oxalic acid, sulfuric acid, and citric acid can be used.
In addition, after completion of the above anodic oxidation, after removing the bare metal portion using an iodine saturated methanol solution, the bottom of the bottomed pores formed by anodic oxidation is removed using an argon ion milling device or the like. Thus, a membrane for membrane emulsification which is a through-hole membrane can be obtained.
The obtained membrane can be further subjected to a pore size expansion treatment by immersing it in a buffer solution such as a 10 wt% phosphoric acid aqueous solution for a predetermined time so as to have a desired pore size as necessary. In this way, the pore size of the membrane is changed according to the desired particle size.

(膜乳化工程)
膜乳化工程は、得られた膜をシリンジの先端や、工業的にはチューブの先端に取り付け、シリンジやチューブの内部に分散相を投入し、窒素ガスなどで加圧することにより、図1の左側に示すように分散相を、膜を通過させて微細な液滴として連続相中に滴下することにより行う。
分散相を構成するモノマーとしては、分散相として、アクリルアミド、N,N−メチレンビスアクリルアミドをはじめとする水溶性のモノマーを用いることができ、使用に際してはそれぞれ単独で又は2種以上混合して用いることができる。
金属塩としては、酢酸コバルト四水和物、酢酸マグネシウム四水和物、酢酸マンガン四水和物、酢酸ニッケル四水和物、オキシ硫酸バナジウム、酢酸亜鉛二水和物、タングステン酸二水和物等を用いることができ、使用に際してはそれぞれ単独で又は2種以上混合して用いることができる。
また、分散相には重合開始剤を添加するのが好ましく、用いられる重合開始剤としては光硬化性のものも熱硬化性のものもいずれも用いることができるが、例えば、ラジカル型光重合開始剤として「IRGACURE2959」商品名BASF社製、あるいは,ラジカル型重合開始剤として過硫酸アンモニウム等の市販品を用いることができる。
上記分散相用溶液を構成する分散相用溶剤としては、水を用いることができ、使用に際してはそれぞれ単独で又は2種以上混合して用いることができる。また、各成分の配合割合は、モノマーの総量を100重量部とした場合、金属化合物を50〜150重量部、重合開始剤を1〜20重量部、溶剤100〜300重量部とするのが好ましい。
また、分散相にはクエン酸一水和物等の添加剤を適宜添加することができる。更に、膜乳化前に分散相のpHを調整するのが好ましい。pH調整はアンモニア水などを用いて、pHが3〜5となるように行うのが好ましい。
連続相を構成する界面活性剤としては、「span80」(商品名、シグマ−アルドリッチ社製)等のノニオン系界面活性剤、テトラグリセリンエステル(「CR310」(商品名、阪本薬品工業(株)製)等の市販品を用いることもできる)等の非イオン界面活性剤等を挙げることができ、使用に際しては両者を混合して用いることが好ましい。
また、上記連続相用溶液を構成する連続相用溶剤としては、ケロシン等の有機溶媒を挙げることができる。また、界面活性剤の濃度はノニオン系界面活性剤を1〜5重量%、非イオン系界面活性剤を0.5〜5重量%とするのが好ましい。
連続相と分散相との使用量比は、分散できる程度の量比であれば特に制限されないが、連続相100重量部に対して分散相5〜20重量部とするのが好ましい。
(Membrane emulsification process)
In the membrane emulsification step, the obtained membrane is attached to the tip of a syringe or industrially the tip of a tube, a dispersed phase is introduced into the inside of the syringe or tube, and pressurized with nitrogen gas or the like. As shown in FIG. 5, the dispersed phase is passed through the membrane and dropped into the continuous phase as fine droplets.
As the monomer constituting the dispersed phase, water-soluble monomers such as acrylamide and N, N-methylenebisacrylamide can be used as the dispersed phase, and each is used alone or in combination of two or more. be able to.
Metal salts include cobalt acetate tetrahydrate, magnesium acetate tetrahydrate, manganese acetate tetrahydrate, nickel acetate tetrahydrate, vanadium oxysulfate, zinc acetate dihydrate, tungstic acid dihydrate Etc. can be used, and each can be used alone or in admixture of two or more.
In addition, it is preferable to add a polymerization initiator to the dispersed phase, and as the polymerization initiator used, either a photo-curing agent or a thermosetting material can be used. Commercially available products such as “IRGACURE2959” manufactured by BASF Corporation as the agent, or ammonium persulfate as the radical polymerization initiator can be used.
As the solvent for the dispersed phase constituting the solution for the dispersed phase, water can be used, and when used, each can be used alone or in admixture of two or more. The blending ratio of each component is preferably 50 to 150 parts by weight of the metal compound, 1 to 20 parts by weight of the polymerization initiator, and 100 to 300 parts by weight of the solvent when the total amount of the monomers is 100 parts by weight. .
Further, an additive such as citric acid monohydrate can be appropriately added to the dispersed phase. Furthermore, it is preferable to adjust the pH of the dispersed phase before membrane emulsification. The pH adjustment is preferably performed using aqueous ammonia or the like so that the pH is 3 to 5.
As the surfactant constituting the continuous phase, nonionic surfactants such as “span80” (trade name, manufactured by Sigma-Aldrich), tetraglycerin ester (“CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) ) And the like can also be used, and nonionic surfactants such as) can be used. In use, it is preferable to use a mixture of both.
Moreover, organic solvents, such as kerosene, can be mentioned as a solvent for continuous phases which comprises the said solution for continuous phases. The concentration of the surfactant is preferably 1 to 5% by weight for the nonionic surfactant and 0.5 to 5% by weight for the nonionic surfactant.
The use ratio of the continuous phase and the dispersed phase is not particularly limited as long as the ratio is such that it can be dispersed, but is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the continuous phase.

(重合固化工程)
ついで、図1に示すように連続相中に滴下された分散相の重合固化を行うことにより前駆体微粒子を得る。
重合固化の条件は、用いる重合開始剤やモノマーにより任意であるが、下記の重合条件下に重合固化を行うことができる。
光照射の場合
照射光波長:365 nm
照射時間: 30 min
加熱の場合
加熱温度: 60 ℃
加熱時間:30min
(Polymerization solidification process)
Next, as shown in FIG. 1, precursor fine particles are obtained by polymerizing and solidifying the dispersed phase dropped into the continuous phase.
The conditions for the polymerization solidification are arbitrary depending on the polymerization initiator and the monomer to be used, but the polymerization solidification can be performed under the following polymerization conditions.
Light irradiation wavelength: 365 nm
Irradiation time: 30 min
In case of heating, heating temperature: 60 ℃
Heating time: 30min

(乾燥焼成工程)
ついで、得られた前駆体微粒子を遠心分離処理により回収し、その後乾燥を行い、400〜800℃で5〜20分間加熱処理を行うことにより、焼成処理を行って本発明の無機系単分散球形微粒子を得ることができる。
(Dry firing process)
Subsequently, the obtained precursor fine particles are collected by centrifugation, then dried, and subjected to a heat treatment at 400 to 800 ° C. for 5 to 20 minutes, thereby performing a baking treatment to obtain the inorganic monodispersed spherical shape of the present invention. Fine particles can be obtained.

<用途、電極、電池>
以上の製造方法により得られる本発明の無機系単分散球形微粒子は、スピネル型の構造を有し、しかも粒径のそろったものであるため、電極活物質微粒子として有用である。すなわち、本発明の電池は、上述の本発明の無機系単分散球形微粒子を含有する本発明の電極を有することを特徴とする。そして、上述のように粒子の粒径が単分散であるため高容量で、高率充放電特性に優れる電池である。
本発明の電極及び電池は、それぞれ上述の本発明の無機系単分散球形微粒子を電極活物質として含有する点を除いては通常の電池と同様に構成することができ、例えば、特開2011―129410号公報や特開2012―248333号公報に記載の電池構成を採用することができる。
<Applications, electrodes, batteries>
The inorganic monodispersed spherical fine particles of the present invention obtained by the production method described above are useful as electrode active material fine particles because they have a spinel structure and have a uniform particle size. That is, the battery of the present invention is characterized by having the electrode of the present invention containing the above-described inorganic monodispersed spherical fine particles of the present invention. As described above, since the particle size of the particles is monodispersed, the battery has a high capacity and excellent high rate charge / discharge characteristics.
The electrode and battery of the present invention can be configured in the same manner as a normal battery except that each of them contains the inorganic monodispersed spherical fine particles of the present invention described above as an electrode active material. The battery configuration described in Japanese Patent No. 129410 or Japanese Patent Application Laid-Open No. 2012-248333 can be employed.

たとえば、具体的には、リチウム電池等が挙げられる。リチウム電池は、電極、対極及びセパレーターと電解液とから構成される。
電極は、本発明の無機系単分散球形微粒子にカーボンブラックなどの導電材とフッ素樹脂などのバインダーを加え、適宜成形するかまたは電極基板に塗布して構成される。
通常は、上記無機系単分散球形微粒子を含有する電極を正極に用い、対極として金属リチウム、リチウム合金など、または黒鉛などを用いることができる。また、上記無機系単分散球形微粒子を含有する電極は、負極に用いることもでき、その場合、正極には公知の材料、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・バナジン複合酸化物等のリチウム・遷移金属複合酸化物、リチウム・鉄・複合リン酸化合物等のオリビン型化合物等を用いることができる。
セパレーターには、例えば、多孔性ポリエチレンフィルムなどを用いることができ、電解質としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、1,2−ジメトキシエタンなどの溶媒にLiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiBF4などのリチウム塩を溶解させた電解液、固体電解質、溶融塩など、常用の材料を用いることができる。
For example, a lithium battery etc. are specifically mentioned. The lithium battery includes an electrode, a counter electrode, a separator, and an electrolytic solution.
The electrode is constituted by adding a conductive material such as carbon black and a binder such as a fluororesin to the inorganic monodispersed spherical fine particles of the present invention and forming the electrode appropriately or applying it to an electrode substrate.
Usually, an electrode containing the inorganic monodispersed spherical fine particles is used as a positive electrode, and metallic lithium, lithium alloy, or graphite can be used as a counter electrode. The electrode containing the inorganic monodispersed spherical fine particles can also be used for the negative electrode. In that case, the positive electrode may be a known material such as a lithium-manganese composite oxide, a lithium-cobalt composite oxide, a lithium- Nickel composite oxides, lithium / transition metal composite oxides such as lithium / vanadine composite oxides, and olivine type compounds such as lithium / iron / composite phosphate compounds can be used.
For example, a porous polyethylene film or the like can be used as the separator. As an electrolyte, a solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,2-dimethoxyethane, LiPF 6 , LiClO 4 , LiCF 3 SO 3 is used. Conventional materials such as an electrolytic solution in which a lithium salt such as LiN (CF 3 SO 2 ) 2 or LiBF 4 is dissolved, a solid electrolyte, or a molten salt can be used.

以下、実施例及び比較例により本発明をさらに具体的に説明するが本発明はこれらに制限されるものではない。
〔実施例1〕 ポーラスアルミナを用いた膜乳化プロセスによるMgCo 2 4 微粒子の作製
純度99.99%のアルミニウム板(厚さ 0.5mm)表面に、500nm周期で突起が規則的に配列された構造を持つSiC製モールドを押し付け、アルミニウム板表面に微細な凹凸パターンを形成した。
ついで、テクスチャリング処理を施したアルミニウム板を、0.1Mの濃度に調整したリン酸水溶液中で、浴温0℃において直流200Vの条件下で90分間陽極酸化を行った。その後、地金部分をヨウ素飽和メタノール溶液中で溶解除去し、ポーラスアルミナの細孔底部を、アルゴンイオンミリング装置を用いて除去することによりスルーホールメンブレンを得た。得られたスルーホールメンブレン3枚を、10wt%リン酸水溶液中に0、30、60分間それぞれ浸漬し、孔径拡大処理をほどこし、細孔径を130nm、210nm、250nmに調節してなる3種のメンブレンを得た。得られたポーラスアルミナスルーホールメンブレンをシリンジの先端にエポキシ樹脂を用いて貼り付け膜乳化用の乳化膜とした。
分散相として、アクリルアミド 2.92g、N,N−メチレンビスアクリルアミド 0.45g、「IRGACURE2959」商品名BASF社製 0.342g、酢酸コバルト四水和物 1.916g、酢酸マグネシウム四水和物 0.824g、クエン酸一水和物 2.426gを蒸留水 4.834gに溶解して水溶液を調整した。得られた水溶液は、膜乳化を行う前にアンモニア水を用いてpHを4に調整した。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして、分散相を連続相中に乳化膜を用いて液滴滴下して膜乳化を行った。滴下は分散相をシリンジ内部に投入し、シリンジ内部を窒素ガスで加圧して、シリンジから連続相中に分散相を押しだすことにより行った。得られた液滴を重合固化することで前駆体微粒子を得た。
細孔径が210nmである場合に得られた前駆体微粒子の電子顕微鏡写真を図2に示す。
ケロシン中に分散された前駆体微粒子は、遠心分離を行うことで回収し、700度、10分で熱処理を施すことにより、MgCo24からなる本発明の無機系単分散球形微粒子を得た。得られた微粒子の平均直径と相対標準偏差を測定したところ、それぞれ、細孔径が130nmの場合には平均直径は136nm、相対標準偏差13%、細孔径が210nmの場合には、平均直径380nm、相対標準偏差13.6%、細孔径が250nmの場合には平均直径680nm、相対標準偏差17.2%であった。 細孔径が210nmである場合に得られた微粒子の電子顕微鏡写真を図3に示す。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not restrict | limited to these.
Example 1 Production of MgCo 2 O 4 Fine Particles by Membrane Emulsification Process Using Porous Alumina Protrusions were regularly arranged at a cycle of 500 nm on the surface of an aluminum plate (thickness 0.5 mm) with a purity of 99.99% A SiC mold having a structure was pressed to form a fine uneven pattern on the surface of the aluminum plate.
Subsequently, the textured aluminum plate was anodized for 90 minutes in a phosphoric acid aqueous solution adjusted to a concentration of 0.1 M at a bath temperature of 0 ° C. and a direct current of 200 V. Thereafter, the metal base portion was dissolved and removed in an iodine saturated methanol solution, and the pore bottom portion of the porous alumina was removed using an argon ion milling device to obtain a through-hole membrane. Three kinds of membranes obtained by immersing three obtained through-hole membranes in a 10 wt% phosphoric acid aqueous solution for 0, 30, and 60 minutes, respectively, performing a pore size expansion treatment, and adjusting the pore size to 130 nm, 210 nm, and 250 nm Got. The obtained porous alumina through-hole membrane was attached to the tip of a syringe using an epoxy resin to obtain an emulsified membrane for membrane emulsification.
As a dispersed phase, acrylamide 2.92 g, N, N-methylenebisacrylamide 0.45 g, “IRGACURE2959”, trade name BASF Corporation 0.342 g, cobalt acetate tetrahydrate 1.916 g, magnesium acetate tetrahydrate 0. An aqueous solution was prepared by dissolving 824 g of citric acid monohydrate 2.426 g in distilled water 4.834 g. The obtained aqueous solution was adjusted to pH 4 with aqueous ammonia before membrane emulsification.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, the dispersed phase was dropped into the continuous phase using an emulsified film to carry out film emulsification. The dropping was carried out by putting the dispersed phase into the syringe, pressurizing the inside of the syringe with nitrogen gas, and pushing the dispersed phase from the syringe into the continuous phase. Precursor fine particles were obtained by polymerizing and solidifying the obtained droplets.
FIG. 2 shows an electron micrograph of the precursor fine particles obtained when the pore diameter is 210 nm.
Precursor fine particles dispersed in kerosene were recovered by centrifugation and heat-treated at 700 ° C. for 10 minutes to obtain inorganic monodispersed spherical fine particles of the present invention made of MgCo 2 O 4 . . The average diameter and relative standard deviation of the obtained fine particles were measured. When the pore diameter was 130 nm, the average diameter was 136 nm, the relative standard deviation was 13%, and when the pore diameter was 210 nm, the average diameter was 380 nm, The relative standard deviation was 13.6%. When the pore diameter was 250 nm, the average diameter was 680 nm, and the relative standard deviation was 17.2%. An electron micrograph of the fine particles obtained when the pore diameter is 210 nm is shown in FIG.

〔実施例2〕 ポーラスアルミナを用いた膜乳化プロセスによるMgNiMnO 4 微粒子の作製
実施例1と同様の方法により、細孔周期500nm、細孔径250nmのポーラスアルミナ数ルーホールメンブレンを作製した。
分散相として、アクリルアミド 2.92g、N,N−メチレンビスアクリルアミド 0.45g、「IRGACURE2959」商品名BASF社製0.342g、酢酸マンガン四水和物 0.949g、酢酸マグネシウム四水和物 0.829g、酢酸ニッケル四水和物 0.964g、クエン酸一水和物 2.44gを蒸留水 4.818gに溶解して水溶液を調整した。得られた水溶液は、膜乳化を行う前にアンモニア水を用いてpHを4に調整した。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして実施例1と同様にして重合固化を行い、前駆体微粒子を得た。ケロシン中に分散された前駆体微粒子は、遠心分離を行うことで回収し、700度、10分で熱処理を施すことにより、MgNiMnO4からなる本発明の無機系単分散球形微粒子を得た。得られた微粒子の平均直径を測定したところ、160nmであった。
Example 2 Preparation of MgNiMnO 4 Fine Particles by Membrane Emulsification Process Using Porous Alumina A porous alumina several-hole membrane with a pore period of 500 nm and a pore diameter of 250 nm was prepared in the same manner as in Example 1.
As a dispersed phase, acrylamide 2.92g, N, N-methylenebisacrylamide 0.45g, "IRGACURE2959" brand name 0.342g manufactured by BASF AG, manganese acetate tetrahydrate 0.949g, magnesium acetate tetrahydrate 0. 829 g, nickel acetate tetrahydrate 0.964 g, and citric acid monohydrate 2.44 g were dissolved in distilled water 4.818 g to prepare an aqueous solution. The obtained aqueous solution was adjusted to pH 4 with aqueous ammonia before membrane emulsification.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, polymerization and solidification were performed in the same manner as in Example 1 to obtain precursor fine particles. Precursor fine particles dispersed in kerosene were recovered by centrifugation and heat-treated at 700 ° C. for 10 minutes to obtain inorganic monodispersed spherical fine particles of MgNiMnO 4 of the present invention. The average diameter of the obtained fine particles was measured and found to be 160 nm.

〔実施例3〕 ポーラスアルミナを用いた膜乳化プロセスによるCo 3 4 微粒子の作製
実施例1と同様の方法により、細孔周期500nm、細孔径250nmのポーラスアルミナ数ルーホールメンブレンを作製した。
分散相として、アクリルアミド 2.92g、NNメチレンビスアクリルアミド 0.45g、「IRGACURE2959」商品名BASF社製0.342g、酢酸コバルト四水和物 2.74g、クエン酸一水和物 2.31gを蒸留水 4.95gに溶解して水溶液を調整した。得られた水溶液は、膜乳化を行う前にアンモニア水を用いてpHを4に調整した。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして実施例1と同様にして重合固化を行い、前駆体微粒子を得た。ケロシン中に分散された前駆体微粒子は、遠心分離を行うことで回収し、600度、10分で熱処理を施すことにより、Co34からなる本発明の無機系単分散球形微粒子を得た。得られた微粒子の平均直径と相対標準偏差を測定したところ、407nm、16.2%であった。
Example 3 Production of Co 3 O 4 Fine Particles by Membrane Emulsification Process Using Porous Alumina A porous alumina several-hole membrane with a pore period of 500 nm and a pore diameter of 250 nm was produced in the same manner as in Example 1.
As a dispersed phase, 2.92 g of acrylamide, 0.45 g of NN methylenebisacrylamide, 0.342 g of “IRGACURE2959” trade name BASF Corporation, 2.74 g of cobalt acetate tetrahydrate, 2.31 g of citric acid monohydrate were distilled. An aqueous solution was prepared by dissolving in 4.95 g of water. The obtained aqueous solution was adjusted to pH 4 with aqueous ammonia before membrane emulsification.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, polymerization and solidification were performed in the same manner as in Example 1 to obtain precursor fine particles. Precursor fine particles dispersed in kerosene were collected by centrifugation and heat-treated at 600 ° C. for 10 minutes to obtain inorganic monodispersed spherical fine particles of Co 3 O 4 of the present invention. . When the average diameter and relative standard deviation of the obtained fine particles were measured, they were 407 nm and 16.2%.

〔実施例4〕 ポーラスアルミナを用いた膜乳化プロセスによるV 微粒子の作製
実施例1と同様の方法により、細孔周期500nm、細孔径250nmのポーラスアルミナ数ルーホールメンブレンを作製した。
分散相として、アクリルアミドモノマー 1.46G、架橋剤のN,N’−メチレンビスアクリルアミド 0.225g、光重合開始剤の「IRGACURE2959」商品名BASF社製 0.171g、オキシ硫酸バナジウム1gを水4gに溶解した水溶液を用いた。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして実施例1と同様にして重合固化を行い、前駆体微粒子を得た。ケロシン中に分散した前駆体微粒子は、遠心分離を行うことで回収し、500度、10分で熱処理を施すことにより、Vからなる本発明の無機系単分散球形微粒子を得た。膜乳化によって形成された前駆体微粒子の平均直径と相対標準偏差を測定したところ、それぞれ、270nm、 23%であった。焼成処理後も球形状を保持した微粒子が得られた。
[Example 4] Production of V 2 O 5 fine particles by membrane emulsification process using porous alumina By the same method as in Example 1, a porous alumina several-hole membrane with a pore period of 500 nm and a pore diameter of 250 nm was produced.
As dispersed phase, 1.46G of acrylamide monomer, 0.225 g of N, N′-methylenebisacrylamide as a cross-linking agent, “IRGACURE2959” as a photopolymerization initiator, 0.171 g manufactured by BASF, and 1 g of vanadium oxysulfate in 4 g of water. A dissolved aqueous solution was used.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, polymerization and solidification were performed in the same manner as in Example 1 to obtain precursor fine particles. Precursor fine particles dispersed in kerosene were collected by centrifugation and subjected to heat treatment at 500 ° C. for 10 minutes to obtain inorganic monodispersed spherical fine particles of the present invention consisting of V 2 O 5 . When the average diameter and relative standard deviation of the precursor fine particles formed by membrane emulsification were measured, they were 270 nm and 23%, respectively. Fine particles having a spherical shape were obtained even after the firing treatment.

〔実施例5〕 ポーラスアルミナを用いた膜乳化プロセスによるZnO微粒子の作製
実施例1と同様の方法により、細孔周期500nm、細孔径250nmのポーラスアルミナ数ルーホールメンブレンを作製した。
分散相として、アクリルアミド 2.92g、N,N−メチレンビスアクリルアミド 0.45g、「IRGACURE2959」商品名BASF社製0.342g、酢酸亜鉛二水和物 2.74g、クエン酸一水和物 2.64gを蒸留水 4.64gに溶解した水溶液を調整した。得られた水溶液は、膜乳化を行う前にアンモニア水を用いてpHを4に調整した。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして実施例1と同様にして重合固化を行い、前駆体微粒子を得た。得られた前駆体微粒子は、遠心分離を行うことで回収し、600度、10分で熱処理を施すことにより、ZnOからなる本発明の無機系単分散球形微粒子を得た。得られた微粒子の平均直径と相対標準偏差を測定したところ、 250nm、 32%であった。
[Example 5] Preparation of ZnO fine particles by membrane emulsification process using porous alumina By the same method as in Example 1, a porous alumina several-hole membrane with a pore period of 500 nm and a pore diameter of 250 nm was prepared.
As a dispersed phase, 2.92 g of acrylamide, 0.45 g of N, N-methylenebisacrylamide, 0.342 g of “IRGACURE2959” manufactured by BASF Corporation, 2.74 g of zinc acetate dihydrate, 2.74 g of citric acid monohydrate. An aqueous solution in which 64 g was dissolved in 4.64 g of distilled water was prepared. The obtained aqueous solution was adjusted to pH 4 with aqueous ammonia before membrane emulsification.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, polymerization and solidification were performed in the same manner as in Example 1 to obtain precursor fine particles. The obtained precursor fine particles were collected by centrifugation and subjected to heat treatment at 600 degrees for 10 minutes to obtain inorganic monodispersed spherical fine particles of the present invention made of ZnO. When the average diameter and relative standard deviation of the obtained fine particles were measured, they were 250 nm and 32%.

〔実施例6〕 ポーラスアルミナを用いた膜乳化プロセスによるNiO微粒子の作製
実施例1と同様の方法により、細孔周期500nm、細孔径250nmのポーラスアルミナ数ルーホールメンブレンを作製した。
分散相として、アクリルアミド 2.92g、NNメチレンビスアクリルアミド 0.45g、「IRGACURE2959」商品名BASF社製0.342g、酢酸ニッケル四水和物 2.74g、クエン酸一水和物 2.32gを蒸留水 4.94gに溶解した水溶液を調整した。得られたし溶液は、膜乳化を行う前にアンモニア水を用いてpHを4に調整した。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして実施例1と同様にして重合固化を行い、前駆体微粒子を得た。得られた前駆体微粒子は、遠心分離を行うことで回収し、600度、10分で熱処理を施すことにより、NiOからなる本発明の無機系単分散球形微粒子を得た。得られた微粒子の平均直径と相対標準偏差を測定したところ、 120nm、 23 %であった。
[Example 6] Preparation of NiO fine particles by membrane emulsification process using porous alumina A porous alumina several-hole membrane with a pore period of 500 nm and a pore diameter of 250 nm was prepared in the same manner as in Example 1.
As a dispersed phase, 2.92 g of acrylamide, 0.45 g of NN methylenebisacrylamide, 0.342 g of “IRGACURE2959” trade name BASF Corporation, 2.74 g of nickel acetate tetrahydrate, 2.32 g of citric acid monohydrate are distilled. An aqueous solution dissolved in 4.94 g of water was prepared. The obtained solution was adjusted to pH 4 with aqueous ammonia before membrane emulsification.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, polymerization and solidification were performed in the same manner as in Example 1 to obtain precursor fine particles. The obtained precursor fine particles were collected by centrifugation and subjected to heat treatment at 600 ° C. for 10 minutes to obtain inorganic monodispersed spherical fine particles of the present invention made of NiO. The average diameter and relative standard deviation of the obtained fine particles were measured and found to be 120 nm and 23%.

〔実施例7〕 ポーラスアルミナを用いた膜乳化プロセスによるWO 微粒子の作製
実施例1と同様の方法により、細孔周期500nm、細孔径250nmのポーラスアルミナ数ルーホールメンブレンを作製した。
分散相として、アクリルアミド 2.92g、N,N−メチレンビスアクリルアミド 0.45g、「IRGACURE2959」商品名BASF社製0.342g、タングステン酸二水和物 2.74g、クエン酸一水和物 1.75gを蒸留水 5.51gに溶解した水溶液を調整した。得られた水溶液は、膜乳化を行う前にアンモニア水を用いてpHを 4に調整した。
連続相には、二種類の界面活性剤、2wt%で「span80」(商品名、シグマ−アルドリッチ社製)を、また1wt%で「CR310」(商品名、阪本薬品工業(株)製)を溶解させたケロシン溶液を用いた。
そして実施例1と同様にして重合固化を行い、前駆体微粒子を得た。得られた前駆体微粒子は、遠心分離を行うことで回収し、600度、10分で熱処理を施すことにより、WO3からなる本発明の無機系単分散球形微粒子を得た。得られた微粒子の平均直径と相対標準偏差を測定したところ、430nm、28%であった。

In the same manner as in Production Example 1 of WO 3 fine particles by membrane emulsification process using the Example 7 porous alumina, the pore period 500 nm, to prepare a porous alumina number Lou hole membrane pore size 250 nm.
As a dispersed phase, acrylamide 2.92g, N, N-methylenebisacrylamide 0.45g, "IRGACURE2959" brand name BASF Corporation 0.342g, tungstic acid dihydrate 2.74g, citric acid monohydrate 1. An aqueous solution in which 75 g was dissolved in 5.51 g of distilled water was prepared. The resulting aqueous solution was adjusted to pH 4 using aqueous ammonia before membrane emulsification.
In the continuous phase, two types of surfactant, “span80” (trade name, manufactured by Sigma-Aldrich) at 2 wt%, and “CR310” (trade name, manufactured by Sakamoto Pharmaceutical Co., Ltd.) at 1 wt% are used. A dissolved kerosene solution was used.
Then, polymerization and solidification were performed in the same manner as in Example 1 to obtain precursor fine particles. The obtained precursor fine particles were collected by centrifugation, and heat-treated at 600 ° C. for 10 minutes to obtain inorganic monodispersed spherical fine particles of the present invention made of WO 3 . The average diameter and relative standard deviation of the obtained fine particles were measured and found to be 430 nm and 28%.

Claims (7)

直径が10nm〜5μm、直径の相対標準偏差が30%以下の無機系単分散球形微粒子。 Inorganic monodisperse spherical fine particles having a diameter of 10 nm to 5 μm and a relative standard deviation of the diameter of 30% or less. 直径の相対標準偏差の値が20%以下であることを特徴とする請求項1に記載の無機系単分散球形微粒子。 2. The inorganic monodispersed spherical fine particles according to claim 1, wherein the value of the relative standard deviation of the diameter is 20% or less. 膜乳化により微細な液滴が生じている状態で、該液滴を重合固化させて得られる微粒子前駆体を焼成処理することで得られることを特徴とする請求項1または2に記載の無機系単分散球形微粒子。 The inorganic system according to claim 1 or 2, which is obtained by firing a fine particle precursor obtained by polymerizing and solidifying the liquid droplets in a state where fine liquid droplets are generated by film emulsification. Monodispersed spherical fine particles. 上記膜乳化に際して用いられる膜が、ポーラスアルミナ膜であることを特徴とする請求項1〜3のいずれかに記載の無機系単分散球形微粒子。 The inorganic monodispersed spherical fine particles according to any one of claims 1 to 3, wherein the membrane used for the membrane emulsification is a porous alumina membrane. Mg、Co、Niのうち少なくとも一つを含むことを特徴とする請求項1〜4のいずれかに記載の無機系単分散球形微粒子。 The inorganic monodispersed spherical fine particles according to claim 1, comprising at least one of Mg, Co, and Ni. 請求項1〜5のいずれか1項に記載の無機系分散球形微粒子を含有することを特徴とする電池用電極。 A battery electrode comprising the inorganic dispersed spherical fine particles according to any one of claims 1 to 5. 請求項6記載の電池用電極を電極として具備することを特徴とする電池。


A battery comprising the battery electrode according to claim 6 as an electrode.


JP2015150180A 2015-07-29 2015-07-29 Inorganic monodisperse spherical fine particles, method for producing inorganic monodisperse spherical fine particles, battery electrode and battery Active JP6749574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150180A JP6749574B2 (en) 2015-07-29 2015-07-29 Inorganic monodisperse spherical fine particles, method for producing inorganic monodisperse spherical fine particles, battery electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150180A JP6749574B2 (en) 2015-07-29 2015-07-29 Inorganic monodisperse spherical fine particles, method for producing inorganic monodisperse spherical fine particles, battery electrode and battery

Publications (2)

Publication Number Publication Date
JP2017030994A true JP2017030994A (en) 2017-02-09
JP6749574B2 JP6749574B2 (en) 2020-09-02

Family

ID=57987584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150180A Active JP6749574B2 (en) 2015-07-29 2015-07-29 Inorganic monodisperse spherical fine particles, method for producing inorganic monodisperse spherical fine particles, battery electrode and battery

Country Status (1)

Country Link
JP (1) JP6749574B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467225A (en) * 2019-09-03 2019-11-19 大连理工大学 A kind of preparation method of the hollow sandwich microballoon of monodisperse cobalt sulfide
CN114653961A (en) * 2022-03-07 2022-06-24 合肥工业大学 Preparation method of nanocrystalline metal microspheres for 3D printing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179429A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Alkaline dry battery
WO2006077890A1 (en) * 2005-01-19 2006-07-27 Kyoto University Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles
JP2009178699A (en) * 2008-02-01 2009-08-13 Kanagawa Acad Of Sci & Technol Method for producing flocculated particles
JP2009184884A (en) * 2008-02-07 2009-08-20 National Institute Of Advanced Industrial & Technology Core-shell type cobalt oxide fine particles or dispersion containing the same, method for producing them, and their application
JP2010208922A (en) * 2009-03-12 2010-09-24 Nippon Shokubai Co Ltd Method for producing metal oxide nanoparticle
CN102757101A (en) * 2012-02-22 2012-10-31 太原理工大学 Method for preparing large-specific-surface-area porous nickel oxide microspheres
JP2014191983A (en) * 2013-03-27 2014-10-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015053244A (en) * 2012-10-22 2015-03-19 国立大学法人 東京大学 Battery
JP2015063756A (en) * 2009-09-04 2015-04-09 独立行政法人産業技術総合研究所 Method for producing spherical nanoparticle, and spherical nanoparticle obtained thereby
WO2015068735A1 (en) * 2013-11-08 2015-05-14 東ソー株式会社 Nickel-manganese composite oxide, method for producing same, and use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179429A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Alkaline dry battery
WO2006077890A1 (en) * 2005-01-19 2006-07-27 Kyoto University Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles
JP2009178699A (en) * 2008-02-01 2009-08-13 Kanagawa Acad Of Sci & Technol Method for producing flocculated particles
JP2009184884A (en) * 2008-02-07 2009-08-20 National Institute Of Advanced Industrial & Technology Core-shell type cobalt oxide fine particles or dispersion containing the same, method for producing them, and their application
JP2010208922A (en) * 2009-03-12 2010-09-24 Nippon Shokubai Co Ltd Method for producing metal oxide nanoparticle
JP2015063756A (en) * 2009-09-04 2015-04-09 独立行政法人産業技術総合研究所 Method for producing spherical nanoparticle, and spherical nanoparticle obtained thereby
CN102757101A (en) * 2012-02-22 2012-10-31 太原理工大学 Method for preparing large-specific-surface-area porous nickel oxide microspheres
JP2015053244A (en) * 2012-10-22 2015-03-19 国立大学法人 東京大学 Battery
JP2014191983A (en) * 2013-03-27 2014-10-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2015068735A1 (en) * 2013-11-08 2015-05-14 東ソー株式会社 Nickel-manganese composite oxide, method for producing same, and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATERIALS LETTERS, vol. 64, JPN6020007045, 2010, pages 1275 - 1278, ISSN: 0004220961 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467225A (en) * 2019-09-03 2019-11-19 大连理工大学 A kind of preparation method of the hollow sandwich microballoon of monodisperse cobalt sulfide
CN114653961A (en) * 2022-03-07 2022-06-24 合肥工业大学 Preparation method of nanocrystalline metal microspheres for 3D printing
CN114653961B (en) * 2022-03-07 2024-01-23 合肥工业大学 Preparation method of nanocrystalline metal microsphere for 3D printing

Also Published As

Publication number Publication date
JP6749574B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
CN107223288B (en) Electrode of metal ion battery
KR102344143B1 (en) Predoping method for lithium, lithium­predoped electrode, and electricity storage device
CN107104226B (en) Ternary positive electrode material of composite lithium ion battery and preparation method thereof
TWI624984B (en) Anode material for lithium ion secondary cell, anode for lithium ion secondary cell and lithium ion secondary cell
EP2677568A1 (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
CN105244479B (en) carbon-silicon composite material and preparation method thereof
KR20130114007A (en) Negative active material, lithium battery including the material, and method for manufacturing the material
EP3479427B1 (en) Carbon-coated active particles and processes for their preparation
JP6354895B2 (en) Electrode material, method for producing the electrode material, electrode, and lithium ion battery
US9653727B2 (en) Metal tin-carbon composites, method for producing said composites, anode active material for non-aqueous lithium secondary batteries which is produced using said composites, anode for non-aqueous lithium secondary batteries which comprises said anode active material, and non-aqueous lithium secondary battery
JP2015106488A (en) Slurry for electricity storage device negative electrode and electricity storage device negative electrode, slurry for electricity storage device positive electrode and electricity storage device positive electrode, and electricity storage device
KR101442198B1 (en) Porous carbon structure, method using the same, anode active material comprising the structure, lithium ion battery using the same, and preparation method thereof
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
Wu et al. Synthesis of chromium-doped lithium titanate microspheres as high-performance anode material for lithium ion batteries
KR102075897B1 (en) Electrode for electrochemical elements
JP2017224499A (en) Negative electrode active material for lithium ion battery and lithium ion battery
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
Xu et al. Synthesis and electrochemical properties of Li3V2 (PO4) 3/C cathode material with an improved sol–gel method by changing pH value
Li et al. Double function-layers construction strategy promotes the cycling stability of LiCoO2 under high temperature and high voltage
JP6749574B2 (en) Inorganic monodisperse spherical fine particles, method for producing inorganic monodisperse spherical fine particles, battery electrode and battery
CN117133913A (en) Lithium iron phosphate precursor, lithium iron phosphate material, and preparation methods and applications thereof
CN105304875A (en) Preparation method of lithium ion battery composite cathode material
JPWO2016174862A1 (en) Negative electrode for non-aqueous electrolyte storage element
JP2007191369A (en) Method for producing fine graphite particle
Ozen et al. Electrochemically pre-lithiated SiO2@ C nanocomposite anodes for improved performance in lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6749574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250