JPS60241646A - Alkali-manganese cell - Google Patents

Alkali-manganese cell

Info

Publication number
JPS60241646A
JPS60241646A JP9667084A JP9667084A JPS60241646A JP S60241646 A JPS60241646 A JP S60241646A JP 9667084 A JP9667084 A JP 9667084A JP 9667084 A JP9667084 A JP 9667084A JP S60241646 A JPS60241646 A JP S60241646A
Authority
JP
Japan
Prior art keywords
carbon
positive electrode
manganese dioxide
battery
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9667084A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Akihide Izumi
泉 彰英
Kuniyoshi Nishida
西田 国良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9667084A priority Critical patent/JPS60241646A/en
Priority to FR8419205A priority patent/FR2568726B1/en
Publication of JPS60241646A publication Critical patent/JPS60241646A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the inner resistance of cell while to increase the shortcircuit current by containing specific amount of graphite powder having specific grain size as conductive agent into active substance or manganese dioxide. CONSTITUTION:Graphite powder having average grain size of 2-20mum is employed as carbon to be mixed as conductive agent into active substance or manganese dioxide. The content of carbon is made to be 3-8wt% against solid state component to produce positive pole black mix. which is employed in alkali.manganese cell. Consequently, the capacity of manganese dioxide in limited volume is maintained high to increase the discharge capacity resulting in a cell having sufficiently low inner resistance and increased shortcircuit current.

Description

【発明の詳細な説明】 この発明は、正極活物質に二酸化マンガンを、負極活物
質に亜鉛を、電解液にアルカリ水溶液を使用するアルカ
リ・マンガン電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline manganese battery that uses manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and an alkaline aqueous solution as an electrolyte.

周知のようにこの種のアルカリ・マンガン電池では、一
般に、活物質としての二酸化マンガンに導電剤としてカ
ーボンを混合した正極合剤を用いている。このカーボン
は、二酸化マンガン粒子間の導電性を高めるとともに、
二酸化マンガンと正極缶の導電性を高める作用をなす。
As is well known, this type of alkaline manganese battery generally uses a positive electrode mixture of manganese dioxide as an active material and carbon as a conductive agent. This carbon increases the conductivity between manganese dioxide particles, and
It acts to increase the conductivity of manganese dioxide and the positive electrode can.

これにより電池の内部抵抗を減少させ、短絡電流を大き
くすることができる。しかし正極合剤にカーボンを混合
することは、限られた正極合剤の体積の中で活物質とし
ての二酸化マンガンのmがその分だけ減ることになり、
電池の放電容量が減少づ−る。従って、カーボンの含有
量は電池の使用目的に応じてWAvされ、高負荷性能を
重視する電池では含有量を多くし、放電@量を重pAす
る電池はど少くしている。
This can reduce the internal resistance of the battery and increase the short circuit current. However, when carbon is mixed into the positive electrode mixture, m of manganese dioxide as an active material is reduced by that amount within the limited volume of the positive electrode mixture.
The discharge capacity of the battery decreases. Therefore, the carbon content is determined by WAv depending on the purpose of use of the battery, and the content is increased for batteries that place emphasis on high load performance, while it is lower for batteries that emphasize discharge @ rate.

また従来は、上記カーボンとして平均粒径25〜50I
U程度の比較的粒径の大きな黒鉛粉末が使用されており
、正極合剤固形分に対する重量%で少くとも10%以上
のカーボンがS型剤として混合されている。粒径の比較
的大ぎなカーボンでは、その含有量を10%以下にする
と、内部抵抗が極端に大きくなって電池の基本性能を満
たさないので、従来のアルカリ・マンガン電池では10
%以上のカーボンが正極合剤に含まれている。
Conventionally, the average particle size of the carbon was 25 to 50I.
Graphite powder having a relatively large particle size of about U is used, and carbon is mixed as an S-type agent in an amount of at least 10% by weight based on the solid content of the positive electrode mixture. For carbon with a relatively large particle size, if the content is less than 10%, the internal resistance will become extremely large and the basic performance of the battery will not be met.
% or more of carbon is contained in the positive electrode mixture.

以上の説明で明らかなように、この種のアルカリ・マン
ガン電池では、活物質としての二酸化マンガンのmをで
きるだけ減らすことなく(放電容量をできるだけ大きく
保つ)、正極側の導電性を向上させて内部抵抗の減少お
よび短絡電流の増大という性能向上を図ることが大きな
技術課題である。
As is clear from the above explanation, in this type of alkaline manganese battery, the conductivity of the positive electrode side is improved and the internal A major technical challenge is to improve performance by reducing resistance and increasing short-circuit current.

この発明は上記の技術課題に鑑みなされたものであり、
その目的は、活物質としての二酸化マンガンの容量を大
きく保ち、しかも内部抵抗が小さく、短絡1!流の大き
なアルカリ・マンガン電池を実現することにある。
This invention was made in view of the above technical problem,
The purpose of this is to maintain a large capacity of manganese dioxide as an active material, and also to have a low internal resistance and short circuit 1! The aim is to realize an alkaline manganese battery with a large flow rate.

上記の目的を達成するために、本発明者らは、正極合剤
に含ませるカーボンの粒径および間をさまざまに変えて
実験を行ない、その結果、平均粒径2〜20mの範囲の
従来より粒径の小さな黒鉛粉末を用い、かつ、このカー
ボンの含有量も3〜8%と従来より少くすることで良好
な性能のアルカリ・マンガン電池を実現することができ
た。
In order to achieve the above object, the present inventors conducted experiments by varying the particle size and spacing of carbon included in the positive electrode mixture, and as a result, compared to the conventional one with an average particle size in the range of 2 to 20 m. By using graphite powder with a small particle size and reducing the carbon content to 3 to 8%, which is lower than before, it was possible to realize an alkaline manganese battery with good performance.

以下、この発明の実施例を図面に基づいて詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

この発明は電池の形状的構成に捉われるものではなく、
従来と同じ構造の電池にこの発明を適用することができ
るのは勿論である。この発明の一実施例として図面に円
筒形のアルカリ・マンガン電池の構造を示している。
This invention is not limited to the geometric configuration of the battery;
Of course, the present invention can be applied to batteries having the same structure as conventional ones. As an embodiment of the present invention, the drawings show the structure of a cylindrical alkaline manganese battery.

電池ケースを兼ねる有底円筒形の正極缶1内に、二酸化
マンガン(電解二酸化マンガン:FMD)とカーボンく
黒鉛粉末)などを混合してドーナツ形に成形した正極合
剤3がまずstagれている。
In a bottomed cylindrical positive electrode can 1 that also serves as a battery case, a positive electrode mixture 3 formed into a donut shape by mixing manganese dioxide (electrolytic manganese dioxide: FMD), carbon, graphite powder, etc. is first stagnated. .

この正極合剤3の中空部内にはポリプロピレン不織布な
どからなる筒状のセパレータ4が配設され、これにはK
OI−1またはNa OHのアルカリ電解液が含浸され
る。さらにセパレータ4内には、亜鉛粉末を主体としこ
れにアルカリ性電解質などを混線したゲル状の負極合剤
5が充填されている。この負極合剤5の中央には集電棒
9が挿入されている。そして、正極缶1の上端開口部に
封口ガスケット7を介して負極端子板8が嵌合され、正
極缶1の開口端縁を内側へカール成形することによって
電池内が密封されている。
A cylindrical separator 4 made of polypropylene nonwoven fabric or the like is arranged in the hollow part of the positive electrode mixture 3, and this
An alkaline electrolyte of OI-1 or NaOH is impregnated. Furthermore, the separator 4 is filled with a gel-like negative electrode mixture 5 which is mainly composed of zinc powder and mixed with an alkaline electrolyte or the like. A current collector rod 9 is inserted into the center of this negative electrode mixture 5. A negative terminal plate 8 is fitted into the upper opening of the positive electrode can 1 via a sealing gasket 7, and the inside of the battery is sealed by curling the opening edge of the positive electrode can 1 inward.

前述のようにこの発明は、図のような構造のアルカリ・
マンガン電池において、正極合剤3に含まれるカーボン
を平均粒径2〜20ttpの範囲の黒鉛粉末とし、かつ
、このカーボン含有mを正極合剤3の固形分に対して3
〜8重量%の範囲にしたことを特徴とするものである。
As mentioned above, this invention is based on an alkali solution having the structure shown in the figure.
In a manganese battery, the carbon contained in the positive electrode mixture 3 is graphite powder with an average particle size in the range of 2 to 20 ttp, and the carbon content m is 3% relative to the solid content of the positive electrode mixture 3.
It is characterized by having a content in the range of 8% by weight.

またこの正極合絢3が接する正極缶1の内面に導電性被
膜を形成しておけば、後述のように電池性能をより高め
ることができる。
Furthermore, if a conductive film is formed on the inner surface of the positive electrode can 1 with which the positive electrode fiber 3 contacts, the battery performance can be further improved as described later.

カーボンの平均粒径を20mより小さくすることにより
、カーボン粒子と二酸化マンガン粒子との接触性が良く
なり、少量のカーボンで二酸化マンガンに対する集電効
率を十分に高くすることができる。その結果、カーボン
の含有量を8%以下にしても内部抵抗を小さく、短絡電
流を大きくすることができ、しかもカーボンの聞を少く
した分だけ活物質としての二酸化マンガンの量が多くな
り、放電容量が増大する。但しカーボンの含有量を3%
より少くすると、正極側の導電性が大きく低下するので
、カーボン含有量は3〜8%の範囲が好ましい。
By making the average particle size of carbon smaller than 20 m, the contact between the carbon particles and the manganese dioxide particles is improved, and the current collection efficiency for manganese dioxide can be made sufficiently high with a small amount of carbon. As a result, even if the carbon content is 8% or less, the internal resistance can be lowered and the short circuit current can be increased.Moreover, the amount of manganese dioxide as an active material is increased by the amount of carbon content, and the amount of manganese dioxide as an active material is increased. Capacity increases. However, the carbon content is 3%
If the carbon content is smaller, the conductivity on the positive electrode side will be greatly reduced, so the carbon content is preferably in the range of 3 to 8%.

また、カーボンの平均粒径が2mより小さいと、カーボ
ンの嵩密度が極端に低下し、それにより充填性が悪くな
り、成形密度が低下し、結果的に放電容量が減少する。
Furthermore, if the average particle size of carbon is smaller than 2 m, the bulk density of carbon will be extremely reduced, resulting in poor filling properties, reduced molding density, and as a result, reduced discharge capacity.

そのため、カーボンの平均粒径は2〜20ttptの範
囲が適切である。
Therefore, the average particle size of carbon is appropriately in the range of 2 to 20 ttpt.

以下の表はこの発明の効果を示す実験結果である。The table below shows experimental results showing the effects of this invention.

実験例■は、カーボンの含有mを12.5〜1゜5%の
範囲で6段階に変化させるとともに、カーボンの平均粒
径を5μにしたもの(A)と30mとしたもの(B)と
を作り、合h1で12種類のLRG型アシアルカリンガ
ン電池についての放電試験である。試験データは短絡電
流と、5Ω負荷・0.9■終止電圧での連続放電時間と
、1oΩ負荷・0.9V#止電圧での連続放電時間であ
る。
In Experimental Example (2), the carbon content (m) was varied in six steps in the range of 12.5 to 1.5%, and the average particle size of carbon was 5μ (A) and 30m (B). This is a discharge test on 12 types of LRG type Ashika Ringan batteries in total h1. The test data are the short circuit current, the continuous discharge time at a 5Ω load and a final voltage of 0.9V, and the continuous discharge time at a 10Ω load and a final voltage of 0.9V.

実験例■は、正極缶1の内面に導電性被膜を形成した場
合で、その他の条件は実験例Iと全く同この実験データ
から次のことが分る。カーボン含有量を多くすると正極
合剤の導電性が向上するので短絡電流が大きくなる。カ
ーボン粒径の小さな電池(A>と大きな電池(B)の短
絡電流を比較すると、カーボン粒径の小さい方が集電効
率が上るので短絡電流が大きくなる。しかし、カーボン
含有量が10%以上と多い場合には両者の知略電流には
殆ど差はない。カーボン含有ff18.0%。
Experimental example (2) is a case in which a conductive film is formed on the inner surface of the positive electrode can 1, and the other conditions are exactly the same as in experimental example I. The following is understood from this experimental data. Increasing the carbon content improves the conductivity of the positive electrode mixture, resulting in an increase in short-circuit current. Comparing the short-circuit current of a battery with a small carbon particle size (A>) and a battery with a large carbon particle size (B), the short-circuit current increases with the smaller carbon particle size because the current collection efficiency increases.However, when the carbon content is 10% or more When there is a large amount, there is almost no difference in the effective current between the two.Carbon content ff18.0%.

6.0%、3.0%の場合において、カーボン粒径の小
さな電池(A>の短絡電流は電池(B)より明らかに大
きくなっている。この効果は、導電性被膜を形成した実
験例Hにおいてより顕著である。
In the cases of 6.0% and 3.0%, the short-circuit current of the battery with small carbon particle size (A> is clearly larger than that of battery (B). This effect is clearly demonstrated by the experimental example in which a conductive film was formed. It is more noticeable in H.

また、5Ωおよび10Ω負荷の連続放電時間についてみ
ると、カーボン含有量が10%以上の場合は、カーボン
粒径の小さな電池<A)と大きな電池(B)とでは掻く
僅かな差しかない。しかし、カーボン含有量が8.0%
、6.0%、3.0%と少い場合、カーボン粒径の小さ
な電池(A)の方が明らかに電池(B)より良い結果と
なっている1、この効果も、実験例■の方がより顕著で
ある。
Furthermore, when looking at the continuous discharge time under 5Ω and 10Ω loads, when the carbon content is 10% or more, there is only a slight difference between the battery <A) with a small carbon particle size and the battery (B) with a large carbon particle size. However, the carbon content is 8.0%
, 6.0% and 3.0%, battery (A) with small carbon particle size clearly has better results than battery (B)1. This effect also reflects the experimental example (■). is more noticeable.

以上詳細に説明したように、この発明によれば、限られ
た体積内での二酸化マンガンの容量を大きく保ち、放電
容量を大きくすることができるともに、短絡電流を大き
く、かつ内部抵抗を十分に小さくしたアルカリ・マンガ
ン電池を得ることができる。
As explained in detail above, according to the present invention, it is possible to maintain a large capacity of manganese dioxide within a limited volume, increase discharge capacity, increase short circuit current, and sufficiently reduce internal resistance. A miniaturized alkaline manganese battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明を適用するアルカリ・マンガン電池の一例
としての円筒形電池の断面図である。 1・・・・・・正極缶 3・・・・・・正極合剤4・・
・・・・セパレータ 5・・・・・・負極合剤7・・・
・・・封口ガスケット 8・・・・・・負極端子板9・
・・・・・集電棒 特許出願人 富士電気化学株式会社 代 理 人 弁理士 −色健輔
The figure is a sectional view of a cylindrical battery as an example of an alkaline manganese battery to which the present invention is applied. 1...Positive electrode can 3...Positive electrode mixture 4...
... Separator 5 ... Negative electrode mixture 7 ...
... Sealing gasket 8 ... Negative terminal plate 9.
...Collector rod patent applicant Fuji Electrochemical Co., Ltd. Agent Patent attorney - Kensuke Shiro

Claims (2)

【特許請求の範囲】[Claims] (1)活物質としての二酸化マンガンに導電剤としてカ
ーボンを混合した正極合剤を用いるアルカリ・マンガン
電池において、上記カーボンは平均粒径2〜2011I
&の範囲の黒鉛粉末からなり、かつこのカーボンの含有
量が正極合剤固形分に対して3〜8重量%の範囲にある
ことを特徴とするアルカリ・マンガン電池。
(1) In an alkaline manganese battery using a positive electrode mixture of manganese dioxide as an active material and carbon as a conductive agent, the carbon has an average particle size of 2 to 2011I
An alkaline manganese battery comprising graphite powder in the range of &, wherein the carbon content is in the range of 3 to 8% by weight based on the solid content of the positive electrode mixture.
(2)上記正極合剤が接する正極缶の内面に導電性被膜
が形成されていることを特徴とする特許請求の範囲第1
項記載のアルカリ・マンガン電池。
(2) Claim 1, characterized in that a conductive film is formed on the inner surface of the positive electrode can that is in contact with the positive electrode mixture.
Alkaline manganese battery as described in section.
JP9667084A 1984-05-14 1984-05-16 Alkali-manganese cell Pending JPS60241646A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9667084A JPS60241646A (en) 1984-05-16 1984-05-16 Alkali-manganese cell
FR8419205A FR2568726B1 (en) 1984-05-14 1984-12-14 MANGANESE ALKALINE BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9667084A JPS60241646A (en) 1984-05-16 1984-05-16 Alkali-manganese cell

Publications (1)

Publication Number Publication Date
JPS60241646A true JPS60241646A (en) 1985-11-30

Family

ID=14171239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9667084A Pending JPS60241646A (en) 1984-05-14 1984-05-16 Alkali-manganese cell

Country Status (1)

Country Link
JP (1) JPS60241646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272715A (en) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd Alkaline manganese battery
EP1042829A1 (en) * 1997-12-31 2000-10-11 Duracell Inc. Battery cathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549862A (en) * 1978-10-06 1980-04-10 Hitachi Ltd Nonaqueous electrolytic battery
JPS57170459A (en) * 1981-04-14 1982-10-20 Matsushita Electric Ind Co Ltd Button type alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549862A (en) * 1978-10-06 1980-04-10 Hitachi Ltd Nonaqueous electrolytic battery
JPS57170459A (en) * 1981-04-14 1982-10-20 Matsushita Electric Ind Co Ltd Button type alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272715A (en) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd Alkaline manganese battery
EP1042829A1 (en) * 1997-12-31 2000-10-11 Duracell Inc. Battery cathode
EP1042829A4 (en) * 1997-12-31 2004-07-14 Duracell Inc Battery cathode

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
US4197366A (en) Non-aqueous electrolyte cells
US5569564A (en) Alkaline cell having a cathode including a titanate additive
DE60007138T2 (en) ALKALINE CELL WITH IMPROVED ANODE
JP3022758B2 (en) Alkaline manganese battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JPS60241646A (en) Alkali-manganese cell
US5895734A (en) Alkaline cell having a cathode including a titanate additive
JPS60240056A (en) Alkaline-manganese cell
JPH10144304A (en) Alkali battery
JP2001332250A (en) Alkaline dry cell
JP4767978B2 (en) Alkaline battery
JPS6091562A (en) Cylindrical alkali battery
JPH0212762A (en) Silver oxide battery
JPH02148654A (en) Nonaqueous electrolytic battery
JPH0318308B2 (en)
JPH07105940A (en) Non-aqueous electrolyte battery
JPH01154463A (en) Alkaline dry battery
JPS60240060A (en) Nonaqueous solvent cell
JPS59171470A (en) Nonaqueous solvent battery
JPH0545022Y2 (en)
GB2242566A (en) Porous lithium electrode for battery
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it
JPH09180724A (en) Battery
JPS59230257A (en) Positive electrode for nonaqueous electrolyte battery