JP3243239B2 - Method for producing positive electrode for non-aqueous secondary battery - Google Patents

Method for producing positive electrode for non-aqueous secondary battery

Info

Publication number
JP3243239B2
JP3243239B2 JP32108899A JP32108899A JP3243239B2 JP 3243239 B2 JP3243239 B2 JP 3243239B2 JP 32108899 A JP32108899 A JP 32108899A JP 32108899 A JP32108899 A JP 32108899A JP 3243239 B2 JP3243239 B2 JP 3243239B2
Authority
JP
Japan
Prior art keywords
positive electrode
sintered body
secondary battery
transition metal
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32108899A
Other languages
Japanese (ja)
Other versions
JP2001143687A (en
Inventor
嘉夫 梶浦
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP32108899A priority Critical patent/JP3243239B2/en
Publication of JP2001143687A publication Critical patent/JP2001143687A/en
Application granted granted Critical
Publication of JP3243239B2 publication Critical patent/JP3243239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で優れたサ
イクル特性を与える非水系二次電池用正極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode for a non-aqueous secondary battery which provides high capacity and excellent cycle characteristics.

【0002】[0002]

【従来の技術】携帯電話やノ−トパソコン等の普及に伴
って、高エネルギー密度の期待できるリチウム二次電池
が注目され、その中でも特に省スペ−スな薄型の角型電
池の需要が高まっている。
2. Description of the Related Art With the spread of portable telephones, notebook personal computers, and the like, attention has been paid to lithium secondary batteries that can be expected to have a high energy density. I have.

【0003】しかし、電極中には、バインダー、導電材
といった本来電極の容量に寄与しないものが含まれてい
るため、体積当たりの電池容量を制限するという問題が
有る。
[0003] However, since electrodes that do not originally contribute to the capacity of the electrodes, such as binders and conductive materials, are included in the electrodes, there is a problem that the battery capacity per volume is limited.

【0004】そこで、単位体積当たりの容量を増大させ
る一つの手段として、電極を実質的に活物質からなる焼
結体で構成する試みがなされている。電極を活物質から
なる焼結体で構成すると、バインダを含まず、さらに導
電材を不用又は少量に減らすことができるため、活物質
の充填密度を高くすることができ、単位体積当たりの容
量を増大させることができる。例えば、特開平8−18
0904号公報にはリチウム遷移金属酸化物の焼結体か
らなる正極が開示されている。それによれば、リチウム
遷移金属酸化物の粉末あるいはその原料粉末を金型を用
いてプレス成型し、その成型体を酸素存在下で、所定温
度で焼成することにより焼結体が得られている。しか
し、この焼結体は、導電性が不十分であり、正極として
の性能は満足できるものではない。
Therefore, as one means for increasing the capacity per unit volume, an attempt has been made to form the electrode from a sintered body substantially made of an active material. When the electrode is formed of a sintered body made of an active material, it does not include a binder and can further reduce or eliminate the conductive material, so that the packing density of the active material can be increased, and the capacity per unit volume can be reduced. Can be increased. For example, JP-A-8-18
No. 0904 discloses a positive electrode made of a sintered body of a lithium transition metal oxide. According to this, a sintered body is obtained by press-molding a lithium transition metal oxide powder or a raw material powder thereof using a mold, and firing the molded body at a predetermined temperature in the presence of oxygen. However, this sintered body has insufficient conductivity, and the performance as a positive electrode is not satisfactory.

【0005】[0005]

【発明が解決しようとする課題】リチウム二次電池の薄
型化のためには、厚みの大部分を占める正極及び負極の
厚さを低減することが有効である。焼結体からなる正極
の厚さを低減しようとすると、所定容量を確保するた
め、焼結体の面積を大きくする必要がある。しかしなが
ら、プレス成型法を用いた場合、焼結体の面積を大きく
するため、金型の面積を大きくすると、金型内にリチウ
ム遷移金属酸化物の粉末あるいはその原料粉末を均一に
充填することが困難になり、成型体の厚さや密度が不均
一となる。そのため、焼結反応が成型体内部で均一に進
行せず、焼結体の密度に分布が生じ、このような焼結体
を電極として電池に用いると、電池容量やサイクル特性
が低下するという問題があった。また、焼結が不十分な
領域があると、その領域では焼結体を構成する一次粒子
間の結着力が低下して焼結体の機械強度が低下し、充放
電中に電極の崩壊が起き易くなり、電池容量やサイクル
特性が低下するという問題があった。
In order to reduce the thickness of a lithium secondary battery, it is effective to reduce the thicknesses of the positive electrode and the negative electrode, which occupy most of the thickness. To reduce the thickness of the positive electrode made of a sintered body, it is necessary to increase the area of the sintered body in order to secure a predetermined capacity. However, when the press molding method is used, when the area of the mold is increased to increase the area of the sintered body, it is possible to uniformly fill the lithium transition metal oxide powder or the raw material powder in the mold. It becomes difficult, and the thickness and density of the molded body become uneven. As a result, the sintering reaction does not proceed uniformly inside the molded body, and the density of the sintered body is distributed. When such a sintered body is used as an electrode in a battery, the battery capacity and cycle characteristics are reduced. was there. In addition, when there is a region where sintering is insufficient, the binding force between the primary particles constituting the sintered body is reduced in that region, the mechanical strength of the sintered body is reduced, and the collapse of the electrode during charging and discharging is caused. There is a problem that the battery capacity and cycle characteristics are easily deteriorated.

【0006】そこで、本発明は、上記問題を解決し、よ
り大面積で、高容量と優れたサイクル特性を与える非水
系二次電池用正極を提供することを課題とした。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a positive electrode for a non-aqueous secondary battery which has a larger area, a high capacity and excellent cycle characteristics.

【0007】[0007]

【課題を解決するための手段】本発明者らは、成型体の
代りに塗膜を用いることにより、大面積であっても正極
に用いる焼結体の厚さや密度をより均一にすることがで
き、また、導電率が焼結体を構成する一次粒子間の結着
力を示す指標となりうることを見出し、導電率の高い焼
結体を用いることにより、十分な機械強度が得られるこ
とを見出して、本発明を完成させたものである。
Means for Solving the Problems The present inventors have made it possible to make the thickness and density of a sintered body used for a positive electrode more uniform even in a large area by using a coating film instead of a molded body. And that the electrical conductivity can be an index indicating the binding force between the primary particles constituting the sintered body, and that a sufficient mechanical strength can be obtained by using a sintered body having a high electrical conductivity. Thus, the present invention has been completed.

【0008】[0008]

【0009】すなわち、本発明の正極の製造方法は、リ
チウム遷移金属酸化物からなる多孔質の焼結体であっ
て、空孔率が15〜60%、かつ、導電率が1mS/c
m以上である非水系二次電池用正極の製造方法であっ
て、a)リチウム遷移金属酸化物粉末からなる正極材料
に、溶剤と、ウレタン樹脂、フェノール樹脂、エポキシ
樹脂、ポリエチレン、ポリプロピレン、ポリビニルアル
コール、ポリビニルブチラール、及びフッ化ビニリデ
ン、フッ化エチレン、エチレンオキサイド、プロピレン
オキサイドの単独又は共重合体から選択された少なくと
も1種のバインダーとを加えて塗液を調製する工程と、
b)上記塗液を基材上に塗布し、溶剤を除去して塗膜を
調製する工程と、c)上記塗膜を大気雰囲気下で焼成し
て、正極材料を焼結させる工程とを含むことを特徴とす
る。
That is, the method for producing a positive electrode according to the present invention is a porous sintered body made of a lithium transition metal oxide, having a porosity of 15 to 60% and a conductivity of 1 mS / c.
A method for producing a positive electrode for a non-aqueous secondary battery having a capacity of at least m, comprising: a) a positive electrode material comprising a lithium transition metal oxide powder, a solvent and a urethane resin, a phenol resin, an epoxy resin, polyethylene, polypropylene, polyvinyl alcohol; , Polyvinyl butyral, and vinylidene fluoride, ethylene fluoride, ethylene oxide, a step of preparing a coating solution by adding at least one binder selected from homopolymers or copolymers of propylene oxide,
b) a step of applying the coating liquid on a substrate and removing a solvent to prepare a coating film; and c) a step of firing the coating film in an air atmosphere to sinter the positive electrode material. It is characterized by the following.

【0010】本発明の製造方法によれば、リチウム遷移
金属酸化物粉末からなる正極材料を含む塗膜を形成する
ことにより、大面積であってもリチウム遷移金属酸化物
粉末を塗膜中に均一に分散保持することができる。その
ため、プレス成型法による成型体を用いる場合に比べ、
焼結体の厚さや密度をより均一にすることができる。プ
レス成型法では、粉末粒子が成型時に不均一に充填され
易く、その場合、焼結は粒子が密に充填している所で速
く進行するため、その密に充填している部分が早く収縮
し粒子成長も早く、厚さや密度が不均一となる。また、
本発明の正極は、実質的に活物質のみからなるため、焼
結体を構成する一次粒子間の結着力が導電性に反映す
る。そのため、0.1mS/cm以上の導電率を有する
焼結体は一次粒子間の結着力が強く、充放電により体積
が膨張・収縮しても、一次粒子の脱落や電極の崩壊を起
こすことがない。
[0010] According to the production method of the present invention, by forming a coating film containing a cathode material composed of lithium transition metal oxide powder, the lithium transition metal oxide powder can be uniformly dispersed in the coating film even in a large area. Can be dispersedly maintained. Therefore, compared with the case of using a molded body by the press molding method,
The thickness and density of the sintered body can be made more uniform. In the press molding method, powder particles are likely to be non-uniformly filled at the time of molding, and in this case, sintering proceeds quickly where the particles are densely packed, so that the densely packed portion shrinks quickly. The grains grow fast, and the thickness and density become uneven. Also,
Since the positive electrode of the present invention is substantially composed of only the active material, the binding force between the primary particles constituting the sintered body reflects on the conductivity. Therefore, a sintered body having a conductivity of 0.1 mS / cm or more has a strong binding force between primary particles, and even if the volume expands or contracts due to charge and discharge, the primary particles may fall off or the electrodes may collapse. Absent.

【0011】また、本発明では、塗膜中に所定量の空孔
形成剤を存在させて焼成することもできる。空孔形成剤
を、大気雰囲気で、加熱処理により酸化・分解すること
により、イオンの通り道として有効な連通孔を形成でき
るため、イオンの濃度分極を抑制できる。
In the present invention, baking can be carried out in the presence of a predetermined amount of a pore-forming agent in the coating film. By oxidizing and decomposing the pore-forming agent by a heat treatment in an air atmosphere, a communication hole effective as a path for ions can be formed, so that the concentration polarization of ions can be suppressed.

【0012】[0012]

【発明の実施の形態】本発明の正極は、リチウム二次電
池に好適に用いることができる。以下、リチウム二次電
池についての実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode of the present invention can be suitably used for a lithium secondary battery. Hereinafter, embodiments of the lithium secondary battery will be described.

【0013】本発明の正極に用いるリチウム遷移金属酸
化物は、公知の何れの材料も用いることができるが、L
xCoO2,LixNiO2,LixMnO2,LixMn2
4,LixMn2-y4等を用いることが好ましい。原料
となるリチウム及び遷移金属の化合物としては、それぞ
れの水酸化物、酸化物、硝酸塩及び炭酸塩が挙げられ
る。
As the lithium transition metal oxide used for the positive electrode of the present invention, any known material can be used.
i x CoO 2, Li x NiO 2, Li x MnO 2, Li x Mn 2
It is preferable to use O 4 , Li x Mn 2-y O 4, or the like. Examples of the compound of lithium and the transition metal as the raw materials include respective hydroxides, oxides, nitrates and carbonates.

【0014】リチウム遷移金属酸化物の焼結体は、以下
の方法で調製できる。すなわち、リチウム遷移金属酸化
物の粉末あるいはリチウム遷移金属酸化物の原料粉末を
バインダーとともに溶媒中に分散して塗液を調製し、こ
の塗液を基材に塗布し、溶剤を除去した後、大気雰囲気
で焼成して焼結させる。ここで、溶剤を除去した後、塗
膜を基材から剥離してから大気雰囲気で焼成した方が、
焼成時に塗膜が歪んで反ることがないので好ましい。基
材としては、有機ポリマーのフィルム又はシート、金属
の箔や板が挙げられるが、有機ポリマーのフィルムが好
ましい。また、大面積であっても均一な焼結体が得られ
るという本発明の特徴を発揮させる観点から、焼結体は
好ましくは20mm×20mm以上で、特に好ましくは
20mm×40mm以上である。
The sintered body of the lithium transition metal oxide can be prepared by the following method. That is, a coating liquid is prepared by dispersing a lithium transition metal oxide powder or a raw material powder of a lithium transition metal oxide together with a binder in a solvent, applying the coating liquid to a substrate, removing the solvent, and then removing the solvent. It is fired and sintered in an atmosphere. Here, after removing the solvent, it is better to bake in the air atmosphere after peeling the coating film from the substrate,
This is preferable because the coating film does not warp and warp during firing. Examples of the substrate include an organic polymer film or sheet and a metal foil or plate, and an organic polymer film is preferable. Further, the sintered body is preferably at least 20 mm × 20 mm, particularly preferably at least 20 mm × 40 mm, from the viewpoint of exhibiting the feature of the present invention that a uniform sintered body can be obtained even in a large area.

【0015】ここで、焼成温度は、バインダーが完全に
酸化・分解する温度で、700〜1100℃、好ましく
は800〜1000℃で、焼成時間は0.1〜100時
間、好ましくは1〜50時間である。
Here, the firing temperature is a temperature at which the binder is completely oxidized and decomposed, and is 700 to 1100 ° C., preferably 800 to 1000 ° C., and the firing time is 0.1 to 100 hours, preferably 1 to 50 hours. It is.

【0016】また、バインダーとしては、ウレタン樹
脂、フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂、
ポリエチレン、ポリプロピレン等の熱可塑性樹脂もしく
はエラストマー、さらにフッ化ビニリデン、フッ化エチ
レン、アクリロニトリル、エチレンオキサイド、プロピ
レンオキサイド、メタクリル酸メチル、ポリビニルアル
コール、ポリビニルブチラール等の単独又は共重合体を
用いることができる。
As the binder, a thermosetting resin such as a urethane resin, a phenol resin, and an epoxy resin;
Thermoplastic resins or elastomers such as polyethylene and polypropylene, and homo- or copolymers such as vinylidene fluoride, ethylene fluoride, acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, polyvinyl alcohol, and polyvinyl butyral can be used.

【0017】また、イオンの通り道として有効な連通孔
を形成するために、空孔形成剤を用いることもできる。
空孔形成剤としては、塗液調製時の溶剤に不溶の材料で
あって、大気雰囲気下、少なくとも、バインダーの熱分
解温度と同等の温度で完全に酸化・分解する材料、例え
ば、ナイロン、アクリル、アセテート、ポリエステルな
どの有機短繊維(直径0.1〜100μm)又は直径
0.1〜100μmのポリメチルメタクリレート(PM
MA)等の有機ポリマー粒子を用いることができる。
In order to form a communication hole effective as an ion passage, a pore forming agent may be used.
As the pore-forming agent, a material that is insoluble in the solvent at the time of preparing the coating liquid and that completely oxidizes and decomposes at least in the air atmosphere at a temperature equivalent to the thermal decomposition temperature of the binder, for example, nylon, acrylic , Acetate, polyester or other organic short fibers (0.1 to 100 μm in diameter) or polymethyl methacrylate (PM having a diameter of 0.1 to 100 μm)
Organic polymer particles such as MA) can be used.

【0018】また、得られる正極の空孔率は、好ましく
は15〜60%であり、より好ましくは30〜50%で
ある。0.1mS/cm以上の導電率及び正極材料の充
填密度を確保しながら、電解液の浸透性を一層向上さ
せ、イオンの濃度分極を抑制できる。ここで言う空孔率
は開気孔率であり、以下に述べるアルキメデス法により
測定したものである。アルキメデス法:元のサンプル重
量をW1、水中で減圧又は煮沸し、気孔中の空気を追い
出し、冷却し水中で測定した重量をW2、水中から取り
出し、表面だけ拭って水滴を取って測定した重量をW3
とすると、 で求められる。
Further, the porosity of the obtained positive electrode is preferably 15 to 60%, more preferably 30 to 50%. While ensuring a conductivity of 0.1 mS / cm or more and a packing density of the positive electrode material, it is possible to further improve the permeability of the electrolytic solution and suppress the concentration polarization of ions. The porosity referred to here is an open porosity, which is measured by the Archimedes method described below. Archimedean method: the original sample weight W 1, under reduced pressure or boiled in water, expelling air in the pores, the cooled weight measured in water W 2, taken out of water was measured by taking a drop of water wiped by the surface Weight W 3
Then Is required.

【0019】また、正極に用いる焼結体の導電率は、好
ましくは0.1mS/cm以上、より好ましくは1mS
/cm以上である。焼結体を構成する一次粒子間の結着
力がより強固になり、電極の機械強度がより向上する。
The conductivity of the sintered body used for the positive electrode is preferably 0.1 mS / cm or more, more preferably 1 mS / cm.
/ Cm or more. The binding force between the primary particles constituting the sintered body becomes stronger, and the mechanical strength of the electrode is further improved.

【0020】また、本発明の正極は、以下に述べる負極
活物質や非水電解質を用いて非水系二次電池を構成する
ことができる。負極活物質としては、リチウムイオン二
次電池の負極活物質として公知の何れの材料も使用で
き、例えば、天然黒鉛、コークスやガラス状炭素等の炭
素材料、ケイ素、金属リチウム、及びアルミニウム等の
金属リチウムと合金を形成可能な金属等を挙げることが
できる
The positive electrode of the present invention can constitute a non-aqueous secondary battery using the following negative electrode active material and non-aqueous electrolyte. As the negative electrode active material, any material known as a negative electrode active material for a lithium ion secondary battery can be used. For example, natural graphite, carbon materials such as coke and glassy carbon, silicon, metal lithium, and metals such as aluminum Metals capable of forming an alloy with lithium can be given.

【0021】また、非水電解質としては、エチレンカー
ボネート、ジメチルカーボネート等の有機溶媒に電解質
としてLiPF6等のリチウム化合物を溶解させた非水
電解液、又は高分子にリチウム化合物を固溶或いはリチ
ウム化合物を溶解させた有機溶媒を保持させた高分子固
体電解質を用いることができる。
The non-aqueous electrolyte may be a non-aqueous electrolyte obtained by dissolving a lithium compound such as LiPF 6 as an electrolyte in an organic solvent such as ethylene carbonate or dimethyl carbonate, or a solid solution of a lithium compound in a polymer or a lithium compound. A solid polymer electrolyte holding an organic solvent in which is dissolved can be used.

【0022】[0022]

【実施例】実施例1.正極の形成は、以下の方法で行な
った。すなわち、LiCoO260重量部に対し、バイ
ンダーとしてポリビニルブチラール樹脂(積水化学社製
BM−S)3.4重量部、可塑剤としてジオクチルアジ
ペート0.85重量部、トルエン/1−ブチルアルコー
ル=4/1(体積比)混合溶媒28重量部を混合し、ボ
ールミルで24時間混練した。この塗液をシリコーン処
理した厚さ50μmのポリエステルフィルムに塗布し、
80℃で20分乾燥して縦300×横150mmの塗膜
を得た。この塗膜を縦20×横40mmに裁断し、ポリ
エステルフィルムから剥離して、大気雰囲気下900℃
で10時間焼成を行い、厚さ300μm±3%、空孔率
41%のLiCoO2の焼結体からなる正極を得た。焼
成前後の収縮率{=1−(焼成後の縦の長さ/焼成前の
縦の長さ)}は、約7%であった。この正極の導電率
を、以下に述べる方法で測定したところ、13mS/c
mであった。
[Embodiment 1] The positive electrode was formed by the following method. That is, with respect to 60 parts by weight of LiCoO 2 , 3.4 parts by weight of polyvinyl butyral resin (BM-S manufactured by Sekisui Chemical Co., Ltd.), 0.85 part by weight of dioctyl adipate as a plasticizer, and toluene / 1-butyl alcohol = 4/60 parts by weight. 1 (volume ratio) 28 parts by weight of a mixed solvent were mixed and kneaded in a ball mill for 24 hours. This coating liquid is applied to a silicone-treated polyester film having a thickness of 50 μm,
After drying at 80 ° C. for 20 minutes, a coating film having a length of 300 × 150 mm was obtained. This coating film was cut into a length of 20 × width 40 mm, peeled from the polyester film, and heated to 900 ° C. in the atmosphere.
For 10 hours to obtain a positive electrode made of a LiCoO 2 sintered body having a thickness of 300 μm ± 3% and a porosity of 41%. The shrinkage ratio before and after firing {= 1− (vertical length after firing / vertical length before firing)} was about 7%. When the conductivity of the positive electrode was measured by the method described below, it was 13 mS / c.
m.

【0023】焼結体の導電率は、4端子法で測定した。
すなわち、焼結体上に4本の端子を平行に所定間隔離間
させて接続し、外側の2本を電流供給用の端子とし、内
側の2本を電圧検出用の端子とし、それぞれ、電流源と
電圧計に接続した。電流Iを−1mA〜+1mAの範囲
で掃引し、電圧Vを測定し、抵抗Rを求め、次式によ
り、導電率σを算出した。 σ=(R×A/1)-1 但し、lは2本の電圧検出用端子間の距離、Aは電流の
方向と垂直な面で切った焼結体の断面積である。
The conductivity of the sintered body was measured by a four-terminal method.
That is, four terminals are connected in parallel at predetermined intervals on the sintered body, two outer terminals are used as terminals for supplying current, and two inner terminals are used as terminals for detecting voltage. And connected to the voltmeter. The current I was swept in the range of -1 mA to +1 mA, the voltage V was measured, the resistance R was obtained, and the conductivity σ was calculated by the following equation. σ = (R × A / 1) -1 where l is the distance between the two voltage detection terminals, and A is the cross-sectional area of the sintered body cut along a plane perpendicular to the current direction.

【0024】次に、負極の形成は、以下の方法により行
なった。高純度化学(株)製の純度99.9%、粒径約
1μmの結晶質ケイ素粉末90重量部と、ポリフッ化ビ
ニリデンのn―メチル−2−ピロリドン溶液(14wt
%)70重量部を混合し、均一な塗液とした。この塗液
を集電体の銅箔上に塗布後、80℃で20分乾燥した
後、20×40mmに打ち抜き、この塗膜を窒素雰囲気
下800℃で3時間焼成し、集電体と一体化した負極と
した。
Next, the negative electrode was formed by the following method. 90 parts by weight of crystalline silicon powder having a purity of 99.9% and a particle size of about 1 μm manufactured by Kojundo Chemical Co., Ltd., and an n-methyl-2-pyrrolidone solution of polyvinylidene fluoride (14 wt.
%) Of 70 parts by weight to obtain a uniform coating liquid. This coating solution is applied on a copper foil of a current collector, dried at 80 ° C. for 20 minutes, punched out to a size of 20 × 40 mm, and baked at 800 ° C. for 3 hours in a nitrogen atmosphere to be integrated with the current collector. A negative electrode was obtained.

【0025】電解液はプロピレンカーボネートとジメチ
ルカーボネートの体積比1:1混合溶媒に六フッ化リン
酸リチウムを1mol/L溶解したものを用いた。上記
の正極と負極とを、ポリエチレン多孔膜からなるセパレ
ータを介して積層し、電池缶に収容後、上記電解液を注
入して密封して電池セルを作製した。
As the electrolytic solution, a solution prepared by dissolving 1 mol / L of lithium hexafluorophosphate in a mixed solvent of propylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 was used. The positive electrode and the negative electrode were laminated via a separator made of a porous polyethylene film, housed in a battery can, and then injected with the electrolytic solution and sealed to produce a battery cell.

【0026】この電池セルを室温で一昼夜放置した後、
充放電試験を行ったところ、この電池セルの1サイクル
目の放電容量は55mAhで、50サイクル目の容量保
持率{=(50サイクル目の放電容量/1サイクル目の
放電容量)×100}は90%であった。
After leaving the battery cell at room temperature for 24 hours,
When a charge / discharge test was performed, the discharge capacity at the first cycle of this battery cell was 55 mAh, and the capacity retention at the 50th cycle {= (discharge capacity at the 50th cycle / discharge capacity at the first cycle) × 100} was as follows. 90%.

【0027】実施例2.実施例1の塗液に空孔形成剤と
して直径5μmの球状ポリメチルメタクリレート3重量
部を添加した以外は、実施例1と同様の方法により正極
を調製し、空孔率43%のLiCoO2の焼結体からな
る正極を得た。これを正極とし、実施例1と同様の方法
により電池セルを構成し、充放電試験を行なった。
Embodiment 2 FIG. A positive electrode was prepared in the same manner as in Example 1 except that 3 parts by weight of spherical polymethyl methacrylate having a diameter of 5 μm was added as a pore-forming agent to the coating solution of Example 1, and LiCoO 2 having a porosity of 43% was prepared. A positive electrode made of a sintered body was obtained. Using this as a positive electrode, a battery cell was constructed in the same manner as in Example 1, and a charge / discharge test was performed.

【0028】LiCoO2の焼結体の焼成前後の収縮率
は約7%、導電率は5mS/cmであった。さらに、こ
の電池セルの1サイクル目の放電容量は60mAh、5
0サイクル目の容量保持率は90%であった。
The shrinkage ratio of the sintered body of LiCoO 2 before and after firing was about 7%, and the conductivity was 5 mS / cm. Further, the discharge capacity of the battery cell in the first cycle is 60 mAh, 5
The capacity retention at the 0th cycle was 90%.

【0029】比較例1.実施例1において、大気雰囲気
下900℃で3時間焼成して、厚さ300μm±3%、
空孔率43%のLiCoO2の焼結体を作製し、これを
正極とした以外は実施例と同様にして電池セルを構成
し、充放電試験を行った。この焼結体の焼成前後の収縮
率は約2%、導電率は0.04mS/cmであった。さ
らに、この電池セルの1サイクル目の放電容量は60m
Ah、50サイクル目の容量保持率は10%であった。
Comparative Example 1 In Example 1, firing was performed at 900 ° C. for 3 hours in an air atmosphere to obtain a thickness of 300 μm ± 3%,
A battery cell was formed in the same manner as in the example except that a sintered body of LiCoO 2 having a porosity of 43% was used as a positive electrode, and a charge / discharge test was performed. The shrinkage of this sintered body before and after firing was about 2%, and the electrical conductivity was 0.04 mS / cm. Further, the discharge capacity in the first cycle of this battery cell is 60 m.
Ah, the capacity retention at the 50th cycle was 10%.

【0030】比較例2.LiCoO2粉末100重量部
に対し、成型助剤としてポリエチレン粉末10重量部を
添加し、金型に充填してプレスし、縦20×横40mm
の成型体を調製しようとしたが、粉末を均一に充填でき
ず、成型体が調製できなかった。
Comparative Example 2 To 100 parts by weight of LiCoO 2 powder, 10 parts by weight of polyethylene powder was added as a molding aid, and the mixture was filled in a mold and pressed, and the length was 20 × 40 mm in width.
An attempt was made to prepare a molded body, but the powder could not be uniformly filled, and the molded body could not be prepared.

【0031】以上の結果より、導電率の高い焼結体ほ
ど、焼成前後の収縮率が大きいことから、焼結体を構成
する一次粒子間の結着がより進行し、一次粒子間の結着
力が高まっていることがわかる。また、導電率の高い焼
結体ほど、容量保持率が高い結果が得られた。これは、
充放電に伴い電極が膨張・収縮を繰り返しても、一次粒
子間の高い結着力により、一次粒子の脱落や電極の崩壊
が抑制されたものと考えられる。しかも、焼結体を用い
ているため、活物質の充填密度が高く、単位体積当りの
容量が高い。
From the above results, since the higher the conductivity of the sintered body, the higher the shrinkage ratio before and after firing, the binding between the primary particles constituting the sintered body progresses further, and the binding force between the primary particles increases. It can be seen that is increasing. Moreover, the result that the sintered body with a higher electric conductivity had a higher capacity retention was obtained. this is,
It is considered that even if the electrode repeatedly expands and contracts due to charge and discharge, the high binding force between the primary particles suppressed the falling off of the primary particles and the collapse of the electrodes. Moreover, since a sintered body is used, the packing density of the active material is high, and the capacity per unit volume is high.

【0032】[0032]

【発明の効果】以上、述べたように、本発明の正極は、
リチウム遷移金属酸化物からなる多孔質の焼結体であっ
て、空孔率が15〜60%、かつ、導電率が0.1mS
/cm以上であるので、電池の内部抵抗を低減でき、高
容量でサイクル特性に優れた非水系二次電池を提供でき
る。
As described above, as described above, the positive electrode of the present invention
A porous sintered body made of a lithium transition metal oxide, having a porosity of 15 to 60% and a conductivity of 0.1 mS
/ Cm or more, the internal resistance of the battery can be reduced, and a non-aqueous secondary battery having high capacity and excellent cycle characteristics can be provided.

【0033】また、本発明の製造方法は、リチウム遷移
金属酸化物からなる正極材料を含む塗膜を焼成して焼結
体を形成するようにしたので、厚さや密度の均一な正極
を形成でき、サイクル特性に優れるとともに、高容量を
与え、より大面積の正極を提供できる。
Further, in the manufacturing method of the present invention, since the coating containing the positive electrode material made of lithium transition metal oxide is baked to form a sintered body, a positive electrode having a uniform thickness and density can be formed. In addition, it is possible to provide a positive electrode having an excellent cycle characteristic, a high capacity, and a larger area.

【0034】また、本発明の製造方法は、空孔形成剤を
含む塗膜を焼成するようにしたので、イオンの濃度分極
を抑制できるため、電池の内部抵抗を低減できる。
In the manufacturing method of the present invention, since the coating film containing the pore-forming agent is baked, the concentration polarization of ions can be suppressed, and the internal resistance of the battery can be reduced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−82464(JP,A) 特開2000−12024(JP,A) 特開2000−11994(JP,A) 特開2000−11993(JP,A) 特開 平11−31498(JP,A) 特開 平11−31534(JP,A) 特開 平8−180904(JP,A) 特開 平9−120813(JP,A) 特開 昭60−133656(JP,A) 特開 昭61−171071(JP,A) 国際公開98/28804(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2000-82464 (JP, A) JP-A-2000-1224 (JP, A) JP-A-2000-11994 (JP, A) JP-A-2000-11993 (JP, A A) JP-A-11-31498 (JP, A) JP-A-11-31534 (JP, A) JP-A-8-180904 (JP, A) JP-A 9-120813 (JP, A) JP-A-60 -133656 (JP, A) JP-A-61-171071 (JP, A) WO 98/28804 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4 / 04 H01M 4/58 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム遷移金属酸化物からなる多孔質
の焼結体であって、空孔率が15〜60%、かつ、導電
率が1mS/cm以上である非水系二次電池用正極の製
造方法であって、 a)リチウム遷移金属酸化物粉末からなる正極材料に、
溶剤と、ウレタン樹脂、フェノール樹脂、エポキシ樹
脂、ポリエチレン、ポリプロピレン、ポリビニルアルコ
ール、ポリビニルブチラール、及びフッ化ビニリデン、
フッ化エチレン、エチレンオキサイド、プロピレンオキ
サイドの単独又は共重合体から選択された少なくとも1
種のバインダーとを加えて塗液を調製する工程と、 b)上記塗液を基材上に塗布し、溶剤を除去して塗膜を
調製する工程と、 c)上記塗膜を大気雰囲気下で焼成して、正極材料を焼
結させる工程とを含む非水系二次電池用正極の製造方
法。
1. A positive electrode for a non-aqueous secondary battery, comprising a porous sintered body made of a lithium transition metal oxide, having a porosity of 15 to 60% and a conductivity of 1 mS / cm or more. A method for producing, comprising: a) a positive electrode material comprising a lithium transition metal oxide powder;
With a solvent, urethane resin, phenol resin, epoxy resin, polyethylene, polypropylene, polyvinyl alcohol, polyvinyl butyral, and vinylidene fluoride,
At least one selected from homo- or copolymers of fluorinated ethylene, ethylene oxide, and propylene oxide
A step of preparing a coating liquid by adding a kind of binder; b) a step of applying the coating liquid on a substrate and removing a solvent to prepare a coating film; And sintering the positive electrode material to obtain a positive electrode for a non-aqueous secondary battery.
【請求項2】 上記塗液を調製する工程において、熱分
解して空孔を付与する空孔形成剤を加える請求項1記載
の製造方法。
2. The method according to claim 1, wherein, in the step of preparing the coating liquid, a pore-forming agent which gives a pore by being thermally decomposed is added.
JP32108899A 1999-11-11 1999-11-11 Method for producing positive electrode for non-aqueous secondary battery Expired - Fee Related JP3243239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32108899A JP3243239B2 (en) 1999-11-11 1999-11-11 Method for producing positive electrode for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32108899A JP3243239B2 (en) 1999-11-11 1999-11-11 Method for producing positive electrode for non-aqueous secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001236320A Division JP2002100345A (en) 2001-08-03 2001-08-03 Manufacturing method of positive electrode for nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2001143687A JP2001143687A (en) 2001-05-25
JP3243239B2 true JP3243239B2 (en) 2002-01-07

Family

ID=18128692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32108899A Expired - Fee Related JP3243239B2 (en) 1999-11-11 1999-11-11 Method for producing positive electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3243239B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003211395A1 (en) * 2002-02-21 2003-09-09 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
CA2432397A1 (en) * 2003-06-25 2004-12-25 Hydro-Quebec Procedure for preparing an electrode from porous silicon, the electrode so obtained, and an electrochemical system containing at least one such electrode
JP5044890B2 (en) * 2004-12-14 2012-10-10 大日本印刷株式会社 Method for producing negative plate for non-aqueous electrolyte secondary battery, negative plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN101641811A (en) * 2007-04-09 2010-02-03 花王株式会社 Process for producing active material for positive electrode for battery
JP5415012B2 (en) * 2007-04-09 2014-02-12 花王株式会社 Positive electrode active material sintered body for battery
JP5564649B2 (en) 2010-06-23 2014-07-30 日本碍子株式会社 Positive electrode of lithium secondary battery and lithium secondary battery
JP5587052B2 (en) 2010-06-23 2014-09-10 日本碍子株式会社 Positive electrode of lithium secondary battery and lithium secondary battery
WO2013140932A1 (en) * 2012-03-23 2013-09-26 日本碍子株式会社 Positive electrode and positive electrode active material plate for lithium secondary battery, and methods for manufacturing positive electrode and positive electrode active material plate for lithium secondary battery
CN110313086A (en) * 2017-02-21 2019-10-08 日本碍子株式会社 Sintered lithium complex oxide plate
WO2018155156A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
WO2018155154A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
JP7083235B2 (en) * 2017-07-20 2022-06-10 神島化学工業株式会社 Silver oxide and its manufacturing method
EP3699999A4 (en) * 2017-10-17 2021-07-14 NGK Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device

Also Published As

Publication number Publication date
JP2001143687A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP2948205B1 (en) Method for producing negative electrode for secondary battery
US6679926B1 (en) Lithium secondary cell and its producing method
JP4126715B2 (en) Method for producing negative electrode material and method for producing secondary battery
EP1139460B1 (en) Separator, gelated electrolyte, non-aqueous electrolyte, electrode and non-aqueous electrolyte cell employing the same
JP7254875B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
WO2000033404A1 (en) Lithium secondary cell and method for manufacturing the same
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
KR20170034606A (en) Cathode of three dimensional lithium secondary battery and method of fabricating the same
JP2003100284A (en) Lithium secondary battery
JP2003115324A (en) Nonaqueous electrolyte battery
JP4193248B2 (en) Gel electrolyte battery
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP3510175B2 (en) Method for producing negative electrode for secondary battery
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JP2000011993A (en) Positive electrode for nonaqueous secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
KR100606487B1 (en) A lithium secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3268770B2 (en) Non-aqueous secondary battery
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery
JP3928167B2 (en) Method for manufacturing electrode plate for lithium secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees