JPH09120813A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09120813A
JPH09120813A JP7279228A JP27922895A JPH09120813A JP H09120813 A JPH09120813 A JP H09120813A JP 7279228 A JP7279228 A JP 7279228A JP 27922895 A JP27922895 A JP 27922895A JP H09120813 A JPH09120813 A JP H09120813A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode body
active material
secondary battery
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7279228A
Other languages
Japanese (ja)
Inventor
Yasunobu Koga
靖信 古賀
Shigeki Murayama
茂樹 村山
Yoshito Inoue
嘉人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7279228A priority Critical patent/JPH09120813A/en
Publication of JPH09120813A publication Critical patent/JPH09120813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which energy density is improved further, and in which conductivity of electrode bodies is improved to provide excellent load characteristics. SOLUTION: In a battery, a negative electrode body 2 having negative electrode active material capable of doping and dedoping lithium or lithium ions, and a positive electrode body 1 having positive electrode active material comprising lithium composite oxide are disposed through a separator 3. For this positive electrode body 1, this positive electrode active material is mixed with aluminum powder or aluminum paste, and only an aluminum component is sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種電子機器等の電
源として利用されるリチウムイオン二次電池等の非水電
解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery used as a power source for various electronic devices.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ラップトップコンピュータ、ワープロ等の携帯情報機
器、カメラ一体型VTR、液晶テレビ等のAV機器や、
携帯電話等の移動体通信機器等の発展はめざましく、之
等の電源として用いられる電池に対して、小型、軽量、
高エネルギー密度の二次電池が要求される。
2. Description of the Related Art In recent years,
Laptop computers, portable information devices such as word processors, camera-integrated VTRs, AV devices such as LCD TVs,
The development of mobile communication devices such as mobile phones is remarkable, and compared to the batteries used as power sources, they are small and lightweight,
A high energy density secondary battery is required.

【0003】従来は鉛電池、ニッケル・カドミウム電池
等の水溶液系二次電池が使用されてきたが、軽量化、高
エネルギー密度化等の要求に対して十分とは言えなかっ
た。
Conventionally, an aqueous solution type secondary battery such as a lead battery or a nickel-cadmium battery has been used, but it has not been sufficient to meet the demands for weight reduction and high energy density.

【0004】最近、高エネルギー密度を有し、しかもク
リーンな電池としてリチウム二次電池に対し、大きな関
心と期待が持たれている。なかでも、リチウムイオンの
ドープ、脱ドープが可能な炭素材料を負極活物質とし、
リチウムコバルト酸化物、リチウムニッケル酸化物等の
リチウム複合酸化物を正極活物質としたリチウムイオン
二次電池の開発が近年、活発に行われている。
Recently, there has been great interest and expectation in lithium secondary batteries as a clean battery having a high energy density. Among them, a carbon material that can be doped or dedoped with lithium ions is used as the negative electrode active material,
In recent years, development of a lithium ion secondary battery using a lithium composite oxide such as lithium cobalt oxide or lithium nickel oxide as a positive electrode active material has been actively conducted.

【0005】このリチウムイオン二次電池は正極体及び
負極体の容量設計を最適化することにより、リチウム金
属を用いた電池系で見られるLiデンドライトの形成は
なく、サイクル特性、安全性に優れ、さらに低温特性、
負荷特性あるいは急速充電性にも優れており、大いに期
待が持たれていると共に、ラップトップコンピュータ、
ワープロ、カメラ一体型VTR、液晶テレビ等のポータ
ブル機器用電源として実用化に至っている。
By optimizing the capacity design of the positive electrode body and the negative electrode body, this lithium ion secondary battery does not have the formation of Li dendrite seen in a battery system using lithium metal, and has excellent cycle characteristics and safety, Further low temperature characteristics,
It has excellent load characteristics and quick chargeability, and it holds great promise.
It has been put to practical use as a power source for portable devices such as word processors, camera-integrated VTRs, and liquid crystal televisions.

【0006】最近、このリチウムイオン二次電池のエネ
ルギー密度を一層高めるために、焼結電極体の使用が考
えられている。しかし、リチウムコバルト酸化物、リチ
ウムニッケル酸化物等のリチウム複合酸化物を使用した
焼結電極体は導電性が非常に悪いため、高い負荷特性が
得られない不都合があった。
Recently, in order to further increase the energy density of this lithium ion secondary battery, use of a sintered electrode body has been considered. However, since the sintered electrode body using a lithium composite oxide such as lithium cobalt oxide and lithium nickel oxide has very poor conductivity, there is a disadvantage that high load characteristics cannot be obtained.

【0007】本発明は斯る点に鑑み、エネルギー密度を
一層高めると共に電極体の導電性を良くし負荷特性に優
れたものを得ることを目的とする。
In view of the above point, the present invention has an object to further enhance the energy density and improve the conductivity of the electrode body to obtain an excellent load characteristic.

【0008】[0008]

【課題を解決するための手段】本発明非水電解液二次電
池はリチウム又はリチウムイオンをドープ、脱ドープで
きる負極活物質を有する負極体と、リチウム複合酸化物
より成る正極活物質を有する正極体とをセパレータを介
して配するようにした非水電解液二次電池において、こ
の正極体として、この正極活物質とアルミニウム粉末又
はアルミニウムペーストとを混合し、アルミニウム成分
だけを焼結したものを使用したものである。
A non-aqueous electrolyte secondary battery of the present invention is a positive electrode having a negative electrode body having a negative electrode active material capable of being doped or dedoped with lithium or lithium ions, and a positive electrode active material made of a lithium composite oxide. In the non-aqueous electrolyte secondary battery, the body and the separator are arranged via a separator, the positive electrode body is obtained by mixing the positive electrode active material and aluminum powder or aluminum paste, and sintering only the aluminum component. It was used.

【0009】本発明によれば正極体のアルミニウム成分
だけを焼結しているので、正極体においてアルミニウム
の三次元ネットワークが形成され、正極活物質がこのア
ルミニウムの三次元ネットワークに担持されることにな
り、従来の導電剤とこの活物質との接着に用いられてき
たバインダーは必要でなく、この正極体の導電性が良く
なり、負荷特性の優れたものとなる。
According to the present invention, since only the aluminum component of the positive electrode body is sintered, a three-dimensional network of aluminum is formed in the positive electrode body, and the positive electrode active material is carried on this three-dimensional network of aluminum. Therefore, the binder that has been used to bond the conventional conductive material and the active material is not necessary, and the conductivity of the positive electrode body is improved, and the load characteristics are excellent.

【0010】[0010]

【発明の実施の形態】以下図面を参照して、本発明非水
電解液二次電池をコイン型リチウム二次電池に適用した
例につき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the non-aqueous electrolyte secondary battery of the present invention is applied to a coin type lithium secondary battery will be described below with reference to the drawings.

【0011】本例においては、図1に示す如くディスク
状の正極体1とディスク状の負極体2とをセパレータ3
を介して対向して配したものをポリプロピレン等より成
るガスケット4により絶縁し、封止された正極缶5及び
負極カップ6より成るコイン型電池ケースに収納する如
くする。
In this example, a disc-shaped positive electrode body 1 and a disc-shaped negative electrode body 2 are connected to a separator 3 as shown in FIG.
It is arranged so as to be opposed to each other via a gasket 4 made of polypropylene or the like, and to be housed in a coin type battery case composed of a sealed positive electrode can 5 and a negative electrode cup 6.

【0012】本例においては、実施例1の正極体1を次
のようにして作製する。実施例1の正極体1において
は、正極活物質としてリチウム複合酸化物例えばLiC
oO2を使用し、この正極活物質であるLiCoO2
重量比で84部、平均粒径が6.65μmの球状粉のア
ルミニウム粉末を16部とを混合し、これを直径15.
5mm、厚さ0.25mmのディスク状に加圧成形し、
これを電気炉中でアルミニウムの融点660℃以下の温
度で焼結して、ディスク状の正極体1を得た。
In this example, the positive electrode body 1 of Example 1 is manufactured as follows. In the positive electrode body 1 of Example 1, a lithium composite oxide such as LiC is used as the positive electrode active material.
Using oO 2 , 84 parts by weight of this positive electrode active material, LiCoO 2 , and 16 parts of spherical aluminum powder having an average particle size of 6.65 μm were mixed, and the resulting mixture had a diameter of 15.
5mm, 0.25mm thick pressed into a disk shape,
This was sintered in an electric furnace at a melting point of aluminum of 660 ° C. or lower to obtain a disk-shaped positive electrode body 1.

【0013】また、この負極体2としては所定厚さの金
属のリチウム板をディスク状に打ち抜いたものを使用す
る。この場合このリチウムが負極活物質を構成する。こ
の負極活物質としては炭素を使用しても良い。またセパ
レータ3としては例えば厚さ50μmの微多孔性のポリ
プロピレンを使用する。
As the negative electrode body 2, a metal lithium plate having a predetermined thickness is punched into a disk shape. In this case, this lithium constitutes the negative electrode active material. Carbon may be used as the negative electrode active material. As the separator 3, for example, microporous polypropylene having a thickness of 50 μm is used.

【0014】上述のディスク状の正極体1とディスク状
の負極体2とをセパレータ3を介して対向して配したも
のを、ポリプロピレン等より成るガスケット4を介して
絶縁し、カシメて封止されたステンレススチール等の正
極缶5及び負極カップ6より成るコイン型電池ケースに
収納するのに、前もって、この正極活物質とアルミニウ
ム粉末とを混合し、ディスク状に加圧成形したものをア
ルミニウムの融点以下で焼結したディスク状の正極体1
に非水電解液を真空含浸する如くする。
The disk-shaped positive electrode body 1 and the disk-shaped negative electrode body 2 facing each other via the separator 3 are insulated by a gasket 4 made of polypropylene or the like and sealed by caulking. The positive electrode active material and the aluminum powder were mixed in advance and housed in a coin-type battery case composed of a positive electrode can 5 and a negative electrode cup 6 made of stainless steel or the like and pressed into a disc shape to obtain a melting point of aluminum. Disc-shaped positive electrode body 1 sintered below
Vacuum impregnated with a non-aqueous electrolyte.

【0015】この非水電解液としてはプロピレンカーボ
ネートとジメチルカーボネートとの等容量混合溶媒中に
LiPF6 を1モル/lの割合で溶解したものを使用す
る。
As this non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a ratio of 1 mol / l in a mixed solvent of equal volumes of propylene carbonate and dimethyl carbonate is used.

【0016】また、このディスク状の正極体1は正極缶
5に圧着する如くすると共にこのディスク状のリチウム
より成る負極体2を負極カップ6に圧着する如くする。
またセパレータ3の外周を全周に亘ってガスケット4と
負極カップ6の内側とで挟んで固定する如くする。
Further, the disk-shaped positive electrode body 1 is pressure-bonded to the positive electrode can 5, and the disk-shaped negative electrode body 2 made of lithium is pressure-bonded to the negative electrode cup 6.
In addition, the outer circumference of the separator 3 is sandwiched and fixed between the gasket 4 and the inside of the negative electrode cup 6 over the entire circumference.

【0017】この実施例1の正極体1の表面抵抗値は表
1に示す如く330mΩであり比較的小さかった。この
表面抵抗測定回路としては図2に示す如きものを使用し
た。
The surface resistance value of the positive electrode body 1 of Example 1 was 330 mΩ as shown in Table 1, which was relatively small. The surface resistance measuring circuit shown in FIG. 2 was used.

【0018】この図2につき説明するに、10a及び1
0bは直流電圧が供給される正端子及び負端子を示し、
この正端子10aを抵抗計Mを介して試料Sの表面に配
された主電極Aに接続し、この試料Sの表面に配された
対電極Bを負端子10bに接続し、表面抵抗を測定す
る。この図2においては、正端子10aを試料Sの裏面
に配したガード電極Gに接続すると共に正端子10a及
び負端子10b間に電圧計Vを配してある。
Referring to FIG. 2, 10a and 1
0b indicates a positive terminal and a negative terminal to which a DC voltage is supplied,
The positive terminal 10a is connected to the main electrode A arranged on the surface of the sample S via the resistance meter M, the counter electrode B arranged on the surface of the sample S is connected to the negative terminal 10b, and the surface resistance is measured. To do. In FIG. 2, the positive terminal 10a is connected to the guard electrode G arranged on the back surface of the sample S, and the voltmeter V is arranged between the positive terminal 10a and the negative terminal 10b.

【0019】[0019]

【表1】 [Table 1]

【0020】また、この実施例1のコイン型リチウム二
次電池を1mA/cellの電流で端子電圧4.2Vま
で充電し、その後、1mA/cell,3mA/cel
l,5mA/cell及び9mA/cellで、端子電
圧が3.3Vを示すまで夫々放電したときのこの実施例
1の電池の放電容量(正極活物質の1g当たりの容量)
は表2に示す如く、137.0mAh/g,125mA
h/g,115mAh/g及び95.0mAh/gと比
較的良好であった。
The coin type lithium secondary battery of Example 1 was charged to a terminal voltage of 4.2 V with a current of 1 mA / cell, and then 1 mA / cell, 3 mA / cell.
Discharge capacity (capacity per gram of positive electrode active material) of the battery of Example 1 when discharged at 1, 5 mA / cell and 9 mA / cell until the terminal voltage showed 3.3 V, respectively.
As shown in Table 2, 137.0 mAh / g, 125 mA
h / g, 115 mAh / g and 95.0 mAh / g were relatively good.

【0021】[0021]

【表2】 [Table 2]

【0022】表1,表2の実施例2の正極体1は次のよ
うに作製した。正極活物質としてLiCoO2 を使用
し、この正極活物質であるLiCoO2 を重量比で94
部と、アルミニウムペーストを9部とを混合してN−メ
チルピロリドンに分散し、スラリー状とし、これを12
0℃、1時間、乾燥し、その後、乳鉢で微粉末したもの
を、直径15.5mm、厚さ0.25mmのディスク状
に加圧成形し、これを電気炉中でアルミニウムの融点6
60℃以下の温度で焼結して、ディスク状の正極体1を
得た。
The positive electrode body 1 of Example 2 in Tables 1 and 2 was prepared as follows. LiCoO 2 was used as the positive electrode active material, and LiCoO 2 as the positive electrode active material was used in a weight ratio of 94%.
And 9 parts of aluminum paste are mixed and dispersed in N-methylpyrrolidone to form a slurry.
It was dried at 0 ° C. for 1 hour, then finely powdered in a mortar and pressed into a disk shape with a diameter of 15.5 mm and a thickness of 0.25 mm.
Sintering was performed at a temperature of 60 ° C. or lower to obtain a disk-shaped positive electrode body 1.

【0023】本例で使用したアルミニウムペーストは、
このアルミニウムの形状は鱗片状、平均粒径15μm、
厚さ0.1μmである。このアルミニウムペーストの1
/3は焼結時に揮発する成分である。
The aluminum paste used in this example is
This aluminum has a scaly shape, an average particle size of 15 μm,
The thickness is 0.1 μm. 1 of this aluminum paste
/ 3 is a component that volatilizes during sintering.

【0024】この実施例2においては、正極体1の他は
実施例と同様に構成して、コイン型リチウム二次電池を
得た。
In Example 2, a coin-type lithium secondary battery was obtained with the same structure as in Example 1 except for the positive electrode body 1.

【0025】この実施例2の正極体1の表面抵抗値は、
図2に示す如き表面抵抗測定回路で測定し、表1に示す
如く150mΩであり、非常に小さい表面抵抗値であっ
た。
The surface resistance value of the positive electrode body 1 of Example 2 is
The surface resistance measurement circuit as shown in FIG. 2 measured 150 mΩ as shown in Table 1, which was a very small surface resistance value.

【0026】またこの実施例2のコイン型リチウム二次
電池を1mA/cellの電流で端子電圧4.2Vまで
充電し、その後、1mA/cell,3mA/cel
l,5mA/cell及び9mA/cellで、端子電
圧が3.3Vを示すまで、夫々放電したときの、この実
施例2の電池の放電容量は表2に示す如く、137.6
mAh/g,127.6mAh/g,116.5mAh
/g及び106.0mAh/gと比較的良好であった。
The coin-type lithium secondary battery of Example 2 was charged with a current of 1 mA / cell to a terminal voltage of 4.2 V, and then 1 mA / cell, 3 mA / cell.
As shown in Table 2, the discharge capacity of the battery of Example 2 was 137.6 when discharged at 1, 5 mA / cell and 9 mA / cell until the terminal voltage showed 3.3 V, respectively.
mAh / g, 127.6 mAh / g, 116.5 mAh
/ G and 106.0 mAh / g, which were relatively good.

【0027】また、表1、表2の比較例(従来例)の正
極体1は、正極活物質としてLiCoO2 を使用し、こ
のLiCoO2 を重量比で91部、導電剤である炭素を
6部、結着剤であるポリフッ化ビニリデンを3部とを混
合し、この混合物をN−メチルピロリドンに分散してス
ラリー状とし、これを120℃、1時間、乾燥し、その
後、乳鉢で微粉末として正極合剤とし、この正極合剤と
アルミニウムメッシュより成る集電体とを直径15.5
mm、厚さ0.25mmのディスク状に加圧成形したも
のを使用する。
Further, the positive electrode body 1 of the comparative example (conventional example) in Tables 1 and 2 uses LiCoO 2 as the positive electrode active material, and 91 parts by weight of this LiCoO 2 and 6 carbon as the conductive agent are used. Parts, and 3 parts of polyvinylidene fluoride as a binder are mixed, and this mixture is dispersed in N-methylpyrrolidone to form a slurry, which is dried at 120 ° C. for 1 hour, and then finely powdered in a mortar. As a positive electrode mixture, and the positive electrode mixture and a current collector made of an aluminum mesh have a diameter of 15.5.
mm, and a 0.25 mm thick disk-shaped press-molded product is used.

【0028】この比較例においては正極体1の他は実施
例1と同様に構成して、コイン型リチウム二次電池を得
た。
In this comparative example, a coin-type lithium secondary battery was obtained in the same manner as in Example 1 except for the positive electrode body 1.

【0029】この比較例の正極体1の表面抵抗値は表1
に示す如く、113Ωであった。
The surface resistance value of the positive electrode body 1 of this comparative example is shown in Table 1.
As shown in FIG.

【0030】この表1から明らかな如く比較例(従来
例)に比較し、実施例1及び2が表面抵抗値が大幅に小
さくなっている。従来例である比較例の表面抵抗値が大
きいのは結着剤として絶縁体であるポリフッ化ビニリデ
ンが存在すること、更には導電剤の炭素の導電性がアル
ミニウムに比べ劣ることなどが理由としてあげられる。
As is apparent from Table 1, the surface resistance values of Examples 1 and 2 are significantly smaller than those of the comparative example (conventional example). The surface resistance of the comparative example, which is a conventional example, is large because of the presence of polyvinylidene fluoride which is an insulator as a binder, and the conductivity of carbon as a conductive agent is inferior to that of aluminum. To be

【0031】実施例1及び2においては、正極体1のア
ルミニウム成分だけを焼結しているので、この正極体1
において、アルミニウムの三次元ネットワークが形成さ
れ、正極活物質である平均粒径が23.8μmのLiC
oO2 がアルミニウムの三次元ネットワークに担持され
ることにより、従来例に比較し、この表面抵抗値が小さ
くなるものである。
In Examples 1 and 2, since only the aluminum component of the positive electrode body 1 was sintered, this positive electrode body 1
In, a three-dimensional network of aluminum is formed, and LiC having an average particle diameter of 23.8 μm, which is a positive electrode active material.
By supporting oO 2 on the three-dimensional network of aluminum, the surface resistance value becomes smaller than that of the conventional example.

【0032】またこの比較例のコイン型リチウム二次電
池を1mA/cellの電流で端子電圧4.2Vまで充
電し、その後、1mA/cell,3mA/cell,
5mA/cell及び9mA/cellで端子電圧が
3.0Vを示すまで、夫々放電したときの放電容量は表
2に示す如く136.0mAh/g,124.0mAh
/g,114.7mAh/g及び90.9mAh/gで
あった。
The coin-type lithium secondary battery of this comparative example was charged with a current of 1 mA / cell to a terminal voltage of 4.2 V, and then 1 mA / cell, 3 mA / cell,
As shown in Table 2, the discharge capacities at the time of discharging until the terminal voltage shows 3.0 V at 5 mA / cell and 9 mA / cell are 136.0 mAh / g and 124.0 mAh, respectively.
/ G, 114.7 mAh / g and 90.9 mAh / g.

【0033】この表2から明らかな如く、実施例1及び
2の放電容量は比較例に比べて高負荷の放電容量が向上
していることがわかる。実施例1及び2の電池で、この
ように高い負荷特性が得られたのはアルミニウム粉末又
は鱗片状のアルミニウムペーストを正極活物質と混合
し、このアルミニウム成分を焼結した正極体を使用した
ことによる。
As can be seen from Table 2, the discharge capacities of Examples 1 and 2 are higher than those of Comparative Examples. In the batteries of Examples 1 and 2, such high load characteristics were obtained because an aluminum powder or a flaky aluminum paste was mixed with a positive electrode active material, and a positive electrode body obtained by sintering this aluminum component was used. by.

【0034】以上述べた如く、本例によれば正極活物質
とアルミニウム粉末又はアルミニウムペーストと混合
し、このアルミニウム成分のみを焼結した正極体1を使
用したので、導電性及び負荷特性の優れたリチウム二次
電池を得ることができる利益がある。
As described above, according to this example, since the positive electrode body 1 obtained by mixing the positive electrode active material and the aluminum powder or the aluminum paste and sintering only this aluminum component was used, the conductivity and the load characteristics were excellent. There is a benefit of getting a lithium secondary battery.

【0035】尚上述実施例においては本発明をコイン型
リチウム二次電池に使用した例につき述べたが、本発明
をその他の非水電解液二次電池に適用できることは容易
に理解できよう。
Although the present invention has been described in connection with the example in which the present invention is applied to the coin-type lithium secondary battery, it can be easily understood that the present invention can be applied to other non-aqueous electrolyte secondary batteries.

【0036】また、本発明は上述実施例に限らず本発明
の要旨を逸脱することなく、その他種々の構成が採り得
ることは勿論である。
Further, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0037】[0037]

【発明の効果】本発明によれば正極活物質とアルミニウ
ム粉末又はアルミニウムペーストと混合し、このアルミ
ニウム成分のみを焼結した正極体を使用したので導電性
及び負荷特性の優れた非水電解液二次電池を得ることが
できる利益がある。
According to the present invention, the positive electrode body obtained by mixing the positive electrode active material with the aluminum powder or aluminum paste and sintering only this aluminum component is used. There is a benefit of getting the next battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用するコイン型リチウム二次電池の
例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a coin-type lithium secondary battery to which the present invention is applied.

【図2】面抵抗測定回路の例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a surface resistance measuring circuit.

【符号の説明】[Explanation of symbols]

1 正極体 2 負極体 3 セパレータ 4 ガスケット 5 正極缶 6 負極カップ 1 Positive electrode body 2 Negative electrode body 3 Separator 4 Gasket 5 Positive electrode can 6 Negative electrode cup

フロントページの続き (72)発明者 井上 嘉人 福島県郡山市日和田町高倉字下杉下1番地 の1 株式会社ソニー・エナジー・テック 内Front Page Continuation (72) Inventor Yoshito Inoue 1 of 1 Shimosugishita, Takakura, Hiwada Town, Koriyama City, Fukushima Prefecture Sony Energy Tech Inc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム又はリチウムイオンをドープ、
脱ドープできる負極活物質を有する負極体とリチウム複
合酸化物より成る正極活物質を有する正極体とをセパレ
ータを介して配するようにした非水電解液二次電池にお
いて、前記正極体として前記正極活物質とアルミニウム
粉末又はアルミニウムペーストとを混合し、アルミニウ
ム成分だけを焼結したものを使用したことを特徴とする
非水電解液二次電池。
1. Doping with lithium or lithium ions,
In a non-aqueous electrolyte secondary battery in which a negative electrode body having a negative electrode active material that can be dedoped and a positive electrode body having a positive electrode active material composed of a lithium composite oxide are arranged via a separator, the positive electrode is the positive electrode. A non-aqueous electrolyte secondary battery comprising a mixture of an active material and aluminum powder or aluminum paste and sintering only an aluminum component.
JP7279228A 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery Pending JPH09120813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7279228A JPH09120813A (en) 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7279228A JPH09120813A (en) 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09120813A true JPH09120813A (en) 1997-05-06

Family

ID=17608224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7279228A Pending JPH09120813A (en) 1995-10-26 1995-10-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09120813A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226741A (en) * 2007-03-15 2008-09-25 National Institute Of Advanced Industrial & Technology Composite powder for electrode and its manufacturing method
JP2008270349A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Electrode for electric double-layer capacitor and method for manufacturing same
JP2010272426A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2010272425A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2013232316A (en) * 2012-04-27 2013-11-14 Furukawa Sky Kk Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method of manufacturing electrode for nonaqueous electrolyte secondary battery
JP5661646B2 (en) * 2009-12-18 2015-01-28 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226741A (en) * 2007-03-15 2008-09-25 National Institute Of Advanced Industrial & Technology Composite powder for electrode and its manufacturing method
JP2008270349A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Electrode for electric double-layer capacitor and method for manufacturing same
JP2010272426A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2010272425A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP5661646B2 (en) * 2009-12-18 2015-01-28 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2013232316A (en) * 2012-04-27 2013-11-14 Furukawa Sky Kk Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method of manufacturing electrode for nonaqueous electrolyte secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery

Similar Documents

Publication Publication Date Title
JPH09120813A (en) Nonaqueous electrolyte secondary battery
US6706447B2 (en) Lithium metal dispersion in secondary battery anodes
US11677065B2 (en) Cathode active material of lithium secondary battery
CN110828812A (en) Negative electrode material, negative electrode comprising same and preparation method of negative electrode
KR20170003544A (en) Electrode, method of producing the same, battery, and electronic device
JP2003297353A (en) Negative electrode for secondary battery, secondary battery using such negative electrode, and manufacturing method for negative electrode
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP2006236684A (en) Negative electrode, battery, and their manufacturing methods
JPH09265976A (en) Non-aqueous electrolytic secondary battery and its manufacture
JPH11283623A (en) Lithium ion battery and its manufacture
JPH0346772A (en) Nonaduedus alkalline battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
CN209929388U (en) Lithium ion battery diaphragm and lithium ion battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH1186898A (en) Alkaline storage battery
JP3432922B2 (en) Solid electrolyte secondary battery
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3572794B2 (en) Alkaline storage battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JPH11111335A (en) Nonaqueous electrolyte secondary battery
WO2022178655A1 (en) Electrochemical device and electronic device
JP3663694B2 (en) Non-aqueous electrolyte secondary battery