JP6130012B2 - Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same - Google Patents

Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same Download PDF

Info

Publication number
JP6130012B2
JP6130012B2 JP2016057218A JP2016057218A JP6130012B2 JP 6130012 B2 JP6130012 B2 JP 6130012B2 JP 2016057218 A JP2016057218 A JP 2016057218A JP 2016057218 A JP2016057218 A JP 2016057218A JP 6130012 B2 JP6130012 B2 JP 6130012B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode mixture
powder
average particle
primary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057218A
Other languages
Japanese (ja)
Other versions
JP2016136530A (en
Inventor
充則 伊藤
充則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2016057218A priority Critical patent/JP6130012B2/en
Publication of JP2016136530A publication Critical patent/JP2016136530A/en
Application granted granted Critical
Publication of JP6130012B2 publication Critical patent/JP6130012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、扁平形一次電池、扁平形一次電池用負極合剤、及びその製造方法に関する。   The present invention relates to a flat primary battery, a negative electrode mixture for a flat primary battery, and a method for producing the same.

電子腕時計、携帯用電子計算機等の小型電子機器に使用されるコイン形或いはボタン形等の扁平形一次電池は、小型電子機器の高性能化及び低価格化に伴い、高性能化及び低価格化に加え、生産性の向上が求められている。   Flat-type primary batteries such as coin-type or button-type used in small electronic devices such as electronic watches and portable electronic computers are becoming more powerful and cheaper as the performance of smaller electronic devices becomes higher and lower. In addition, there is a need for improved productivity.

この扁平形一次電池としては、正極に二酸化マンガン、負極にゲル状亜鉛粉末を用いたアルカリボタン電池や、正極に酸化銀、負極にゲル状亜鉛粉末を用いた酸化銀電池等が知られている。これらの電池は、正極合剤を充填した正極缶と、負極合剤を充填した負極缶とをセパレータを介してかしめることによって形成されている。   As this flat primary battery, an alkaline button battery using manganese dioxide for the positive electrode and gelled zinc powder for the negative electrode, a silver oxide battery using silver oxide for the positive electrode and gelled zinc powder for the negative electrode, etc. are known. . These batteries are formed by caulking a positive electrode can filled with a positive electrode mixture and a negative electrode can filled with a negative electrode mixture via a separator.

この扁平形一次電池は、各電池サイズに求められる電気容量により、正極合剤や負極合剤における活物質の比率を調整している。亜鉛又は亜鉛合金を用いたゲル状の負極合剤では、電解液と反応しない非金属の絶縁性粉末を含ませて活物質の比率を調整している(例えば特許文献1)。   In this flat primary battery, the ratio of the active material in the positive electrode mixture and the negative electrode mixture is adjusted according to the electric capacity required for each battery size. In a gelled negative electrode mixture using zinc or a zinc alloy, the ratio of the active material is adjusted by including a nonmetallic insulating powder that does not react with the electrolytic solution (for example, Patent Document 1).

特開2010−044906号公報JP 2010-044906 A

ところが、亜鉛又は亜鉛合金を用いたゲル状の負極合剤において、電解液と反応しない非金属の絶縁性粉末の粒径が小さい場合には、負極合剤を成型する際に供給ピンにこの絶縁性粉末が付着してしまい、負極合剤を正常に供給できなくなってしまう問題があった。   However, in a gelled negative electrode mixture using zinc or a zinc alloy, when the particle size of the nonmetallic insulating powder that does not react with the electrolyte is small, this insulation is applied to the supply pin when the negative electrode mixture is molded. There was a problem that the negative electrode mixture could not be normally supplied due to the adhering powder.

本発明は、上記課題を解決するためになされたものであり、その目的は、生産性を向上することができる扁平形一次電池、扁平形一次電池用負極合剤及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a flat primary battery capable of improving productivity, a negative electrode mixture for a flat primary battery, and a method for producing the same. It is in.

本発明は、上記課題を解決する手段として、以下の構成を有する。
本発明に係る扁平形一次電池用負極合剤は、負極活物質と、伝導度安定剤と、ゲル化剤と、電解液と、粘弾性調整材と、を含む扁平形一次電池用負極合剤であって、前記負極活物質は、平均粒径が50μm以上250μmの亜鉛粉末又は亜鉛合金粉末であり、前記粘弾性調整材は、平均粒径が110μm以上350μm以下かつ前記負極活物質の平均粒径の60%〜140%である、ポリテトラフルオロエチレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか1つ又は複数の樹脂粉末であり、負極合剤中に1体積%以上25体積%以下含まれることを特徴とする。
また、本発明に係る扁平型一次電池は、上記負極合剤を用いることを特徴とする。
さらにまた、本発明に係る扁平型一次電池の製造方法は、正極缶に正極合剤を充填し、前記正極合剤の上にセパレータを敷設し、ガスケットを圧入する工程と、前記セパレータの上に上記負極合剤を載置し、負極缶を被せ、前記正極缶の開口縁部をかしめて密閉する工程とからなることを特徴とする。
この構成によれば、ゲル化剤に加え、電解液と反応しない非金属の絶縁性粉末を配合するため、ゲル化剤の比率を高めても、負極合剤の粘弾性を好適に調整することができる。また、粘弾性調整材の平均粒径が、平均粒径が50μm以上250μmの亜鉛粉末又は亜鉛合金粉末である負極活物質の平均粒径の60%〜140%であり、110μm以上であるため、負極合剤の秤量ばらつきを抑制することができる。
また、粘弾性調整剤の平均粒径が、350μm以下であることにより、この粘弾性調整剤の比率を高めても、負極合剤を成型する際に供給ピンに付着してしまうことが少なく、扁平型一次電池の生産性を向上することができる。
また、粘弾性調整剤が、撥水性を有する、ポリテトラフルオロエチレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか1つ又は複数の樹脂粉末であることにより、ゲル化剤であるカルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物の比率を高めても、負極合剤の粘弾性を、良好なハンドリング性が得られる粘弾性に好適に調整することができる。
さらにまた、粘弾性調整剤が負極合剤中に1体積%〜25体積%含まれるため、電池の電気容量を必要容量に維持しつつ、良好なハンドリング性が得られる。
上記の構成により、電池の電気容量を必要容量に維持しつつ、電池組み立て工程でのハンドリング性と生産性とを向上し、電気容量のばらつきを抑制することができる。
The present invention has the following configuration as means for solving the above problems.
A negative electrode mixture for a flat primary battery according to the present invention includes a negative electrode active material, a conductivity stabilizer, a gelling agent, an electrolytic solution, and a viscoelasticity adjusting material. The negative electrode active material is zinc powder or zinc alloy powder having an average particle size of 50 μm or more and 250 μm, and the viscoelasticity adjusting material is an average particle size of 110 μm or more and 350 μm or less and an average particle of the negative electrode active material One or a plurality of resin powders of polytetrafluoroethylene, polyamide, polyethylene and acrylic resin having a diameter of 60% to 140% , and contained in the negative electrode mixture in an amount of 1% by volume to 25% by volume. It is characterized by that.
The flat primary battery according to the present invention is characterized by using the above negative electrode mixture.
Furthermore, the method for producing a flat primary battery according to the present invention includes a step of filling a positive electrode can with a positive electrode mixture, laying a separator on the positive electrode mixture, and press-fitting a gasket; It comprises the steps of placing the negative electrode mixture, covering the negative electrode can, and crimping and sealing the opening edge of the positive electrode can.
According to this configuration, in addition to the gelling agent, non-metallic insulating powder that does not react with the electrolyte solution is blended, so that the viscoelasticity of the negative electrode mixture can be suitably adjusted even if the ratio of the gelling agent is increased. Can do. Moreover, since the average particle diameter of the viscoelasticity adjusting material is 60% to 140% of the average particle diameter of the negative electrode active material which is zinc powder or zinc alloy powder having an average particle diameter of 50 μm or more and 250 μm , and is 110 μm or more, Variation in weighing of the negative electrode mixture can be suppressed.
In addition, since the average particle size of the viscoelasticity adjusting agent is 350 μm or less, even when the ratio of this viscoelasticity adjusting agent is increased, it is less likely to adhere to the supply pin when molding the negative electrode mixture, Productivity of the flat primary battery can be improved.
Further, the viscoelasticity adjusting agent is a water-repellent polytetrafluoroethylene, polyamide, polyethylene, or acrylic resin, and any one or a plurality of resin powders. Even if the ratio of the acid or a mixture thereof is increased, the viscoelasticity of the negative electrode mixture can be suitably adjusted to the viscoelasticity that provides good handling properties.
Furthermore, since the viscoelasticity adjusting agent is contained in the negative electrode mixture in an amount of 1% by volume to 25% by volume, good handling properties can be obtained while maintaining the electric capacity of the battery at the required capacity.
With the configuration described above, it is possible to improve the handling property and productivity in the battery assembly process while suppressing the electric capacity of the battery to the required capacity, and to suppress variations in the electric capacity.

本発明に係る扁平形一次電池用負極合剤において、前記ゲル化剤は、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物を含む。
この構成によれば、負極合剤の粘弾性を好適に調整することができる。
In the negative electrode mixture for flat primary batteries according to the present invention, the gelling agent includes carboxymethyl cellulose, polyacrylic acid, or a mixture thereof.
According to this configuration, it is possible to suitably adjust the viscoelasticity of the negative electrode mixture.

本発明の扁平形一次電池、扁平形一次電池用負極合剤、及び扁平形一次電池製造方法は、電池の電気容量を必要容量に維持しつつ、電池組み立て工程でのハンドリング性と生産性とを向上することができる。 The flat primary battery of the present invention, the negative electrode mixture for a flat primary battery, and the method of manufacturing a flat primary battery have the handling and productivity in the battery assembly process while maintaining the electric capacity of the battery at the required capacity. Can be improved.

図1は、扁平形アルカリ一次電池の断面図である。FIG. 1 is a cross-sectional view of a flat alkaline primary battery. 図2は、絶縁性粉末の平均粒径が110μm以下の場合に生産性に及ぼす影響を示す模式図である。FIG. 2 is a schematic diagram showing the effect on productivity when the average particle size of the insulating powder is 110 μm or less. 図3は、実施例及び比較例の表である。FIG. 3 is a table of examples and comparative examples.

以下、本発明を具体化した一実施形態を図1に従って説明する。
図1は、正極合剤及び負極合剤及び電解液を扁平形のケース内に収容した扁平形アルカリ一次電池の概略断面図である。図1において、扁平形アルカリ一次電池1はボタン形の一次電池であって、正極缶2及び負極缶3を有している。正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した材質からなり、カップ状に成型されている。この正極缶2は、正極合剤5を収容するとともに、正極端子として機能する。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of a flat alkaline primary battery in which a positive electrode mixture, a negative electrode mixture, and an electrolytic solution are accommodated in a flat case. In FIG. 1, a flat alkaline primary battery 1 is a button-type primary battery, and includes a positive electrode can 2 and a negative electrode can 3. The positive electrode can 2 is made of a material obtained by applying nickel plating to stainless steel (SUS), and is molded into a cup shape. The positive electrode can 2 accommodates the positive electrode mixture 5 and functions as a positive electrode terminal.

負極缶3は、ニッケルよりなる外表面層と、ステンレススチール(SUS)よりなる金属層と、銅よりなる集電体層とを有する3層構造のクラッド材からなり、カップ状に成型されている。また、負極缶3は、その円形の開口部3aが折り返し形成されており、その開口部3aには、例えば、ナイロン製のリング状のガスケット4が装着されている。   The negative electrode can 3 is made of a clad material having a three-layer structure including an outer surface layer made of nickel, a metal layer made of stainless steel (SUS), and a current collector layer made of copper, and is molded into a cup shape. . The negative electrode can 3 has a circular opening 3a formed in a folded shape, and a ring-shaped gasket 4 made of nylon, for example, is attached to the opening 3a.

そして、正極缶2の円形の開口部2aに、負極缶3を、ガスケット4を装着した開口部3a側から嵌合させ、該正極缶2の開口部2aを該ガスケット4に向かってかしめて封口することによって、円盤状(ボタン形又はコイン形)のケース8が形成される。該ケース8の内部には、密閉空間Sが形成される。
この密閉空間Sには、正極合剤5、セパレータ6、負極合剤7が収容され、セパレータ6を挟んで正極缶2側に正極合剤5、負極缶3側に負極合剤7がそれぞれ配置されている。
Then, the negative electrode can 3 is fitted into the circular opening 2a of the positive electrode can 2 from the opening 3a side where the gasket 4 is mounted, and the opening 2a of the positive electrode can 2 is caulked toward the gasket 4 to seal it. By doing so, a disk-shaped (button-shaped or coin-shaped) case 8 is formed. A sealed space S is formed inside the case 8.
In this sealed space S, the positive electrode mixture 5, the separator 6, and the negative electrode mixture 7 are accommodated, and the positive electrode mixture 5 is disposed on the positive electrode can 2 side and the negative electrode mixture 7 is disposed on the negative electrode can 3 side with the separator 6 interposed therebetween. Has been.

この扁平形アルカリ一次電池1を組み立てる際には、ペレット状に成型された正極合剤5を正極缶2に充填する。そして、セパレータ6の上に、ゲル状の負極合剤7を載置し、この上に負極缶3を被せる。さらに、正極缶2の開口縁部をかしめて、ケース8を密閉する。   When assembling the flat alkaline primary battery 1, the positive electrode mixture 5 formed into a pellet is filled in the positive electrode can 2. And the gel-like negative mix 7 is mounted on the separator 6, and the negative electrode can 3 is covered on this. Furthermore, the case 8 is sealed by crimping the opening edge of the positive electrode can 2.

正極合剤5は、正極活物質、導電剤、電解液、結着剤等を含んでいる。正極活物質としては、亜鉛又は亜鉛合金を負極活物質とした場合に正極活物質として使用可能であるものであれば特に限定されない。例えば、正極活物質を、酸化銀顆粒又は二酸化マンガン粉末又はそれらの混合物にしてもよい。又は、正極活物質を、オキシ水酸化ニッケル単独、又はコバルト等を固溶したオキシ水酸化ニッケル等にしてもよい。
負極合剤7は、負極活物質、伝導度安定剤、ゲル化剤、電解液及び粘弾性調整材を含んでいる。
The positive electrode mixture 5 includes a positive electrode active material, a conductive agent, an electrolytic solution, a binder, and the like. The positive electrode active material is not particularly limited as long as it can be used as the positive electrode active material when zinc or a zinc alloy is used as the negative electrode active material. For example, the positive electrode active material may be silver oxide granules or manganese dioxide powder or a mixture thereof. Alternatively, the positive electrode active material may be nickel oxyhydroxide alone or nickel oxyhydroxide in which cobalt or the like is dissolved.
The negative electrode mixture 7 includes a negative electrode active material, a conductivity stabilizer, a gelling agent, an electrolytic solution, and a viscoelasticity adjusting material.

負極活物質としては、亜鉛粉末又は亜鉛合金粉末11を用いている。伝導度安定剤としては、酸化亜鉛(ZnO)等を用いることができる。また、ゲル化剤としては、カルボキシメチルセルロース、又はポリアクリル酸、又はカルボキシメチルセルロースとポリアクリル酸との混合物が好ましい。カルボキシメチルセルロース又はポリアクリル酸を用いることによって、負極合剤7の電解液に対する親液性及び保液性を向上することができる。
電解液は、水酸化カリウム水溶液、又は水酸化ナトリウム水溶液、又はそれらの混合液を用いることができる。
As the negative electrode active material, zinc powder or zinc alloy powder 11 is used. As the conductivity stabilizer, zinc oxide (ZnO) or the like can be used. The gelling agent is preferably carboxymethyl cellulose, polyacrylic acid, or a mixture of carboxymethyl cellulose and polyacrylic acid. By using carboxymethylcellulose or polyacrylic acid, the lyophilicity and liquid retention of the negative electrode mixture 7 with respect to the electrolytic solution can be improved.
As the electrolytic solution, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or a mixture thereof can be used.

粘弾性調整材は、負極合剤7の粘弾性を、良好なハンドリング性が得られる粘弾性とし、且つ生産性を向上するために配合される。この粘弾性調整材としては、強アルカリ性である電解液と反応しない非金属の絶縁性粉末10が用いられる。ここでは、電解液と化学反応せず、且つ電解液を吸収しない状態を、電解液と反応しない状態とする。   The viscoelasticity adjusting material is blended in order to make the viscoelasticity of the negative electrode mixture 7 a viscoelasticity that provides good handling properties and to improve productivity. As this viscoelasticity adjusting material, a nonmetallic insulating powder 10 that does not react with a strongly alkaline electrolyte is used. Here, the state that does not chemically react with the electrolyte and does not absorb the electrolyte is defined as the state that does not react with the electrolyte.

例えば、必要とする電池の電気容量が低く、負極活物質の比率を小さく設計する場合、亜鉛粉末又は亜鉛合金粉末11の比率が小さくなるため、その分、粘性の高いゲル化剤や電解液の比率が高くなるが、上記絶縁性粉末10を加えることで、固形分(亜鉛粉末又は亜鉛合金粉末と絶縁性粉末)と電解液を含んだゲル化剤の体積比が良好に調整されることにより、負極合剤7の粘弾性を良好な範囲に調整することができる。   For example, when the required capacity of the battery is low and the ratio of the negative electrode active material is designed to be small, the ratio of the zinc powder or the zinc alloy powder 11 is small. Although the ratio increases, the volume ratio of the gelling agent containing the solid content (zinc powder or zinc alloy powder and insulating powder) and the electrolyte is well adjusted by adding the insulating powder 10. The viscoelasticity of the negative electrode mixture 7 can be adjusted to a favorable range.

例えば、所定量の負極合剤7をセパレータ上に載置する際、所定容積の丸穴が形成された組立装置に、圧力を付与しながら負極合剤7を充填し、その丸穴の上下を擦り切り用の工具等を用いて擦り切る。さらに、供給ピン13を用いて、成型された負極合剤7を丸穴から抜き出す。上記絶縁性粉末を含有した負極合剤7の場合、負極合剤7の切れが向上されるので、負極合剤7が、丸穴の内周面や、供給ピン13から容易に剥がれ落ち、負極合剤7の取り扱いが容易となり、ハンドリング性を向上できる。また、負極合剤7を、一定量擦り切った際のばらつき、セパレータ上に載置する際の載置ばらつき、秤量ばらつきが抑制され、生産性が向上する。   For example, when a predetermined amount of the negative electrode mixture 7 is placed on the separator, the negative electrode mixture 7 is filled while applying pressure to an assembly device in which a predetermined volume of the round hole is formed. Use a scraping tool or the like. Further, using the supply pin 13, the molded negative electrode mixture 7 is extracted from the round hole. In the case of the negative electrode mixture 7 containing the insulating powder, since the breakage of the negative electrode mixture 7 is improved, the negative electrode mixture 7 is easily peeled off from the inner peripheral surface of the round hole and the supply pin 13. Handling of the mixture 7 is facilitated and handling properties can be improved. Moreover, the dispersion | variation when the negative mix 7 is worn out a fixed amount, the mounting | distribution dispersion | variation at the time of mounting on a separator, and the dispersion | variation in weighing are suppressed, and productivity improves.

この絶縁性粉末10の平均粒径は、亜鉛粉末又は亜鉛合金粉末11の平均粒径の60%〜140%であることが好ましい。尚、平均粒径とは、粒度分布曲線において積算値が50%にあたる粒径(D50)をいう。絶縁性粉末10の平均粒径が亜鉛粉末又は亜鉛合金粉末11の平均粒径の60%を下回ると、粘弾性調整材としての効果を得ることができなくなり、十分なハンドリング性が得られない。また、140%を上回ると、負極活物質、伝導度安定剤、ゲル化剤、電解液及び粘弾性調整材を混合し、負極合剤7を作製する際に、負極活物質である亜鉛粉末又は亜鉛合金粉末が均一に分散せず、擦り切った負極合剤7に含有する負極活物質の量のばらつきが大きくなり、電気容量のばらつきが大きくなる。   The average particle diameter of the insulating powder 10 is preferably 60% to 140% of the average particle diameter of the zinc powder or the zinc alloy powder 11. The average particle diameter means a particle diameter (D50) corresponding to an integrated value of 50% in the particle size distribution curve. When the average particle diameter of the insulating powder 10 is less than 60% of the average particle diameter of the zinc powder or the zinc alloy powder 11, the effect as a viscoelasticity adjusting material cannot be obtained, and sufficient handling properties cannot be obtained. When the content exceeds 140%, the negative electrode active material, the conductivity stabilizer, the gelling agent, the electrolytic solution, and the viscoelasticity adjusting material are mixed to produce the negative electrode mixture 7. The zinc alloy powder is not uniformly dispersed, and the variation in the amount of the negative electrode active material contained in the scraped negative electrode mixture 7 becomes large, resulting in a large variation in electric capacity.

図2は、絶縁性粉末10の平均粒径が110μm以下の場合に生産性に及ぼす影響を示す模式図である。図2(a)は、平均粒径が110μm以上の絶縁性粉末10と、亜鉛粉末または亜鉛合金粉末11と、ゲル化剤と電解液の混合物12とを含む負極合剤を円柱状に成型し丸穴から押し出す図である。供給ピン13が矢印方向に移動し負極合剤に接触する際に、絶縁性粉末10と亜鉛粉末または亜鉛合金粉末11の周りに付着しているゲル化剤と電解液の混合物12が供給ピン13に接触する。   FIG. 2 is a schematic diagram showing the effect on productivity when the average particle size of the insulating powder 10 is 110 μm or less. FIG. 2 (a) shows a negative electrode mixture containing an insulating powder 10 having an average particle size of 110 μm or more, a zinc powder or a zinc alloy powder 11, and a mixture 12 of a gelling agent and an electrolytic solution, which is formed into a cylindrical shape. It is a figure extruded from a round hole. When the supply pin 13 moves in the direction of the arrow and contacts the negative electrode mixture, the mixture 12 of the gelling agent and the electrolytic solution adhering around the insulating powder 10 and the zinc powder or the zinc alloy powder 11 is supplied to the supply pin 13. To touch.

図2(b)は、この供給ピン13が矢印方向に移動し、供給ピン13から負極合剤が剥がれるところを示す図である。図2(b)では、負極合剤は、供給ピン13から剥がれている。ここで、図2は、ゲル化剤としてカルボキシメチルセルロース、電解液として水酸化ナトリウム水溶液及び水酸化カリウム水溶液を用いて検証を行った結果に基づく。   FIG. 2 (b) is a view showing a place where the supply pin 13 moves in the direction of the arrow and the negative electrode mixture is peeled off from the supply pin 13. In FIG. 2 (b), the negative electrode mixture is peeled off from the supply pin 13. Here, FIG. 2 is based on the results of verification using carboxymethyl cellulose as a gelling agent and an aqueous sodium hydroxide solution and an aqueous potassium hydroxide solution as an electrolytic solution.

図2(c)は、平均粒径が110μm以下の絶縁性粉末10と、亜鉛粉末または亜鉛合金粉末11と、ゲル化剤と電解液の混合物12とを含む負極合剤を円柱状に成型し丸穴から押し出す図である。図2(a)と同様に、供給ピン13が矢印方向に移動し負極合剤に接触する際に、絶縁性粉末10と亜鉛粉末または亜鉛合金粉末11の周りに付着しているゲル化剤と電解液の混合物12が供給ピン13に接触する。   FIG. 2 (c) shows that a negative electrode mixture containing an insulating powder 10 having an average particle size of 110 μm or less, a zinc powder or a zinc alloy powder 11, and a mixture 12 of a gelling agent and an electrolytic solution is molded into a cylindrical shape. It is a figure extruded from a round hole. 2A, when the supply pin 13 moves in the direction of the arrow and contacts the negative electrode mixture, the gelling agent adhering around the insulating powder 10 and the zinc powder or the zinc alloy powder 11 The electrolyte mixture 12 contacts the supply pin 13.

図2(d)は、供給ピン13が矢印方向に移動し、供給ピン13から負極合剤が剥がれるところを示す図である。
ここで、負極合剤と負極合剤と供給ピン13とが接触する点に着目すると、図2(a)ではこの接触点が4箇所(丸印の箇所)であるところ、図2(c)ではこの接触点は8箇所となっており、図2(a)の接触点よりも図2(c)の接触点の方が多いことがわかる。また、絶縁性粉末10の粒子径は、図2(a)、(b)の場合よりも図2(c)、(d)の場合の方が小さい。このため、負極合剤を供給ピンから剥がす際に、絶縁性粉末10の平均粒径が110μm以下の場合には、図2(d)に示すように、供給ピン13に絶縁性粉末10が付着したままとなる。このため、負極合剤を繰り返し押し出すと供給ピン13に付着した負極合剤を取り除かなければならなくなり、生産性が低下する。絶縁性粉末10の平均粒径が110μm以上であれば、図2(b)のように、負極合剤は供給ピン13に付着しにくいため、供給ピンから負極合剤を取り除く必要はないか、あってもその頻度は絶縁性粉末10の平均粒径が110μm以下の場合より極めて少ない。また、この絶縁性粉末の平均粒径は、350μm以下であることが好ましい。
FIG. 2 (d) is a diagram showing a place where the supply pin 13 moves in the direction of the arrow and the negative electrode mixture is peeled off from the supply pin 13.
Here, paying attention to the point where the negative electrode mixture, the negative electrode mixture, and the supply pin 13 are in contact with each other, in FIG. 2 (a), there are four contact points (circled points), and FIG. 2 (c). Then, there are 8 contact points, and it can be seen that there are more contact points in FIG. 2C than contact points in FIG. Moreover, the particle diameter of the insulating powder 10 is smaller in the cases of FIGS. 2C and 2D than in the cases of FIGS. 2A and 2B. For this reason, when the negative electrode mixture is peeled from the supply pin, if the average particle size of the insulating powder 10 is 110 μm or less, the insulating powder 10 adheres to the supply pin 13 as shown in FIG. Will remain. For this reason, if the negative electrode mixture is repeatedly extruded, the negative electrode mixture adhering to the supply pin 13 must be removed, and the productivity is lowered. If the average particle size of the insulating powder 10 is 110 μm or more, as shown in FIG. 2B, the negative electrode mixture is difficult to adhere to the supply pin 13, so it is not necessary to remove the negative electrode mixture from the supply pin. Even if it exists, the frequency is very less than the case where the average particle diameter of the insulating powder 10 is 110 micrometers or less. Moreover, it is preferable that the average particle diameter of this insulating powder is 350 micrometers or less.

また、この絶縁性粉末は、撥水性を有することが好ましい。撥水性を有する絶縁性粉末を用いると、電解液及びゲル化剤と絶縁性粉末との間の粘着力が、より低減され、負極合剤7を秤量する際の切れが向上する。
また、絶縁性粉末は、撥水性、純度、価格、粉砕化のし易さ(加工性)、耐アルカリ性等の点から、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか一つ、又は複数からなる樹脂粉末を用いることが好ましい。
The insulating powder preferably has water repellency. When the insulating powder having water repellency is used, the adhesive force between the electrolytic solution and the gelling agent and the insulating powder is further reduced, and the breakage when the negative electrode mixture 7 is weighed is improved.
Further, the insulating powder is any one of polytetrafluoroethylene, polypropylene, polyamide, polyethylene and acrylic resin from the viewpoints of water repellency, purity, price, ease of pulverization (processability), alkali resistance and the like. It is preferable to use one or a plurality of resin powders.

さらに、絶縁性粉末は、負極合剤7に対して、配合率が1体積%〜25体積%であることが好ましい。配合率が1体積%を下回ると、粘弾性調整材としての効果を得ることができなくなり、十分なハンドリング性が得られない。また、25体積%を上回ると、負極合剤7の粘弾性が過度に低くなり、負極合剤7の強度が低下してしまう。負極合剤7の強度が低下すると、負極合剤7がセパレータ上に載置される際に形状が崩れ、載置不良が発生しやすくなる。
さらに、絶縁性粉末は、球形であることが好ましい。球形の絶縁性粉末を用いると、電解液を含んだゲル化剤等との摩擦力が小さくなり、負極合剤7の切れが、より向上される。
Furthermore, it is preferable that a compounding rate is 1 volume%-25 volume% with respect to the negative mix 7 as insulating powder. When the blending ratio is less than 1% by volume, the effect as a viscoelasticity adjusting material cannot be obtained, and sufficient handling properties cannot be obtained. Moreover, when it exceeds 25 volume%, the viscoelasticity of the negative mix 7 will become low too much, and the intensity | strength of the negative mix 7 will fall. When the strength of the negative electrode mixture 7 decreases, the shape of the negative electrode mixture 7 is collapsed when the negative electrode mixture 7 is placed on the separator, and a placement failure tends to occur.
Furthermore, the insulating powder is preferably spherical. When the spherical insulating powder is used, the frictional force with the gelling agent containing the electrolytic solution is reduced, and the breakage of the negative electrode mixture 7 is further improved.

次に、負極合剤7の組成を変更した実施例を行い、当該発明の効果を検証した。
(実施例1)
本実施例では、SR626SW型(外径6.8mm、高さ2.6mm、公称容量30mAh)の扁平形アルカリ一次電池の公称容量を、粘弾性調整材を用いて、10%容量を減らした電池(公称容量27mAh)を作製した。
Next, the example which changed the composition of the negative mix 7 was performed, and the effect of the said invention was verified.
Example 1
In this example, a SR626SW type (outer diameter 6.8 mm, height 2.6 mm, nominal capacity 30 mAh) flat alkaline primary battery having a nominal capacity reduced by 10% using a viscoelasticity adjusting material (Nominal capacity 27 mAh) was produced.

負極合剤7に配合する粘弾性調整材は、ポリエチレン粉末とし、その平均粒径を150μmとした。さらに、負極合剤7を構成する各組成物の配合率を、亜鉛合金粉末25.1体積%、酸化亜鉛(ZnO)1.3体積%、カルボキシメチルセルロース4.9体積%、濃度28質量%の水酸化ナトリウム水溶液53.8体積%、濃度45質量%水酸化カリウム水溶液12.1体積%、ポリエチレン2.8体積%とした。また、亜鉛合金粉末の平均粒径は、150μmとし、亜鉛合金粉末平均粒径に対するポリエチレン粉末平均粒径を100%とした。これらの組成物を混合し、ゲル状の負極合剤7を作製した。   The viscoelasticity adjusting material blended in the negative electrode mixture 7 was polyethylene powder, and the average particle size was 150 μm. Furthermore, the blending ratio of each composition constituting the negative electrode mixture 7 is as follows: zinc alloy powder 25.1% by volume, zinc oxide (ZnO) 1.3% by volume, carboxymethyl cellulose 4.9% by volume, and concentration 28% by mass. Sodium hydroxide aqueous solution 53.8 vol%, concentration 45 mass% potassium hydroxide aqueous solution 12.1 vol%, polyethylene 2.8 vol%. The average particle diameter of the zinc alloy powder was 150 μm, and the average particle diameter of the polyethylene powder with respect to the average particle diameter of the zinc alloy powder was 100%. These compositions were mixed to prepare a gelled negative electrode mixture 7.

正極合材5を構成する各組成物の配合率は、酸化銀(Ag2O)92質量%、二酸化マ
ンガン5質量%、グラファイト2質量%、ランタンニッケル(LaNi5)1質量%とし
た。尚、酸化銀の平均粒径は10μm、二酸化マンガンの平均粒径は30μm、グラファ
イトの平均粒径は15μm、ランタンニッケルの平均粒径は35μmとした。
The compounding ratio of each composition constituting the positive electrode mixture 5 was 92% by mass of silver oxide (Ag 2 O), 5% by mass of manganese dioxide, 2% by mass of graphite, and 1% by mass of lanthanum nickel (LaNi 5 ). The average particle size of silver oxide was 10 μm, the average particle size of manganese dioxide was 30 μm, the average particle size of graphite was 15 μm, and the average particle size of lanthanum nickel was 35 μm.

そして、これらの組成物を混合し、ペレット状に圧縮成型することで、正極合剤5を作製した。このようにして作製された正極合剤5をニッケルメッキが施された鉄製の正極缶2に収容し、その上からセパレータ6を敷設した。また、その正極缶2に圧入となるリング状のガスケット4を挿入した。さらに、セパレータ上に負極合剤7を載置し、この上にガスケット4を介して負極缶3を被せた。そして、正極缶2の開口縁部をかしめることで前述した扁平形アルカリ一次電池1を作製した。
尚、セパレータ6は、ポリエチレンフィルム、セロファン及び不織布から構成され、ガスケット4は、ポリアミド製である。
And these compositions were mixed and the positive mix 5 was produced by compression-molding to a pellet form. The positive electrode mixture 5 thus prepared was housed in an iron positive electrode can 2 plated with nickel, and a separator 6 was laid thereon. Further, a ring-shaped gasket 4 to be press-fitted into the positive electrode can 2 was inserted. Further, the negative electrode mixture 7 was placed on the separator, and the negative electrode can 3 was put on the negative electrode mixture 7 via the gasket 4. And the flat alkali primary battery 1 mentioned above was produced by caulking the opening edge part of the positive electrode can 2. As shown in FIG.
In addition, the separator 6 is comprised from a polyethylene film, a cellophane, and a nonwoven fabric, and the gasket 4 is a product made from polyamide.

(実施例2)
実施例1に対し、亜鉛合金粉末の平均粒径を100μm、ポリエチレン粉末の平均粒径を110μmとし、亜鉛合金粉末の平均粒径に対するポリエチレン粉末の平均粒径を110%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例3)
実施例1に対し、ポリエチレン粉末の平均粒径を110μmとし、亜鉛合金粉末の平均粒径に対するポリエチレン粉末の平均粒径を73%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例4)
実施例1に対し、ポリエチレン粉末の平均粒径を210μmとし、亜鉛合金粉末の平均粒径に対するポリエチレン粉末の平均粒径を140%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例5)
実施例1に対し、亜鉛合金粉末の平均粒径を250μm、ポリエチレン粉末の平均粒径を150μmとし、亜鉛合金粉末の平均粒径に対するポリエチレン粉末の平均粒径を60%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(Example 2)
Unlike Example 1, the average particle diameter of the zinc alloy powder is 100 μm, the average particle diameter of the polyethylene powder is 110 μm, and the average particle diameter of the polyethylene powder with respect to the average particle diameter of the zinc alloy powder is 110%, Other configurations were the same as those in Example 1.
(Example 3)
The only difference from Example 1 is that the average particle size of the polyethylene powder is 110 μm, and the average particle size of the polyethylene powder is 73% with respect to the average particle size of the zinc alloy powder, and the other configurations are the same as in Example 1. I made it.
Example 4
The only difference from Example 1 is that the average particle diameter of the polyethylene powder is 210 μm, and the average particle diameter of the polyethylene powder is 140% with respect to the average particle diameter of the zinc alloy powder. I made it.
(Example 5)
Unlike Example 1, the average particle diameter of the zinc alloy powder is 250 μm, the average particle diameter of the polyethylene powder is 150 μm, and the average particle diameter of the polyethylene powder is 60% with respect to the average particle diameter of the zinc alloy powder. Other configurations were the same as those in Example 1.

(実施例6)
実施例1に対し、亜鉛合金粉末の平均粒径を250μm、ポリエチレン粉末の平均粒径を350μmとし、亜鉛合金粉末の平均粒径に対するポリエチレン粉末の平均粒径を140%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例7)
実施例1に対し、負極合剤7に添加する粘弾性調整材をポリプロピレンとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例8)
実施例1に対し、負極合剤7に添加する粘弾性調整材をポリアミドとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例9)
実施例1に対し、負極合剤7に添加する粘弾性調整材をポリテトラフルオロエチレンとした点のみが異なり、その他の構成は実施例1と同様にした。
(Example 6)
Unlike Example 1, the average particle size of the zinc alloy powder is 250 μm, the average particle size of the polyethylene powder is 350 μm, and the average particle size of the polyethylene powder with respect to the average particle size of the zinc alloy powder is 140%, Other configurations were the same as those in Example 1.
(Example 7)
The only difference from Example 1 was that the viscoelasticity adjusting material added to the negative electrode mixture 7 was polypropylene, and other configurations were the same as in Example 1.
(Example 8)
The only difference from Example 1 was that the viscoelasticity adjusting material added to the negative electrode mixture 7 was polyamide, and the rest of the configuration was the same as in Example 1.
Example 9
The difference from Example 1 was that polytetrafluoroethylene was used as the viscoelasticity adjusting material to be added to the negative electrode mixture 7, and the rest of the configuration was the same as Example 1.

(実施例10)
実施例1に対し、負極合剤7に添加する粘弾性調整材をアクリル樹脂とした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例11)
実施例1に対し、ポリエチレン粉末の配合率を1.0体積%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例12)
実施例1に対し、ポリエチレン粉末の配合率を25.0体積%とした点のみが異なり、
その他の構成は、実施例1と同様にした。
(Example 10)
The only difference from Example 1 was that the viscoelasticity adjusting material added to the negative electrode mixture 7 was an acrylic resin, and other configurations were the same as in Example 1.
(Example 11)
The only difference from Example 1 was that the blending ratio of the polyethylene powder was 1.0% by volume, and the rest of the configuration was the same as Example 1.
(Example 12)
The only difference from Example 1 is that the blending ratio of the polyethylene powder is 25.0% by volume,
Other configurations were the same as those in Example 1.

(比較例1)
実施例1に対し、粘弾性調整材を添加しない点のみが異なり、その他の構成は実施例1と同様にした。
(比較例2)
実施例1に対し、亜鉛合金粉末の平均粒径を100μm、ポリエチレン粉末の平均粒径を60μmとし、亜鉛合金粉末の平均粒径に対する樹脂粉末の平均粒径を60%とした点のみが異なり、その他の構成は実施例1と同様にした。
(比較例3)
実施例1に対し、ポリエチレン粉末の平均粒径を30μmとし、亜鉛合金粉末の平均粒径に対する樹脂粉末の平均粒径を20%とした点のみが異なり、その他の構成は実施例1と同様にした。
(比較例4)
実施例1に対し、ポリエチレン粉末の平均粒径を270μmとし、亜鉛合金粉末の平均粒径に対する樹脂粉末平均粒径を180%とした点のみが異なり、その他の構成は実施例1と同様にした。
(Comparative Example 1)
It differs from Example 1 only in that the viscoelasticity adjusting material is not added, and the other configurations are the same as in Example 1.
(Comparative Example 2)
Unlike Example 1, the average particle diameter of the zinc alloy powder is 100 μm, the average particle diameter of the polyethylene powder is 60 μm, and the average particle diameter of the resin powder with respect to the average particle diameter of the zinc alloy powder is 60%, Other configurations were the same as those in Example 1.
(Comparative Example 3)
The only difference from Example 1 is that the average particle diameter of the polyethylene powder is 30 μm, and the average particle diameter of the resin powder is 20% with respect to the average particle diameter of the zinc alloy powder. Other configurations are the same as in Example 1. did.
(Comparative Example 4)
The only difference from Example 1 was that the average particle diameter of the polyethylene powder was 270 μm, and the average particle diameter of the resin powder with respect to the average particle diameter of the zinc alloy powder was 180%. Other configurations were the same as in Example 1. .

(比較例5)
実施例1に対し、亜鉛合金粉末の平均粒径を250μm、ポリエチレン粉末の平均粒径を50μmとし、亜鉛合金粉末の平均粒径に対する樹脂粉末の平均粒径を20%とした点のみが異なり、その他の構成は実施例1と同様にした。
(比較例6)
実施例1に対し、亜鉛合金粉末の平均粒径を250μm、ポリエチレン粉末の平均粒径を450μmとし、亜鉛合金粉末の平均粒径に対する樹脂粉末の平均粒径を180%とした点のみが異なり、その他の構成は実施例1と同様にした。
(比較例7)
実施例1に対し、ポリエチレン粉末の配合率を0.5体積%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(比較例8)
実施例1に対し、ポリエチレン粉末の配合率を27.0体積%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(Comparative Example 5)
The only difference from Example 1 is that the average particle size of the zinc alloy powder is 250 μm, the average particle size of the polyethylene powder is 50 μm, and the average particle size of the resin powder with respect to the average particle size of the zinc alloy powder is 20%. Other configurations were the same as those in Example 1.
(Comparative Example 6)
Compared to Example 1, the only difference is that the average particle size of the zinc alloy powder is 250 μm, the average particle size of the polyethylene powder is 450 μm, and the average particle size of the resin powder with respect to the average particle size of the zinc alloy powder is 180%, Other configurations were the same as those in Example 1.
(Comparative Example 7)
The difference from Example 1 was that the blending ratio of the polyethylene powder was 0.5% by volume, and the rest of the configuration was the same as Example 1.
(Comparative Example 8)
The difference from Example 1 was that the blending ratio of the polyethylene powder was 27.0% by volume, and the other configuration was the same as that of Example 1.

<検証>
そして、実施例1〜12、及び比較例1〜8の扁平形アルカリ一次電池1を作製し、負極合剤1を載置する際の形状変化、載置性、放電容量とその変動係数を調べるために、以下の検証を行った。
<Verification>
And the flat alkaline primary battery 1 of Examples 1-12 and Comparative Examples 1-8 is produced, and the shape change at the time of mounting the negative mix 1 and mounting property, discharge capacity, and its variation coefficient are investigated. Therefore, the following verification was performed.

<検証1>
所定の容積の丸穴に所定の圧力を加えて負極合剤7を充填後、丸穴の上下を擦り切りながら、丸穴に対し一回り小さい円柱状のピンを用いて、負極合剤7を丸穴から抜き出した。そして、その丸穴に対する負極合剤の形状変化を調査し、各実施例及び比較例の形状変化の有無について評価した。その結果を、図3の表に示す。ここで、稼動時間(h)とは装置稼動からの経過時間をいい、表では、稼動開始から1時間までの結果、及びそれ以後一時間ごとの結果を4時間まで表している。「−」は、負極合剤が完全に崩れてしまい円柱形状を維持できないことを示している。
<Verification 1>
After filling the negative electrode mixture 7 by applying a predetermined pressure to a round hole of a predetermined volume, the negative electrode mixture 7 is rounded using a cylindrical pin that is slightly smaller than the round hole while scraping the top and bottom of the round hole. Extracted from the hole. And the shape change of the negative mix with respect to the round hole was investigated, and the presence or absence of the shape change of each Example and a comparative example was evaluated. The results are shown in the table of FIG. Here, the operation time (h) means an elapsed time from the operation of the apparatus, and in the table, the results from the start of operation to 1 hour and the results every hour thereafter are displayed up to 4 hours. “−” Indicates that the negative electrode mixture is completely broken and the cylindrical shape cannot be maintained.

<検証2>
電池組立機を1時間稼動して、実施例1〜12及び比較例1〜8の扁平形アルカリ一次電池1を作製した。そして、負極合剤7の載置ずれによる、扁平形アルカリ一次電池1の
不良個数を調査した。その結果を、図3の表に示す。稼動時間については、検証1と同じである。「−」は、負極合剤が崩れてしまい、載置できない状態であることを示している。
<Verification 2>
The battery assembly machine was operated for 1 hour to produce flat alkaline primary batteries 1 of Examples 1 to 12 and Comparative Examples 1 to 8. Then, the number of defective flat alkaline primary batteries 1 due to the displacement of the negative electrode mixture 7 was investigated. The results are shown in the table of FIG. The operation time is the same as in the verification 1. “-” Indicates that the negative electrode mixture is broken and cannot be placed.

<検証3>
実施例1〜12及び比較例1〜8の各条件で作製した扁平形アルカリ一次電池1のうち、それぞれ5個を、負荷抵抗30kΩで連続放電させ、0.9Vを終止電圧とした際の放電容量[mAh]を調べ、その変動係数(標準偏差/平均値×100)を算出し、秤量ばらつきに起因する容量ばらつきを調べた。その結果を、図3の表に示す。稼動時間については、検証1と同じである。放電容量変動係数での「−」は、負極合剤が崩れてしまい載置できないため、電池を作製できなかったことを示している。
<Verification 3>
Of the flat alkaline primary batteries 1 produced under the conditions of Examples 1 to 12 and Comparative Examples 1 to 8, 5 were each discharged continuously with a load resistance of 30 kΩ, and discharge when 0.9 V was used as the end voltage. The capacity [mAh] was examined, the coefficient of variation (standard deviation / average value × 100) was calculated, and the capacity variation due to the weighing variation was examined. The results are shown in the table of FIG. The operation time is the same as in the verification 1. “−” In the coefficient of variation in discharge capacity indicates that the battery could not be produced because the negative electrode mixture collapsed and could not be placed.

<検証結果の検討>
・比較例1と実施例1〜12を比較すると、比較例1では、形状は稼動開始から2〜3時間で崩れが発生した。また、載置不良および放電容量の変動は、稼動開始時から1時間以内に発生した。つまり、負極合剤7に、樹脂粉末を添加することによって、負極合剤7の載置ばらつきを低減できるため生産性を向上できることがわかる。これは、負極合剤7に樹脂粉末を適量添加することで、負極合剤7の粘弾性を好ましい状態にすることができるためである。また、検証3で得た放電容量の変動係数から、負極合剤7に樹脂粉末を添加することにより、電気容量のばらつきも低減できることがわかる。これは、負極合剤7に撥水性を有する樹脂粉末を添加することにより、負極合剤自身の切れを向上し秤量ばらつきを低減できるためである。
<Examination of verification results>
When comparing Comparative Example 1 and Examples 1 to 12, in Comparative Example 1, the shape collapsed in 2 to 3 hours from the start of operation. Moreover, the mounting failure and the change in the discharge capacity occurred within one hour from the start of operation. That is, it can be seen that by adding the resin powder to the negative electrode mixture 7, variation in placement of the negative electrode mixture 7 can be reduced, so that productivity can be improved. This is because the viscoelasticity of the negative electrode mixture 7 can be brought into a preferable state by adding an appropriate amount of resin powder to the negative electrode mixture 7. In addition, it can be seen from the coefficient of variation of the discharge capacity obtained in the verification 3 that by adding resin powder to the negative electrode mixture 7, variation in electric capacity can be reduced. This is because adding the resin powder having water repellency to the negative electrode mixture 7 improves the breakage of the negative electrode mixture itself and reduces the weighing variation.

・比較例2と実施例2を比較すると、載置不良については、比較例2では稼動開始時から載置不良が発生しているのに対し、実施例では4時間の稼動においても載置不良が発生していない。放電容量の変動係数も実施例2の方が低くなっていることがわかる。また、形状は、実施例2が4時間の稼動においても良好であるのに対し、比較例2では稼動開始時から3〜4時間で崩れが発生した。これらより、亜鉛合金粉末の平均粒径に対する樹脂粉末の粒径が60〜140%内にあっても、樹脂粉末の平均粒径を110μm以上に保つことによって、生産性が向上できることがわかる。   ・ Comparison between Comparative Example 2 and Example 2 shows that mounting failure has occurred in Comparative Example 2 from the start of operation, whereas in Example 2, mounting failure occurred even after 4 hours of operation. Has not occurred. It can be seen that the variation coefficient of the discharge capacity is lower in Example 2. Further, the shape of Example 2 was good even in operation for 4 hours, whereas in Comparative Example 2, collapse occurred in 3 to 4 hours from the start of operation. These show that productivity can be improved by keeping the average particle size of the resin powder at 110 μm or more even when the particle size of the resin powder is within 60 to 140% with respect to the average particle size of the zinc alloy powder.

・比較例3及び4と実施例3及び4を比較すると、形状では実施例3、4ともに4時間の稼動においても良好であるのに対し、比較例3では、2〜3時間で崩れが発生している。載置不良発生数では、実施例3では3〜4時間で1件、実施例4では4時間の稼動においても載置不良が発生していないのに対し、比較例3では稼動直後、比較例4では2〜3時間で載置不良が発生している。つまり、樹脂粉末の平均粒径が110μm以上であることを満たす範囲に樹脂粉末粒径を調節することにより、載置不良、秤量ばらつきを抑えることが出来ることがわかる。   ・ Comparison between Comparative Examples 3 and 4 and Examples 3 and 4 shows that the shapes of Examples 3 and 4 are good in operation for 4 hours, whereas in Comparative Example 3, collapse occurs in 2 to 3 hours. doing. In the number of placement failures, one case is 3 to 4 hours in Example 3, and no placement failure occurs even in operation for 4 hours in Example 4, whereas in Comparative Example 3, immediately after operation, a comparative example In No. 4, a mounting failure occurs in 2 to 3 hours. That is, it can be seen that by adjusting the resin powder particle size within a range satisfying that the average particle size of the resin powder is 110 μm or more, it is possible to suppress poor mounting and variation in weighing.

・比較例5及び6と実施例5及び6を比較すると、形状では実施例5、6ともに4時間の稼動においても良好であるのに対し、比較例5では、2〜3時間で崩れが発生している。載置不良発生数では、実施例5では3〜4時間で1件、実施例6では4時間の稼動においても載置不良が発生していないのに対し、比較例5では稼動直後、比較例6では2〜3時間で載置不良が発生している。つまり、亜鉛合金粉末平均粒径を250μmに変更した場合でも、樹脂粉末の平均粒径を、亜鉛合金粉末の平均粒径に対する樹脂粉末の粒径が60〜140%内に調節することにより、載置不良、秤量ばらつきを抑えることが出来ることがわかる。   ・ Comparison between Comparative Examples 5 and 6 and Examples 5 and 6 shows that the shapes of Examples 5 and 6 are good in operation for 4 hours, whereas in Comparative Example 5, collapse occurs in 2 to 3 hours. doing. In the number of placement failures, one case is 3 to 4 hours in Example 5, and no placement failure occurs even in operation for 4 hours in Example 6, whereas in Comparative Example 5, immediately after operation, a comparative example In No. 6, a placement failure occurs in 2 to 3 hours. That is, even when the average particle diameter of the zinc alloy powder is changed to 250 μm, the average particle diameter of the resin powder is adjusted by adjusting the particle diameter of the resin powder to 60 to 140% with respect to the average particle diameter of the zinc alloy powder. It can be seen that misplacement and variation in weighing can be suppressed.

ここで、酸化銀電池を代表とする扁平形一次電池の負極に使用される亜鉛粉末又は亜鉛合金粉末として、一般的には、平均粒径が50〜250μmのものが使われる。この平均
粒径が50μmを下回ると、亜鉛の表面積が増えるため、空気中で自然発火する恐れがあり、取り扱いが難しい。逆に250μmを上回ると、亜鉛の表面積が減るため、電池にしたときの放電特性が悪くなる。この亜鉛粉末又は亜鉛合金粉末の平均粒径の最大値は、実施例6から250μmとなるので、樹脂粉末の最大値は、250μm×140%=350μmとなる。
Here, as the zinc powder or zinc alloy powder used for the negative electrode of a flat primary battery typified by a silver oxide battery, one having an average particle diameter of 50 to 250 μm is generally used. When this average particle size is less than 50 μm, the surface area of zinc increases, so there is a risk of spontaneous ignition in the air, and handling is difficult. On the other hand, when the thickness exceeds 250 μm, the surface area of zinc is reduced, so that the discharge characteristics when the battery is made deteriorate. Since the maximum value of the average particle diameter of the zinc powder or the zinc alloy powder is 250 μm from Example 6, the maximum value of the resin powder is 250 μm × 140% = 350 μm.

・比較例7、8と実施例11、12を比較すると、形状では実施例11、12ともに4時間の稼動においても良好であるのに対し、比較例7は2〜3時間、比較例8は1〜2時間で崩れが発生している。載置不良発生数では、実施例11が2〜3時間、実施例12が3〜4時間で載置不良が発生しているのに対し、比較例7では稼動直後、比較例8では1〜2時間で載置不良が発生している。つまり、樹脂粉末の配合率が1体積%を下回ると負極合剤の粘弾性が増大し、粘弾性調整材としての役割を果たさないことがわかる。また、樹脂粉末の配合率が25体積%を上回ると、負極合剤中の樹脂粉末が多すぎるために、僅かな応力でも形状を保てず形が崩れた。この場合も粘弾性調整材としての役割を果たさないことがわかる。   When comparing Comparative Examples 7 and 8 with Examples 11 and 12, the shapes of both Examples 11 and 12 are good in operation for 4 hours, while Comparative Example 7 is 2 to 3 hours and Comparative Example 8 is Collapse occurs in 1 to 2 hours. In the number of placement failures, the placement failure occurred in Example 11 in 2 to 3 hours and in Example 12 in 3 to 4 hours, whereas in Comparative Example 7 immediately after the operation, in Comparative Example 8 it was 1 to 1. A mounting failure occurs in 2 hours. That is, it can be seen that when the blending ratio of the resin powder is less than 1% by volume, the viscoelasticity of the negative electrode mixture increases and does not serve as a viscoelasticity adjusting material. Moreover, when the compounding ratio of the resin powder exceeded 25% by volume, since the amount of the resin powder in the negative electrode mixture was too much, the shape could not be maintained even with a slight stress. Also in this case, it can be seen that it does not serve as a viscoelasticity adjusting material.

上記実施形態によれば、以下のような効果を得ることがわかる。
(1)上記実施形態によれば、負極合剤7は、亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、ゲル化剤を含むとともに、粘弾性調整材として、平均粒径が110μm以上であって亜鉛又は亜鉛合金粉末平均粒径に対して60%〜140%の電解液と反応しない非金属の絶縁性粉末を含む。このため、ゲル化剤の比率が大きくなっても、絶縁性粉末を加えることにより、負極合剤7の粘弾性を調整することができる。従って、電池の電気容量を必要容量に維持しつつ、負極合剤7を秤量及び成型する際のハンドリング性を向上させることができる。また、載置ばらつき及び秤量ばらつきが抑制され、生産性を向上することができる。
According to the embodiment, it can be seen that the following effects are obtained.
(1) According to the above embodiment, the negative electrode mixture 7 has zinc powder or zinc alloy powder as a main negative electrode active material, contains a gelling agent, and has a mean particle size of 110 μm or more as a viscoelasticity adjusting material. And non-metallic insulating powder that does not react with the electrolytic solution of 60% to 140% of the average particle diameter of zinc or zinc alloy powder. For this reason, even if the ratio of a gelatinizer becomes large, the viscoelasticity of the negative mix 7 can be adjusted by adding insulating powder. Therefore, it is possible to improve the handling property when weighing and molding the negative electrode mixture 7 while maintaining the required electric capacity of the battery. Moreover, the mounting variation and the weighing variation are suppressed, and the productivity can be improved.

(2)上記実施形態によれば、粘弾性調整材として負極合剤7に配合する絶縁性粉末を、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のいずれか1つ、又は複数からなる樹脂粉末とした。このため、撥水性、価格、加工性、耐アルカリ性等の条件を満たす粉末を用いて、負極合剤7の粘弾性を調整することができる。 (2) According to the above embodiment, the insulating powder blended in the negative electrode mixture 7 as a viscoelasticity adjusting material is composed of one or more of polytetrafluoroethylene, polypropylene, polyamide, polyethylene and acrylic resin. Resin powder was used. For this reason, the viscoelasticity of the negative electrode mixture 7 can be adjusted using powder satisfying conditions such as water repellency, price, workability, and alkali resistance.

(3)上記実施形態によれば、負極合剤7は絶縁性粉末を1体積%〜25体積%含む。このため、電池の電気容量を必要容量に維持しつつ、良好なハンドリング性が得られる。
尚、上記実施形態を以下のように変更してもよい。
・扁平形一次電池1としては、上記したように、正極活物質を二酸化マンガンとするアルカリボタン電池、酸化銀とする酸化銀電池、オキシ水酸化ニッケルとする電池の他、空気極を有する空気亜鉛電池でもよい。
(3) According to the said embodiment, the negative mix 7 contains 1 volume%-25 volume% of insulating powder. For this reason, good handling properties can be obtained while maintaining the electric capacity of the battery at the required capacity.
In addition, you may change the said embodiment as follows.
As the flat primary battery 1, as described above, an alkaline button battery using manganese dioxide as a positive electrode active material, a silver oxide battery using silver oxide, a battery using nickel oxyhydroxide, and an air zinc having an air electrode A battery may be used.

1…扁平形一次電池としての扁平形アルカリ一次電池
2…正極缶
3…負極缶
4…ガスケット
5…正極合剤
6…セパレータ
7…負極合剤
8…ケース
10…絶縁性粉末
11…亜鉛粉末または亜鉛合金粉末
12…ゲル化剤と電解液の混合物
13…供給ピン
DESCRIPTION OF SYMBOLS 1 ... Flat alkaline primary battery 2 as a flat primary battery 2 ... Positive electrode can 3 ... Negative electrode can 4 ... Gasket 5 ... Positive electrode mixture 6 ... Separator 7 ... Negative electrode mixture 8 ... Case 10 ... Insulating powder 11 ... Zinc powder or Zinc alloy powder 12 ... Mixture of gelling agent and electrolyte 13 ... Supply pin

Claims (4)

負極活物質と、伝導度安定剤と、ゲル化剤と、電解液と、粘弾性調整材と、を含む扁平形一次電池用負極合剤であって、
前記負極活物質は、平均粒径が50μm以上250μmの亜鉛粉末又は亜鉛合金粉末であり、
前記粘弾性調整材は、平均粒径が110μm以上350μm以下かつ前記負極活物質の平均粒径の60%〜140%である、ポリテトラフルオロエチレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか1つ又は複数の樹脂粉末であり、負極合剤中に1体積%以上25体積%以下含まれることを特徴とする扁平形一次電池用負極合剤。
A negative electrode mixture for a flat primary battery, comprising a negative electrode active material, a conductivity stabilizer, a gelling agent, an electrolytic solution, and a viscoelasticity adjusting material,
The negative electrode active material is zinc powder or zinc alloy powder having an average particle size of 50 μm or more and 250 μm,
The viscoelasticity adjusting material may be any one of polytetrafluoroethylene, polyamide, polyethylene, and acrylic resin having an average particle size of 110 μm to 350 μm and 60% to 140% of the average particle size of the negative electrode active material. Alternatively, a negative electrode mixture for flat primary batteries, which is a plurality of resin powders and is contained in the negative electrode mixture in an amount of 1% by volume to 25% by volume.
前記ゲル化剤は、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物を含むことを特徴とする請求項1に記載の扁平形一次電池用負極合剤。   2. The negative electrode mixture for a flat primary battery according to claim 1, wherein the gelling agent includes carboxymethyl cellulose, polyacrylic acid, or a mixture thereof. 請求項1又は請求項2に記載の負極合剤を用いる扁平形一次電池。   A flat primary battery using the negative electrode mixture according to claim 1. 正極缶に正極合剤を充填し、前記正極合剤の上にセパレータを敷設し、ガスケットを圧入する工程と、
前記セパレータの上に請求項1又は請求項2に記載の負極合剤を載置し、負極缶を被せ、前記正極缶の開口縁部をかしめて密閉する工程とからなる扁平形一次電池の製造方法。
Filling a positive electrode can with a positive electrode mixture, laying a separator on the positive electrode mixture, and press-fitting a gasket;
A flat primary battery comprising: a step of placing the negative electrode mixture according to claim 1 on the separator, covering the negative electrode can, and crimping and sealing an opening edge of the positive electrode can. Method.
JP2016057218A 2016-03-22 2016-03-22 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same Active JP6130012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057218A JP6130012B2 (en) 2016-03-22 2016-03-22 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057218A JP6130012B2 (en) 2016-03-22 2016-03-22 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012105459A Division JP5999968B2 (en) 2012-05-02 2012-05-02 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016136530A JP2016136530A (en) 2016-07-28
JP6130012B2 true JP6130012B2 (en) 2017-05-17

Family

ID=56513148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057218A Active JP6130012B2 (en) 2016-03-22 2016-03-22 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6130012B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091562A (en) * 1983-10-25 1985-05-22 Fuji Elelctrochem Co Ltd Cylindrical alkali battery
JPH05225988A (en) * 1992-02-14 1993-09-03 Toshiba Battery Co Ltd Alkaline battery
US6399245B1 (en) * 2000-06-21 2002-06-04 Eveready Battery Company, Inc. Electrochemical cell with an anode containing sulfur
US6620550B2 (en) * 2001-01-23 2003-09-16 The Gillette Company Battery cathode and method of manufacture therefor
JP2007220379A (en) * 2006-02-15 2007-08-30 Toshiba Battery Co Ltd Method of manufacturing gelatinous negative electrode for alkaline battery
JP2010044906A (en) * 2008-08-11 2010-02-25 Seiko Instruments Inc Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery

Also Published As

Publication number Publication date
JP2016136530A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2009151958A (en) Alkaline battery
JP2008262732A (en) Alkaline dry battery
JP5602313B2 (en) Alkaline battery
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP6734155B2 (en) Alkaline battery
JP2008047497A (en) Alkaline battery
JP4281275B2 (en) Alkaline zinc battery
JP2009043547A (en) Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
JP2002117859A (en) Alkaline battery
JP4759900B2 (en) Alkaline zinc battery
JP6434826B2 (en) Flat alkaline primary battery and method for manufacturing the same
JP5135579B2 (en) Flat alkaline battery
JP2010040334A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP2001068121A (en) Cylindrical alkaline battery
JP2008071541A (en) Alkaline battery
JP2003168473A (en) Cylinder type storage battery
EP2096694B1 (en) Flat alkaline primary battery
US20090291362A1 (en) Flat-type alkaline primary battery
JP2002083599A (en) Positive electrode mixture and nickel zinc battery
JP2010044907A (en) Flat-type alkaline primary battery and manufacturing method of flat-type alkaline primary battery
JP5464651B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JPH08171903A (en) Flat type alkali cell
JP2010170908A (en) Manufacturing method for flat primary battery, and flat primary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6130012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250