KR100666167B1 - Producing Method for Positive Electrode of Battery - Google Patents

Producing Method for Positive Electrode of Battery Download PDF

Info

Publication number
KR100666167B1
KR100666167B1 KR1020000075176A KR20000075176A KR100666167B1 KR 100666167 B1 KR100666167 B1 KR 100666167B1 KR 1020000075176 A KR1020000075176 A KR 1020000075176A KR 20000075176 A KR20000075176 A KR 20000075176A KR 100666167 B1 KR100666167 B1 KR 100666167B1
Authority
KR
South Korea
Prior art keywords
positive electrode
mixture
battery
polyethylene glycol
electrode mixture
Prior art date
Application number
KR1020000075176A
Other languages
Korean (ko)
Other versions
KR20020045780A (en
Inventor
오건탁
노희숙
김남인
Original Assignee
주식회사로케트전기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사로케트전기 filed Critical 주식회사로케트전기
Priority to KR1020000075176A priority Critical patent/KR100666167B1/en
Publication of KR20020045780A publication Critical patent/KR20020045780A/en
Application granted granted Critical
Publication of KR100666167B1 publication Critical patent/KR100666167B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극합제에 가소제인 폴리에틸렌 글리콜(Polyethylene Glycol)을 포함시켜 성형성을 양호하게 함과 동시에 결착력을 향상시키고, 합제 충진을 균일하게 하여 양극합제의 탈리 현상을 없애고, 합제를 과립으로 만들어 유동성을 증가시킴으로써 연속적인 자동 극판 제조가 가능할 수 있도록 하는 전지 양극의 제조방법에 관한 것이다.The present invention includes a plasticizer polyethylene glycol (Polyethylene Glycol) in the positive electrode mixture to improve the moldability and at the same time improve the binding force, uniform mixture filling to eliminate the desorption phenomenon of the positive electrode mixture, the mixture into a granule fluidity The present invention relates to a method for manufacturing a battery positive electrode, which enables continuous automatic electrode plate manufacturing by increasing.

구체적으로 본 발명은, 카본재와 바인더, 물, 소량의 이소프로필 알콜에 가소제인 폴리에틸렌 글리콜을 혼합하여 양극합제로 하고, 과립 형태가 전체 양극합제의 50% 이상이 되도록 제형을 형성시켜 양극기재에 자동 연속으로 압연`코팅함으로써 극판을 제조한 후, 증류수로 폴리에틸렌글리콜을 침출시키고 건조 및 재압연하는 것으로 이루어지는 전지 양극의 제조방법에 관한 것이다.







Specifically, the present invention, the carbon material and the binder, water, a small amount of isopropyl alcohol is mixed with polyethylene glycol as a plasticizer to form a positive electrode mixture, the formulation is formed so that the granule form is 50% or more of the total positive electrode mixture to the positive electrode substrate The present invention relates to a method for producing a battery positive electrode, which is produced by automatically rolling and coating a pole plate, and then leaching polyethylene glycol with distilled water, drying and rerolling.







Description

전지 양극의 제조방법{Producing Method for Positive Electrode of Battery}Producing Method for Positive Electrode of Battery

전지는 원래 내부에 들어 있는 화학물질의 전기화학적 산화-환원 반응시 발생하는 화학에너지를 전기에너지로 변환하는 장치를 말하는 것으로서, 그 사용상 특성에 따라 전지속의 에너지가 고갈되면 폐기해야 하는 1차전지(primary battery)와 계속 충전하면서 여러번 재사용이 가능한 2차전지(rechargeable battery)로 구분할 수 있다.A battery is a device that converts chemical energy generated during electrochemical oxidation-reduction reaction of a chemical substance contained therein into electrical energy. The primary battery that should be discarded when the energy in the battery is depleted according to its use characteristics primary battery) and a rechargeable battery that can be reused many times while still being charged.

최근들어 전자, 통신, 컴퓨터 산업 등의 급속한 발전에 힘입어 기기의 소형`경량화, 및 고기능화와 함께, 캠코더, 휴대폰, 노트북 PC 등 휴대용 전자제품의 사용이 일반화됨으로써, 가볍고 오래 사용할 수 있으며 신뢰성이 높은 고성능의 소형전지들이 절실히 요청되고 있는데, 이러한 수요에 상응하여 많은 관심과 각광을 받고 있는 것이 바로 리튬 1, 2차전지이다.In recent years, thanks to the rapid development of the electronics, telecommunications, and computer industries, the use of portable electronic products such as camcorders, mobile phones, notebook PCs, etc., as well as the miniaturization and high functionality of devices, has made light weight, long-lasting and reliable. High-performance small batteries are urgently required, and lithium primary and secondary batteries are attracting much attention and attention in response to these demands.

리튬은 지구상에 존재하는 금속중 가장 가볍기 때문에 단위 질량당 전기용량이 가장 크며, 열역학적 산화전위의 값이 커서 전압이 높은 전지를 만들 수 있는 물질이기 때문에, 제한된 양의 화학물질로 최대한의 에너지를 낼 수 있도록 해야하는 전지에서는 가장 잠재력이 큰 음극 물질로 오래 전부터 연구되어 오고 있었다.Lithium is the lightest metal on the planet, and therefore has the highest electric capacity per unit mass. Since lithium has a large thermodynamic oxidation potential, it can produce a high voltage battery. In cells that must be able to do so, they have been studied for a long time as the most potential negative electrode material.

이들중 리튬 염화티오닐 전지는 현재까지 실용화되어 있는 화학전지들 중에서 가장 높은 에너지 밀도를 가지고 있는 전지로서, 다른 화학전지들에 비해 고전압, 고에너지 밀도를 가지고 있으며, 저장 특성이 우수하고 작동 온도 범위가 넓다는 장점 때문에 많은 분야에서 널리 사용되고 있다.Among these, lithium thionyl chloride battery has the highest energy density among the commercially available chemical cells, and has higher voltage and higher energy density than other chemical cells, and has excellent storage characteristics and operating temperature range. Because of its broadness, it is widely used in many fields.

이와 같은 리튬 염화티오닐 전지(Li-SOCl2 전지)는 음극으로 금속 리튬을 사용하고, 리튬 테트라 클로로 알루미네이트(LiAlCl4)와 같은 전해질염을 용해한 염화티오닐(SOCl2)이 양극 활물질겸 전해액으로 사용되어서 카본이 주성분인 판상의 다공성 양극 집전체(이하 양극판)에서 방전 동안에 환원된다.The lithium thionyl chloride battery (Li-SOCl 2 battery) uses metal lithium as a negative electrode, and thionyl chloride (SOCl 2 ) in which an electrolyte salt such as lithium tetrachloro aluminate (LiAlCl 4 ) is dissolved is a positive electrode active material and an electrolyte solution. It is used to reduce the carbon during discharge in a plate-shaped porous positive electrode current collector (hereinafter referred to as a positive electrode plate) having a main component.

액상의 활물질이 환원되는 양극판은 활발한 반응을 위해 큰 반응 표면적을 가지는 것이 유리하고 방전 동안 생성되는 반응 생성물에 축적공간을 제공하기 위하여 고기공도의 것일수록 유리하지만, 적정 접착력을 위해 양극합제에 첨가되는 바인더(binder)와 극판기재 자체가 차지하는 체적이 있기 때문에 70∼80% 정도의 기공도를 가지는 것이 일반적이다.It is advantageous that the positive electrode plate in which the liquid active material is reduced has a large reaction surface area for active reaction, and the higher one of the high porosity to provide a storage space for the reaction product generated during discharge, but is added to the positive electrode mixture for proper adhesion. It is common to have a porosity of about 70 to 80% because of the volume occupied by the binder and the electrode base material itself.

그러나, 이와 같은 리튬-염화치오닐 전지는 안전에 관한 중대한 결점을 가지고 있는데, 그것은, 전지 내부단락 또는 외부단락, 강제방전 등이 원인이 되어 예측할 수 없는 폭발이 일어날 수 있다는 점이다.However, such lithium-thionyl chloride batteries have a significant shortcoming in terms of safety, which can be caused by an internal short circuit or external short circuit, forced discharge, or the like and an unexpected explosion can occur.

따라서, 지금까지 이를 개선하기 위한 여러 방면의 연구가 수행되어 왔으며, 현재 전지 외부단락은 퓨즈로, 강제방전은 보호회로를 사용하여 안전을 확보하고 있다. 그러나, 전지의 내부단락에 의한 폭발위험은 안전벤트를 설계하여 방지하고 있지만 아직 완전한 신뢰성을 확보하지 못하고 있다. 이러한 전지 내부단락의 주원인은 양극판의 합제탈리 현상으로 생각되고 있다.Therefore, until now, various aspects of research have been conducted to improve this, and the current external short circuit is used as a fuse and the forced discharge is secured by using a protection circuit. However, the explosion risk caused by the internal short circuit of the battery is designed and prevented, but the complete reliability is not yet secured. The main cause of the internal short circuit of the battery is thought to be the desorption phenomenon of the positive electrode plate.

지금까지 이와 같은 리튬 염화치오닐 전지의 양극판을 제조하는 일반적인 방법은, 먼저 아세틸렌 블랙 또는 케첸블랙 등과 같은 카본 분말을 이소프로필 알콜, 바인더(binder), 물 등과 함께 혼합한 다음, 이 혼합물을 건조 및 분쇄하여서 분말상으로 하고, 이렇게 제조된 양극합제 분말을 니켈 등의 극판기재로 사용할 금속의 망(screen) 또는 Exmet(Expended Metal) 위에 펼쳐 놓고, 1회 이상 롤러 사이로 통과시킴으로써 압연`코팅시키는 것이었다.Until now, a general method of manufacturing a positive electrode plate of a lithium thionyl chloride battery includes first mixing a carbon powder such as acetylene black or ketjen black with isopropyl alcohol, a binder, water, and the like, and then drying the mixture and It was pulverized to form a powder, and the positive electrode mixture powder thus prepared was spread on a screen or Exmet (Expended Metal) of a metal to be used as a base plate material such as nickel, and rolled and coated by passing through a roller at least once.

이와 같은 종래의 방법에서, 분말을 금속망 위에 압연할 때 분쇄된 카본 분말들이 서로 쉽게 뭉치는 현상이 발생함으로써, 일정한 두께로 금속망 위에 코팅하는 것이 어렵고, 이에 따라 양극판의 카본 충진밀도를 균일하게 하기가 곤란한 문제점이 발생하는데, 이렇게 양극합제가 불균일하게 코팅된 극판으로 제조된 전지는 심한 진동에 노출되면 양극 합제의 탈리 현상으로 인한 내부 단락이 발생되어 안전성에 문제가 발생하게 된다.In this conventional method, when the powder is rolled on the metal mesh, the pulverized carbon powders easily aggregate together, so that it is difficult to coat the metal mesh with a certain thickness, thereby uniformly filling the carbon filling density of the positive electrode plate. A problem arises that it is difficult to do so, the battery produced by the electrode plate coated with the positive electrode mixture non-uniformly causes an internal short circuit due to the desorption phenomenon of the positive electrode mixture when exposed to severe vibration causes a safety problem.

상기의 과정에서 카본 분말이 금속망 위에 고르게 펼쳐지지 않는 것은, 제조과정중 분쇄공정에서 카본과 함께 분쇄된 바인더가 미세한 섬유 형태를 하고 있어서 금속망 위에 펼칠 때 서로 쉽게 뭉치는 현상이 발생하기 때문으로서, 이는 리튬 염화치오닐 전지를 비롯한 리튬전지의 제조를 위한 양극 제조공정에서 해결해야할 커다란 과제중 하나이다.The carbon powder does not spread evenly on the metal net in the above process because the binders pulverized with carbon in the pulverizing process during the manufacturing process have a fine fiber shape, and when they are spread on the metal net, they easily stick together. This is one of the big challenges to be solved in the positive electrode manufacturing process for manufacturing lithium batteries, including lithium thionyl chloride batteries.

또한, 상기와 같은 방법을 사용하여 전지를 양산하고자 하는 경우에는 양극합제의 유동성이 부족하여 단판식 공정을 사용할 수 밖에 없는데, 이렇게 되면 제조되는 극판간의 충진밀도 불균일로 인해 성능분포의 편차가 커지고, 주로 집합전지로 사용되는 리튬-염화치오닐 전지의 개체간 성능이 불균일해지는 큰 문제점이 발생하게 되며, 한편으로는 연속공정이 불가능함으로 인해 제조원가가 상승하는 결과를 가져오게 된다.
In addition, in the case of mass production of the battery using the method described above, the flow of the positive electrode mixture is insufficient to use the single plate process, which causes a large variation in the performance distribution due to the filling density non-uniformity between the manufactured pole plates, The big problem that the performance between the individual of the lithium-thionyl chloride battery mainly used as an assembly battery is non-uniform, on the other hand, the manufacturing process is increased due to the impossibility of the continuous process.

본 발명은 이와 같은 종래기술의 단점을 극복하고자 하는 것으로, 그 목적은, 양극합제의 결착력을 높이고, 충진밀도를 균일하게 하고, 생산 공정에서 합제의 유동성을 향상시킬 수 있어 자동 연속공정이 가능한 리튬-염화치오닐 전지의 양극 제조방법을 제공함으로써, 제조 공정중이나 전지 제조후 양극판의 합제 탈리 현상을 방지하여 전지 내부단락의 위험요소를 줄임과 동시에, 극판의 연속 제조공정이 가능하게 하기 위한 것이다.The present invention is to overcome the disadvantages of the prior art, the object of the present invention is to increase the binding capacity of the positive electrode mixture, uniform filling density, improve the fluidity of the mixture in the production process is possible lithium automatic continuous process By providing a positive electrode manufacturing method of a thionyl chloride battery, it is possible to reduce the risk of internal short circuit of the positive electrode plate during the manufacturing process or after battery production, and at the same time to enable the continuous production process of the electrode plate.

이를 위한 본 발명은, 양극합제에 가소제인 폴리에틸렌 글리콜을 포함시켜 성형성을 양호하게 함과 동시에 결착력을 향상시킴으로써 합제 충진을 균일하게 하여 양극합제의 탈리 현상을 없애고, 합제를 과립으로 만들어 유동성을 증가시킴으로써 연속적인 자동 극판 제조가 가능할 수 있도록 하는 리튬전지 양극의 제조방법을 제공하는 것으로 이루어진다.The present invention for this purpose, by including the polyethylene glycol as a plasticizer in the positive electrode mixture to improve the moldability and improve the binding force to uniform mixture filling to eliminate the detachment phenomenon of the positive electrode mixture, to make the mixture into granules to increase the fluidity It is made to provide a method for producing a lithium battery positive electrode to enable a continuous automatic electrode plate manufacturing.

본 발명은, 리튬-염화치오닐 전지의 양극판 제조를 위한 양극합제 조성물, 즉, 아세틸렌블랙과 바인더, 물, 소량의 이소프로필 알콜에 가소제인 폴리에틸렌 글리콜(Polyethylene Glycol: 평균 분자량 400)을 0.05∼250중량% 더 혼합하고, 약 0.05mm의 과립이 전체 양극합제의 50% 이상이 되도록 제형을 형성시켜 양극기재에 압연`코팅함으로써 극판을 제조한 후, 증류수로 폴리에틸렌글리콜을 침출시키고 건조 및 재압연하는 것으로 이루어지는 리튬-염화치오닐 전지의 양극판 제조방법에 관한 것이다.The present invention relates to a positive electrode mixture composition for preparing a positive electrode plate of a lithium-thionyl chloride battery, that is, polyethylene glycol (polyethylene glycol: average molecular weight 400) as a plasticizer in acetylene black and a binder, water, and a small amount of isopropyl alcohol. After mixing by weight% and forming a formulation so that about 0.05mm of granules are 50% or more of the total positive electrode mixture and rolling the coating on the positive electrode substrate to prepare the electrode plate, the polyethylene glycol is leached with distilled water, dried and re-rolled. The positive electrode plate manufacturing method of the lithium thionyl chloride battery which consists of this thing is related.

리튬 전지의 양극을 제조하기 위해서, 지금까지는, 아세틸렌 블랙과 같은 카본재를 이소프로필 알콜/물 혼합용액과 함께 교반한 후, 여기에 바인더로서 PTFE(polytetrafluoroethylene) 현탁수용액을 첨가하여 다시 교반함으로써 양극합제 페이스트를 제조하고, 이를 건조오븐에서 건조한 다음 쥬서기로 분쇄하여 미분말을 제조하고, 이를 양극합제로 사용하여 양극기재에 압연하는 방법을 사용하여 왔다.In order to manufacture a positive electrode of a lithium battery, until now, a carbon material such as acetylene black is stirred with an isopropyl alcohol / water mixed solution, and then, a PTFE (polytetrafluoroethylene) suspension solution is added thereto as a binder, followed by stirring again. The paste is prepared, dried in a drying oven, and then pulverized with a juicer to prepare fine powder, which has been used as a positive electrode mixture to roll on a positive electrode substrate.

그러나, 이렇게 얻어진 미분말은, 바인더가 미세한 섬유상으로 되어 있어서 프레스 또는 롤링 등의 가압에 의한 분말들끼리의 접착력이 좋은 반면, 쉽게 뭉쳐지기 때문에 균일하게 금속망 위에 펼치기가 곤란해서 충진밀도 편차가 심해지는 단점이 있었다.However, the fine powder thus obtained has a fine fibrous binder, which has good adhesion between powders by pressing or rolling, but is easily agglomerated, so that it is difficult to spread uniformly on a metal network, resulting in increased filling density variation. There was a downside.

이와 같은 단점을 극복하기 위하여, 본 발명에서는, 상기 양극합제 조성물을 믹서에 넣고 회전시키면서 가소제인 폴리에틸렌글리콜을 첨가하여 성형성을 향상시 켜 입자의 형태를 50∼500㎛ 크기의 작은 과립 형태로 만들어 유동성을 부여한 후, 양극기재에 압연하여 극판을 제조하는 데에 사용한다.In order to overcome the above disadvantages, in the present invention, by adding the polyethylene glycol which is a plasticizer while rotating the positive electrode mixture composition into a mixer to improve the formability to form the particles in the form of small granules of 50 ~ 500㎛ size After imparting fluidity, it is rolled on the positive electrode base material and used for producing the electrode plate.

따라서, 본 발명은, 아세틸렌 블랙, 케첸블랙 등과 같은 카본재를 이소프로필 알콜/물 혼합용액과 함께 교반한 후, 여기에 바인더(binder)를 첨가하여 다시 교반함으로써 양극합제 페이스트를 제조하는 페이스트 제조단계와; 이를 건조오븐에서 건조한 다음 분쇄하여 양극합제 미분말을 제조하는 미분말 제조단계와; 이렇게 수득된 미분말과 가소제를 고속믹서에 넣고 회전시켜 작은 크기의 양극합제 과립을 제조하는 과립 제조단계와; 롤러를 이용하여 압연함으로써 양극기재의 양면에 상기 수득된 양극합제 과립을 코팅하는 코팅단계; 증류수를 이용하여 코팅된 양극합제로부터 가소제를 침출시키는 침출단계; 및 양극판을 건조 및 재압연하여 최종적인 극판을 제조하는 최종극판제조단계로 이루어진다.Therefore, in the present invention, a paste manufacturing step of preparing a positive electrode mixture paste by stirring a carbon material such as acetylene black, Ketjen black, etc. together with an isopropyl alcohol / water mixed solution, and then adding a binder to the mixture Wow; A fine powder preparation step of preparing a positive electrode powder mixture by drying it in a drying oven and then grinding it; A granule manufacturing step of preparing a small sized positive electrode mixture granules by rotating the fine powder and the plasticizer thus obtained in a high speed mixer; A coating step of coating the obtained positive electrode mixture granules on both sides of the positive electrode substrate by rolling using a roller; A leaching step of leaching the plasticizer from the coated positive electrode mixture using distilled water; And a final electrode plate manufacturing step of manufacturing the final electrode plate by drying and rerolling the positive electrode plate.

본 발명에서 가소제는 양극합제 전체 조성 100중량%에 대하여 0.05∼250중량%의 양으로 첨가되는데, 이와 같이 가소제를 첨가함으로써 합제의 성형성이 향상되고 합제의 제형을 과립 형태로 함으로써 유동성이 향상되면, 단위면적당 합제의 충진밀도 편차를 최소화 할 수 있게 되며, 자동`연속적인 극판 제조공정이 가능하게 되고, 이에 따라 합제 탈리 현상에 의한 전지 내부의 단락을 줄임과 동시에 전체적인 전지성능의 균일화를 기대할 수 있게 된다.In the present invention, the plasticizer is added in an amount of 0.05 to 250% by weight based on 100% by weight of the total composition of the positive electrode mixture. Thus, by adding the plasticizer, the moldability of the mixture is improved, and when the formulation of the mixture is in the form of granules, the fluidity is improved. In addition, it is possible to minimize the variation of the filling density of the mixture per unit area, and it is possible to make the automatic `continuous plate manufacturing process, thereby reducing the short circuit inside the battery due to the desorption of the mixture, and at the same time can be expected to uniformize the overall battery performance. Will be.

이와 같이 본 발명에 따라, 양극합제에 가소제인 폴리에틸렌글리콜을 첨가하고 합제 제형을 과립으로 제조함으로써 양극을 제조하는 방법이 합제를 극판기재에 롤링함으로써 양극을 제조하는 모든 종류의 전지에 적용될 수 있다는 것은 당 업자 에게 있어 자명한 일이라고 할 수 있다.As described above, according to the present invention, the method of manufacturing the positive electrode by adding the plasticizer polyethylene glycol to the positive electrode mixture and preparing the mixture formulation into granules can be applied to all kinds of batteries for producing the positive electrode by rolling the mixture on the electrode plate substrate. It can be said to be obvious to those skilled in the art.

이하, 실시예, 비교예 및 시험예를 들어 본 발명을 자세히 설명하고자 하나, 본 발명을 이에 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples, Comparative Examples and Test Examples, but the present invention is not intended to be limited thereto.

[실시예]EXAMPLE

본 발명의 방법에 따라 하기와 같이 리튬-염화치오닐 전지의 양극을 제조하였다.According to the method of the present invention, a positive electrode of a lithium-thionyl chloride battery was prepared as follows.

먼저, 카본재로서 아세틸렌블랙(DENKA BLACK) 60g에 물 400g과 이소프로필알코올 300g을 넣으면서 혼합한 후, 여기에 물 100g과 테프론에멀젼(Dupont: 30J) 12g을 혼합한 용액을 첨가하여 교반함으로써 양극합제 페이스트를 제조한다.First, a mixture of 400 g of water and 300 g of isopropyl alcohol was added to 60 g of acetylene black (DENKA BLACK) as a carbon material, and then mixed with 100 g of water and 12 g of Teflon emulsion (Dupont: 30J). Prepare the paste.

다음에, 이렇게 제조된 양극합제 페이스트를 120℃ 건조오븐에서 48시간 동안 건조시키고, 건조된 합제를 혼합기에서 500rpm 속도로 회전시켜 분쇄함으로써 양극합제 미분말을 제조한다.Next, the cathode mixture paste thus prepared is dried in a 120 ° C. drying oven for 48 hours, and the dried mixture is pulverized by rotating at a speed of 500 rpm in a mixer to prepare a cathode mixture fine powder.

다음에, 이렇게 제조한 미분말에 폴리에틸렌 글리콜 용액 120g을 3분 동안에 걸쳐 첨가한 후 30분간 교반하고, 이를 하이스피드믹서(High Speed Mixer: FUKAE POWTEC)에서 Agitator 310rpm과 Chopper 530rpm 조건으로 20분간 회전시켜 0.05∼0.5mm의 과립을 50% 이상 형성시킨다.Next, 120 g of polyethylene glycol solution was added to the fine powder thus prepared over 3 minutes, followed by stirring for 30 minutes, which was then rotated for 20 minutes in an Agitator 310 rpm and a Chopper 530 rpm in a high speed mixer (FUKAE POWTEC) to 0.05 50% or more of granules of ˜0.5 mm are formed.

이렇게 제조된 과립을 니켈망(T: 0.2mm) 위에 놓고 0.6mm 간극으로 조절된 Roller를 사용하여 압연함으로써 양극합제가 코팅된 0.8mm 두께의 극판을 얻는다.The granules thus prepared were placed on a nickel network (T: 0.2 mm) and rolled using a roller adjusted to a 0.6 mm gap to obtain a 0.8 mm thick electrode plate coated with a positive electrode mixture.

다음에, 압연된 양극판을 적당한 용기에 넣고 증류수를 8시간 동안 흘려보냄 으로써, 성형성을 주기위해 첨가되었으나 최종 양극판에는 더 이상 필요치 않은 성분인 폴리에틸렌글리콜을 침출시킨다.Next, the rolled cathode plate is placed in a suitable container and distilled water is allowed to flow for 8 hours to leach polyethylene glycol, which is added to give moldability but is no longer needed on the final anode plate.

다음에, 최종적으로, 양극판을 꺼내어 50℃ 건조기에서 8시간 건조한 다음 다시 압연하여 양극합제가 균일하게 코팅된 0.7∼0.75mm 두께의 최종 극판을 제조한다.Next, the positive electrode plate was finally taken out, dried in a 50 ° C. dryer for 8 hours, and then rolled again to prepare a final electrode plate having a thickness of 0.7 to 0.75 mm uniformly coated with the positive electrode mixture.

이상과 같이 본 발명의 방법에 따라 제조된 극판의 기공율은 70∼80%로서 이를 본 발명의 극판 A라 한다.
As described above, the porosity of the electrode plate manufactured according to the method of the present invention is 70 to 80%, which is referred to as the electrode plate A of the present invention.

[비교예][Comparative Example]

본 발명과의 비교를 위하여, 하기와 같은 기존의 양극 제조방법에 따라 극판을 제조하였다.For comparison with the present invention, the electrode plate was manufactured according to the existing positive electrode manufacturing method as follows.

먼저, 카본재로서 아세틸렌블랙(DENKA BLACK) 60g에 물 400g과 이소프로필알코올 180g을 넣으면서 혼합한 후, 여기에 물 50g과 테프론에멀젼(Dupont: 30J) 12g을 혼합한 용액을 첨가하여 DALTON Mixer기로 10분 혼합함으로써 양극합제 페이스트를 제조한다.First, 400 g of water and 180 g of isopropyl alcohol were mixed with 60 g of acetylene black (DENKA BLACK) as a carbon material, and then 50 g of water and 12 g of teflon emulsion (Dupont: 30J) were added thereto, The positive electrode mixture paste is prepared by mixing the powder.

다음에, 제조된 양극합제 페이스트를 120℃ 건조오븐에서 4시간 동안 건조시키고, 이것을 쥬서기로 분쇄하여 500㎛ 이하의 미분말을 제조한다.Next, the prepared positive electrode mixture paste was dried in a 120 ° C. drying oven for 4 hours, and then ground by a juicer to prepare a fine powder of 500 μm or less.

다음에, 이렇게 제조한 미분말을 니켈망위의 단판식 지그(L420×W100×T4mm)에 넣고 3∼4회 되질하여 평평한 면을 형성한 뒤 0.75, 0.6, 0.4mm 간격의 Roller로 3회 압연하여 두께 0.70∼0.75mm의 최종 극판을 제조하였다. Next, the fine powder thus prepared was put into a single plate jig (L420 × W100 × T4mm) of nickel mesh, and then made three to four times to form a flat surface, and then rolled three times with a roller having a thickness of 0.75, 0.6, and 0.4 mm. A final electrode plate of 0.70 to 0.75 mm was produced.                     

이렇게 제조된 극판의 기공율은 70∼80%로서, 이를 비교예 B라 한다.
The porosity of the electrode plate thus prepared is 70 to 80%, which is referred to as Comparative Example B.

[시험예][Test Example]

상기 본 발명의 실시예 및 비교예에 의해 제조된 극판을 양극(1)으로 사용하고, 음극(2)에 금속 리튬을 사용하며, 격리막(separator)(3)으로 유리섬유를 사용하여 전지 셀을 제조한 후, 이를 스텐레스스틸 관(4)에 관입하고, SOCl2에 1.3Mole의 LiAlCl4염을 용해시킨 전해질 용액을 주입하여 밀봉함으로써, ER-D Type의 도 3과 같은 시험전지를 제조하고 각각 실시예(A) 및 비교예(B)로 하였다.A battery cell was prepared by using the electrode plates prepared by the examples and comparative examples of the present invention as the positive electrode 1, using the metal lithium as the negative electrode 2, and using glass fibers as the separator 3. After the preparation, it was introduced into a stainless steel tube (4), and injected with an electrolyte solution in which 1.3Mole of LiAlCl 4 salt was dissolved in SOCl 2 to prepare a test cell as shown in FIG. 3 of ER-D Type, respectively. It was set as Example (A) and a comparative example (B).

실시예(A)와 비교예(B)의 양극판의 충진밀도 및 전지 성능 분포는 하기 표 1과 같으며, 성능시험은 각각의 전지 10EA를 4.33Ω으로 2.5V까지 연속방전한 결과이다.The packing density and cell performance distribution of the positive electrode plates of Example (A) and Comparative Example (B) are shown in Table 1 below, and the performance test is a result of continuous discharge of each battery 10EA to 2.5V with 4.33Ω.

실시예(A)와 비교예(B)의 양극합제 및 성능분포 Cathode Mixture and Performance Distribution of Example (A) and Comparative Example (B) LOTLOT 충진밀도(g/cm3)Fill density (g / cm 3 ) 전지성능(Ah)Battery performance (Ah) AA 평균(χ)Mean (χ) 0.6290.629 12.4312.43 범위(%)range(%) 3.023.02 4.334.33 BB 평균(χ)Mean (χ) 0.6310.631 12.5612.56 범위(%)range(%) 8.448.44 8.568.56

표 1의 결과를 볼 때, 본 발명의 방법에 따라 제조된 실시예(A)와 비교예(B)가 평균 충진밀도에서는 유사한 결과를 보였으나, 실시예(A)가 비교예(B)에 비해 충진밀도의 편차 범위가 훨씬 작게 나타남으로써 더 균일하게 충진되었음을 알 수 있으며, 이에 따라 완제품 전지의 성능도 평균값에서는 유사한 결과를 나타냄에 반해 성능의 편차 범위가 본 발명의 실시예에서 훨씬 작아진 것임을 알 수 있다.
When looking at the results of Table 1, Example (A) and Comparative Example (B) produced according to the method of the present invention showed similar results in the average packing density, Example (A) to Comparative Example (B) Compared to the filling density, the variation range of the filling density is much smaller, indicating that the filling is more uniform. Accordingly, the performance range of the finished battery shows similar results in the average value, whereas the variation range of the performance is much smaller in the embodiment of the present invention. Able to know.

이상과 같이 본 발명이 완성됨으로써, 양극합제의 결착력을 높이고, 과립의 양극합제를 만들어 사용하므로 유동성을 향상시켜 충진밀도를 균일하게 하고 물리적 강도를 개선시킬 수 있는 전지 양극의 제조방법이 제공될 수 있게 되었다.By completing the present invention as described above, it is possible to provide a method for manufacturing a battery positive electrode to increase the binding capacity of the positive electrode mixture, to make and use the positive electrode mixture of granules to improve the fluidity to uniform the filling density and improve the physical strength It became.

이에 따라, 제조 공정중이나 전지 제조후 양극판의 합제 탈리 현상을 방지하여 전지 내부단락의 위험요소를 줄임과 동시에, 극판의 연속제조 공정이 가능하게 됨으로써 전지의 제조원가도 절감할 수 있게 되었다.









Accordingly, by preventing the desorption of the mixture of the positive electrode plate during the manufacturing process or after the battery manufacturing, the risk factor of the internal short circuit of the battery can be reduced, and the continuous manufacturing process of the electrode plate can be performed, thereby reducing the manufacturing cost of the battery.









Claims (4)

전지 양극의 제조방법에 있어서,In the manufacturing method of a battery positive electrode, 카본재를 이소프로필 알콜/물 혼합용액과 함께 교반한 후, 여기에 바인더(binder)를 첨가하여 다시 교반함으로써 양극합제 페이스트를 제조하는 페이스트 제조단계;A paste preparation step of preparing a positive electrode mixture paste by stirring the carbon material together with the isopropyl alcohol / water mixture solution and then adding a binder to the carbon material and stirring the mixture again; 양극합제 페이스트를 건조한 다음 분쇄하여 양극합제 미분말을 제조하는 미분말 제조단계;A fine powder preparation step of preparing a fine powder for a positive electrode mixture by drying and grinding the positive electrode mixture paste; 미분말에 가소제 용액을 넣고 고속믹서에서 회전시켜 양극합제 과립을 제조하는 과립 제조단계;A granulation manufacturing step of preparing a positive electrode mixture granules by putting a plasticizer solution in fine powder and rotating in a high speed mixer; 롤러를 이용하여 양극기재의 양면에 양극합제 과립을 압연하여 코팅하는 코팅단계;A coating step of rolling and coating the positive electrode mixture granules on both sides of the positive electrode base material using a roller; 증류수를 이용하여 코팅된 양극합제로부터 폴리에틸렌글리콜를 침출시키는 침출단계; 및A leaching step of leaching polyethylene glycol from the coated positive electrode mixture using distilled water; And 양극판을 건조 및 재압연하여 최종적인 극판을 제조하는 최종극판제조단계로 이루어짐을 특징으로 하는,Characterized in that the final electrode plate manufacturing step of producing a final electrode plate by drying and re-rolling the positive electrode plate, 전지 양극의 제조방법.Method for producing a battery positive electrode. 제 1항에 있어서,The method of claim 1, 코팅단계에서, 압연은 롤러를 사용하여 연속적으로 수행됨을 특징으로 하는,In the coating step, rolling is carried out continuously using a roller, 전지 양극의 제조방법.Method for producing a battery positive electrode. 제 1항에 있어서,The method of claim 1, 가소제는 폴리에틸렌글리콜임을 특징으로 하는,Characterized in that the plasticizer is polyethylene glycol, 전지 양극의 제조방법.Method for producing a battery positive electrode. 제 3항에 있어서,The method of claim 3, wherein 폴리에틸렌글리콜은 양극합제 전체조성 100중량%에 대해 0.05∼250중량%의 양으로 첨가됨을 특징으로 하는,Polyethylene glycol is added in an amount of 0.05 to 250% by weight based on 100% by weight of the total composition of the positive electrode mixture, 전지 양극의 제조방법.Method for producing a battery positive electrode.
KR1020000075176A 2000-12-11 2000-12-11 Producing Method for Positive Electrode of Battery KR100666167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000075176A KR100666167B1 (en) 2000-12-11 2000-12-11 Producing Method for Positive Electrode of Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000075176A KR100666167B1 (en) 2000-12-11 2000-12-11 Producing Method for Positive Electrode of Battery

Publications (2)

Publication Number Publication Date
KR20020045780A KR20020045780A (en) 2002-06-20
KR100666167B1 true KR100666167B1 (en) 2007-01-09

Family

ID=27680888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000075176A KR100666167B1 (en) 2000-12-11 2000-12-11 Producing Method for Positive Electrode of Battery

Country Status (1)

Country Link
KR (1) KR100666167B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410467A (en) * 2021-07-02 2021-09-17 上海兰钧新能源科技有限公司 Method for manufacturing anode slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223833A (en) * 1993-01-21 1994-08-12 Fuji Photo Film Co Ltd Chemical battery
JPH06287915A (en) * 1993-03-31 1994-10-11 Ohbayashi Corp Formwork block
JPH06325766A (en) * 1993-05-11 1994-11-25 Fuji Photo Film Co Ltd Chemical cell
KR20000048387A (en) * 1998-12-28 2000-07-25 나카노 가스히코 Binder composition for lithium ion secondary cell electrode and use of it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223833A (en) * 1993-01-21 1994-08-12 Fuji Photo Film Co Ltd Chemical battery
JPH06287915A (en) * 1993-03-31 1994-10-11 Ohbayashi Corp Formwork block
JPH06325766A (en) * 1993-05-11 1994-11-25 Fuji Photo Film Co Ltd Chemical cell
KR20000048387A (en) * 1998-12-28 2000-07-25 나카노 가스히코 Binder composition for lithium ion secondary cell electrode and use of it

Also Published As

Publication number Publication date
KR20020045780A (en) 2002-06-20

Similar Documents

Publication Publication Date Title
CN106340651B (en) A kind of secondary cell and preparation method thereof
CN106229495B (en) A kind of silicon based anode material and preparation method thereof of conducting polymer cladding
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
CN114725341B (en) Positive electrode active material, electrochemical device, and electronic device
JPH07201364A (en) Electrochemical secondary battery
CN114613954A (en) Positive electrode active material, electrochemical device, and electronic device
JPH09120813A (en) Nonaqueous electrolyte secondary battery
US2811572A (en) Method for making silver peroxide electrodes
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
KR100666167B1 (en) Producing Method for Positive Electrode of Battery
CN115548270A (en) Processing method of positive pole piece of solid-state lithium battery and lithium battery
KR100322922B1 (en) Alkaline accumulators in the form of gas-sealed button cells
KR100663180B1 (en) Anode active material for lithium secondary battery having high energy density
KR101190548B1 (en) Preparation method of cathode electrode for lithium secondary battery and lithium secondary battery comprising the electrode
CN115425276A (en) Solid-state battery, preparation method and electric equipment
CN114261995A (en) Positive active material and preparation method and application thereof
KR100666168B1 (en) Method for Producing the Positive Electrode of Lithium Primary Cell
KR100382103B1 (en) Lithium ion polymer battery coated with composite solvent
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
CN112599843B (en) Sandwich structure hybrid electrolyte, preparation method and application thereof, and solid-state lithium battery
CN220553478U (en) Quick-charging lithium ion battery
JP2000182611A (en) Alkaline storage battery and its manufacture
JP4121260B2 (en) Method for producing flat battery electrode
KR100751634B1 (en) Anode material for secondary battery and secondary batteries using the same
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee