JP2878294B2 - Lithium battery - Google Patents
Lithium batteryInfo
- Publication number
- JP2878294B2 JP2878294B2 JP3082489A JP3082489A JP2878294B2 JP 2878294 B2 JP2878294 B2 JP 2878294B2 JP 3082489 A JP3082489 A JP 3082489A JP 3082489 A JP3082489 A JP 3082489A JP 2878294 B2 JP2878294 B2 JP 2878294B2
- Authority
- JP
- Japan
- Prior art keywords
- molding
- positive electrode
- mixture
- battery
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> この発明は、正極合剤の組成並びに加圧密度を適正化
して放電性能の向上を図ったリチウム電池に関するもの
である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery in which discharge composition is improved by optimizing the composition of a positive electrode mixture and a pressurized density.
<従来の技術> インサイド−アウト形やコイン形等のリチウム電池で
は、活物質である二酸化マンガンに、導電剤としてグラ
ファイト、また結着剤としてポリテトラフルオロエチレ
ンをそれぞれ混合し、次いでこれらの混合粉末である配
合合剤を高圧で加圧成型した正極合剤が用いられてい
る。<Conventional technology> In a lithium battery of an inside-out type, a coin type, or the like, graphite is mixed as a conductive agent with manganese dioxide as an active material, and polytetrafluoroethylene is mixed as a binder. A positive electrode mixture obtained by press-molding the compounded mixture at a high pressure is used.
このように加圧成型した正極合剤としては、従来は、
配合合剤の嵩密度の2倍程度の成形密度のものが用いら
れている。Conventionally, as a positive electrode mixture molded under pressure as described above,
A material having a molding density about twice the bulk density of the compounded mixture is used.
つまり、従来は、電解液が豊富な方が電池の放電性能
が良いとの観点から、電池の組立工程上において支障が
ない強度を持つ範囲で合剤成型を緩く行い、正極合剤に
おける吸液性を高めて電解液を多量に吸液させるように
している。In other words, conventionally, from the viewpoint that the richer the electrolytic solution, the better the discharge performance of the battery, the mixture molding is performed loosely within a range that does not hinder the battery assembly process, and the liquid absorption in the positive electrode mixture is performed. The electrolyte is enhanced to absorb a large amount of electrolyte.
<発明が解決しようとする課題> しかしながら、このように成形密度の低い正極合剤を
用いた場合、放電途中における合剤の膨潤が著しく、電
解液を必要以上に吸収してしまう。このため、放電進行
と共に電解液が枯渇し、電池の内部抵抗が増大して放電
性能の急激な低下がおこるという問題がある。<Problems to be Solved by the Invention> However, when such a positive electrode mixture having a low molding density is used, the mixture swells significantly during discharge, and absorbs the electrolyte more than necessary. For this reason, there is a problem that the electrolytic solution is depleted as the discharge proceeds, the internal resistance of the battery increases, and the discharge performance sharply decreases.
<課題を解決するための手段> 本発明者は、上記問題を解決すべく検討したところ、
正極合剤の成形密度を従来値より大きい所定の値以上と
した時には、驚くべきことに、このような合剤膨潤によ
る放電性能の低下が有効に抑制でき、この結果電池の電
性能向上が図り得ることが知得された。<Means for Solving the Problems> The present inventor has studied to solve the above problems,
Surprisingly, when the molding density of the positive electrode mixture is equal to or higher than a predetermined value larger than the conventional value, it is possible to effectively suppress such a decrease in the discharge performance due to the swelling of the mixture, thereby improving the electric performance of the battery. It was learned to get.
本発明はこのような知得に基づくもので、活物質とし
ての二酸化マンガンと、導電剤としてのグラファイト
と、バインダーとしてのポリテトラフルオロエチレンと
を混合してなる配合合剤を所定の嵩密度に造粒し、この
造粒合剤を所定の成形密度に加圧成型した正極合剤を用
いたリチウム電池において、前記正極合剤におけるグラ
ファイトの比率を1〜20重量%、ポリテトラフルオロエ
チレンの比率を1〜5重量%とし、また前記成形密度を
前記嵩密度の2.5倍以上としたことを要旨とするリチウ
ム電池である。The present invention is based on such knowledge, and a compounding agent obtained by mixing manganese dioxide as an active material, graphite as a conductive agent, and polytetrafluoroethylene as a binder to a predetermined bulk density. In a lithium battery using a positive electrode mixture obtained by granulating and pressing this granulated mixture to a predetermined molding density, the ratio of graphite in the positive electrode mixture is 1 to 20% by weight, and the ratio of polytetrafluoroethylene is Is 1 to 5% by weight, and the molding density is at least 2.5 times the bulk density.
なお、正極合剤におけるグラファイト、並びにポリテ
トラフルオロエチレンの配合量を上記のように規定した
のは、次の理由による。The reason why the amounts of graphite and polytetrafluoroethylene in the positive electrode mixture are specified as described above is as follows.
即ち、これらの配合量がこの範囲より多すぎれば電池
の絶対容量が減って放電性能の低下を招く。また、グラ
ファイトがこの範囲より少ない場合、電池の容量自体は
増えるものの、導電剤の絶対量が減って、このため電池
の導電性が低下し、電池の内部抵抗が上がって放電性能
が低下する。一方、ポリテトラフルオロエチレンの配合
量がこれより少ないと、合剤成型がうまくできず、また
成型後の合剤強度が得られなくなる。That is, if the amounts of these components are too large, the absolute capacity of the battery is reduced and the discharge performance is reduced. If the amount of graphite is less than this range, the capacity of the battery itself increases, but the absolute amount of the conductive agent decreases, and therefore, the conductivity of the battery decreases, the internal resistance of the battery increases, and the discharge performance decreases. On the other hand, if the blending amount of polytetrafluoroethylene is less than this, the mixture cannot be molded properly, and the strength of the mixture after molding cannot be obtained.
<作用> 正極合剤の成形密度を上記のように規定することで、
放電進行時における正極合剤の膨潤が有効に押さえら
れ、電解液の枯渇が防止される。この結果、放電に伴う
電池の内部抵抗上昇が抑制され電池の放電性能が向上す
る。<Action> By defining the molding density of the positive electrode mixture as described above,
Swelling of the positive electrode mixture during discharge progress is effectively suppressed, and depletion of the electrolyte is prevented. As a result, an increase in the internal resistance of the battery due to discharging is suppressed, and the discharging performance of the battery is improved.
また、グラファイト量の増加により、正極合剤の導電
性が良くなり、正極活物質の利用率が向上する。Further, by increasing the amount of graphite, the conductivity of the positive electrode mixture is improved, and the utilization rate of the positive electrode active material is improved.
<実施例> 以下に添付の図面を用いてこの発明の実施例を説明す
る。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.
二酸化マンガン(MnO2)とグラファイト(Gr)、並び
にポリテトラフルオロエチレン(PTFE)をそれぞれ第1
表に示した配合比(重量%)にて混合してなる配合合剤
1を、それぞれ第1図(A)のように圧縮ローラ2、3
により圧縮して、シート状合剤4に成形した。Manganese dioxide (MnO 2 ), graphite (Gr) and polytetrafluoroethylene (PTFE)
As shown in FIG. 1 (A), a mixture 1 prepared by mixing at the compounding ratio (% by weight) shown in the table was compressed with rollers 2 and 3 respectively.
To form a sheet mixture 4.
そして、このシート状合剤4を粉砕し、またふるいに
かけて、それぞれ25〜80メッシュの粒径の造粒合剤A〜
Fを得た。尚、これらの造粒合剤A〜Fの嵩密度(g/cm
3)を第1表に併せて示した。Then, the sheet-shaped mixture 4 is pulverized and sieved to form a granulated mixture A having a particle size of 25 to 80 mesh.
F was obtained. In addition, the bulk density (g / cm) of these granulated mixes A to F
3 ) is also shown in Table 1.
次いで、第1図(B)ないし第1図(C)に示したよ
うに、これらの造粒合剤5をそれぞれ、金型6の凹状成
型面6aに盛り込み、また下記の方法で造粒合剤の盛込み
量を調整した。 Next, as shown in FIGS. 1 (B) to 1 (C), each of these granulated mixes 5 is incorporated into the concave molding surface 6a of the mold 6, and granulated by the following method. The loading amount of the agent was adjusted.
そして、成型面6aの上面から、金型6に対応する形状
のパンチを落とすなどして、これら造粒合剤5を、第1
図(D)のように、外径16mm,内径12mm,高さ15mmの中空
円筒状の正極合剤7に加圧成型した。Then, the granulated mixture 5 is removed from the upper surface of the molding surface 6a by, for example, dropping a punch having a shape corresponding to the mold 6 into the first form.
As shown in Fig. (D), the positive electrode mixture 7 was formed into a hollow cylindrical positive electrode mixture 7 having an outer diameter of 16 mm, an inner diameter of 12 mm, and a height of 15 mm.
この時、第1図(D)において、符号Pで示した面
(圧縮面)にパンチがあたるようにし、またこの圧縮面
おける成型圧を5ton/cm2になるように上記成型を行っ
た。At this time, in FIG. 1 (D), the punch was applied to the surface (compressed surface) indicated by reference symbol P, and the above-mentioned molding was performed so that the molding pressure on this compressed surface was 5 ton / cm 2 .
そして、このようにして正極合剤の成型を行い、また
成形密度/嵩密度の比を2〜3程度の範囲で変化させた
正極合剤を種々作り、またこれらの正極合剤をそれぞれ
用い、第2図に示した構造のインサイドアウト型リチウ
ム電池をそれぞれ5個ずつ作製した。この図において、
8は電池缶、9はセパレータ、10はリチウム負極、11は
リード端子、12は封口板、13は端子板、14は封口ガスケ
ットである。Then, the positive electrode mixture is molded in this manner, and various positive electrode mixtures having a molding density / bulk density ratio changed in a range of about 2 to 3 are produced. Five inside-out type lithium batteries each having the structure shown in FIG. 2 were manufactured. In this figure,
8 is a battery can, 9 is a separator, 10 is a lithium negative electrode, 11 is a lead terminal, 12 is a sealing plate, 13 is a terminal plate, and 14 is a sealing gasket.
これらの造粒合剤A〜Fから得た正極合剤における成
形密度(g/cm3)並びに成形密度/嵩密度の比を第2表
に示した。Table 2 shows the molding density (g / cm 3 ) and the ratio of molding density / bulk density in the positive electrode mixtures obtained from these granulated mixtures A to F.
これらの電池A〜Fをそれぞれ5個づつ作り、これら
について、温度20℃において放電抵抗2.7kΩで終始電圧
2.0Vまで連続放電させてそれらの放電持続時間を調べ
た。結果は第3表の通りである(それぞれ5個の平均
値)。 Each of these batteries A to F was prepared in a quantity of 5 pieces, and at a temperature of 20 ° C., the discharge resistance was 2.7 kΩ and the voltage was constant throughout.
They were continuously discharged to 2.0 V and their discharge duration was examined. The results are as shown in Table 3 (average value of 5 samples).
一方、上記の圧縮面における成型圧を2ton/cm2とした
他は同様にしてインサイドアウト型リチウム電池を種々
作り、これらの電池を同じ条件で連続放電させてそれぞ
れ放電持続時間を調べた。 On the other hand, various inside-out type lithium batteries were produced in the same manner except that the molding pressure on the compression surface was set at 2 ton / cm 2, and these batteries were continuously discharged under the same conditions, and the discharge duration time was examined.
以上の実験結果を前記成型圧毎に、縦軸に放電持続時
間を、横軸には成形密度/嵩密度の比を採ってプロット
したところ、第3図に示したグラフを得た。The above experimental results were plotted by taking the discharge duration on the vertical axis and the molding density / bulk density ratio on the horizontal axis for each of the molding pressures, and the graph shown in FIG. 3 was obtained.
同図より、成形密度/嵩密度の比を約2.5以上とすれ
ば、良好な放電性能が得られることが判る。また、この
結果より、成型面における成型圧を5ton/cm2以上とした
場合には良好な放電性能が得られることが判る。From the figure, it is understood that good discharge performance can be obtained when the ratio of molding density / bulk density is about 2.5 or more. From this result, it can be seen that when the molding pressure on the molding surface is 5 ton / cm 2 or more, good discharge performance can be obtained.
ところで、第3図のグラフの各測定点の合剤配合比は
異なっている。つまり、成形密度/嵩密度の比が小さい
程導電剤(この場合はグラファイト)が少なく、一方こ
の比が大きくなる程導電剤が多くなっている。By the way, the mixture ratio at each measurement point in the graph of FIG. 3 is different. In other words, the smaller the ratio of molding density / bulk density, the smaller the amount of the conductive agent (in this case, graphite), while the larger the ratio, the more the conductive agent.
即ち、造粒してできた合剤の嵩密度は、導電剤が多く
なる程小さくなる。一方、成形する場合、一定寸法の正
極合剤を得るために、成形機の成形金型への造粒合剤投
入量、つまり盛込み量を加減し、5トンの時、一定寸法
の正極合剤が得られるようにする(これは、成形機によ
り調整が可能である)。That is, the bulk density of the mixture obtained by granulation decreases as the amount of the conductive agent increases. On the other hand, when molding, in order to obtain a positive electrode mixture of a certain size, the amount of the granulated mixture charged into the molding die of the molding machine, that is, the filling amount is adjusted. (Which can be adjusted by the molding machine).
そして、嵩密度が大きいもの、即ちグラファイトが少
ないものは、盛込み量(体積)が少なく、また圧縮比
(盛込み体積/造粒合剤体積)は小さい。逆にグラファ
イトが多い場合、圧縮比は大きくなる。結果として、グ
ラファイト量の増加による成形密度の減少よりも嵩密度
の減少のほうが大きいために、成形密度/嵩密度の比は
大きくなる。Those having a large bulk density, that is, those having a small amount of graphite, have a small amount of filling (volume) and a small compression ratio (volume of filling / volume of granulated mixture). Conversely, when the amount of graphite is large, the compression ratio increases. As a result, the ratio of molding density / bulk density increases because the decrease in bulk density is greater than the decrease in molding density due to an increase in the amount of graphite.
この際、正極合剤の重量は、各点で異なり、正極理論
容量はグラファイト量が多くなる程減少するが、その
分、合剤の導電性は向上するため、電池性能としては良
くなる。At this time, the weight of the positive electrode mixture is different in each point, and the theoretical capacity of the positive electrode decreases as the amount of graphite increases, but the conductivity of the mixture increases accordingly, thereby improving the battery performance.
また、以上は筒形リチウム電池についての例である
が、その他、例えばこの発明をコイン型リチウム電池に
適用し、この電池に用いる円盤状の正極合剤を同様にし
て加圧成型した場合も同様な結果が得られることは明ら
かである。Although the above is an example of a cylindrical lithium battery, the same applies to, for example, a case where the present invention is applied to a coin-type lithium battery, and a disk-shaped positive electrode mixture used for the battery is similarly subjected to pressure molding. It is clear that excellent results can be obtained.
<発明の効果> 以上の様に構成されるこの発明によれば、放電進行時
における正極合剤の膨潤が有効に押さえられ、このため
放電に伴う内部抵抗の上昇が抑制されて電池の放電性能
向上が図れるといった効果を奏する。<Effect of the Invention> According to the present invention configured as described above, the swelling of the positive electrode mixture during the progress of discharge is effectively suppressed, and therefore, the increase in internal resistance due to discharge is suppressed, and the discharge performance of the battery is reduced. The effect that improvement can be achieved is produced.
第1図(A)〜(D)は実施例における正極合剤の製造
手順の説明図、第2図は実施例の電池の断面図、第3図
は実施例における各電池の放電特性を示したグラフであ
る。 1……配合合剤、5……造粒合剤、7……正極合剤、8
……電池缶、10……リチウム負極。1 (A) to 1 (D) are explanatory diagrams of a manufacturing procedure of a positive electrode mixture in an example, FIG. 2 is a sectional view of a battery in the example, and FIG. 3 shows discharge characteristics of each battery in the example. FIG. 1 ... combination mixture, 5 ... granulation mixture, 7 ... positive electrode mixture, 8
…… Battery can, 10… Lithium negative electrode.
フロントページの続き (72)発明者 八木 秀昭 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 昭63−175349(JP,A) 特開 昭57−61259(JP,A) 特開 昭57−34652(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/06 - 4/08 H01M 6/16 Z Continuation of the front page (72) Inventor Hideaki Yagi 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-63-175349 (JP, A) JP-A-57- 61259 (JP, A) JP-A-57-34652 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/06-4/08 H01M 6/16 Z
Claims (1)
としてのグラファイトと、バインダーとしてのポリテト
ラフルオロエチレンとを混合してなる配合合剤を所定の
嵩密度に造粒し、この造粒合剤を所定の成形密度に加圧
成型した正極合剤を用いたリチウム電池において、 前記正極合剤におけるグラファイトの比率を1〜20重量
%、ポリテトラフルオロエチレンの比率を1〜5重量%
とし、また前記成形密度を前記嵩密度の2.5倍以上とし
たことを特徴とするリチウム電池。1. A mixture obtained by mixing manganese dioxide as an active material, graphite as a conductive agent, and polytetrafluoroethylene as a binder is granulated to a predetermined bulk density. In a lithium battery using a positive electrode mixture obtained by press-molding an agent to a predetermined molding density, the ratio of graphite in the positive electrode mixture is 1 to 20% by weight, and the ratio of polytetrafluoroethylene is 1 to 5% by weight.
Wherein the molding density is at least 2.5 times the bulk density.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3082489A JP2878294B2 (en) | 1989-02-09 | 1989-02-09 | Lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3082489A JP2878294B2 (en) | 1989-02-09 | 1989-02-09 | Lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02210757A JPH02210757A (en) | 1990-08-22 |
JP2878294B2 true JP2878294B2 (en) | 1999-04-05 |
Family
ID=12314450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3082489A Expired - Fee Related JP2878294B2 (en) | 1989-02-09 | 1989-02-09 | Lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2878294B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4739493B2 (en) * | 2000-08-31 | 2011-08-03 | Fdk株式会社 | Positive electrode mixture molded body and battery |
-
1989
- 1989-02-09 JP JP3082489A patent/JP2878294B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02210757A (en) | 1990-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0317351B1 (en) | Secondary battery | |
EP0477461B1 (en) | Nickel/hydrogen storage battery and method of manufacturing the same | |
US4060668A (en) | Primary electrochemical cell | |
EP1445812A1 (en) | Alkaline battery | |
EP0149494B1 (en) | Method for preparing positive electrode for non-aqueous electrolyte cell | |
JP2005056714A (en) | Positive electrode mixture and alkaline dry cell using the same | |
KR100315370B1 (en) | Alkaline storage battery gas sealed in button cell | |
WO1985002297A1 (en) | Organic electrolyte battery | |
US4118334A (en) | Primary electrochemical cell | |
JP2878294B2 (en) | Lithium battery | |
JP3022758B2 (en) | Alkaline manganese battery | |
KR100322922B1 (en) | Alkaline accumulators in the form of gas-sealed button cells | |
JP2001325954A (en) | Beta type nickel oxyhydroxide and its manufacturing method, positive electrode active material and nickel- zinc cell | |
US6358447B1 (en) | Process for the production of a positive electrode for an alkaline primary element | |
JP2002343346A (en) | Positive electrode for battery, and battery | |
JP2003123746A (en) | Alkaline zinc battery | |
JPH02239572A (en) | Polyaniline battery | |
JPH0594820A (en) | Organic electrolyte battery | |
JPH0443387B2 (en) | ||
JPH01151158A (en) | Manufacture of positive electrode for nonaqueous solvent cell | |
KR100666167B1 (en) | Producing Method for Positive Electrode of Battery | |
JPH05225988A (en) | Alkaline battery | |
JP2003123747A (en) | Alkaline zinc battery | |
JP3011243B2 (en) | Positive electrode mixture for manganese dry battery and manganese dry battery using the same | |
JPH07272714A (en) | Nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090122 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |