JP2010044906A - Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery - Google Patents

Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery Download PDF

Info

Publication number
JP2010044906A
JP2010044906A JP2008206900A JP2008206900A JP2010044906A JP 2010044906 A JP2010044906 A JP 2010044906A JP 2008206900 A JP2008206900 A JP 2008206900A JP 2008206900 A JP2008206900 A JP 2008206900A JP 2010044906 A JP2010044906 A JP 2010044906A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode mixture
primary battery
flat
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206900A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008206900A priority Critical patent/JP2010044906A/en
Publication of JP2010044906A publication Critical patent/JP2010044906A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat-type primary battery that can improve productivity, a negative electrode mixture, and a manufacturing method for the flat-type primary battery. <P>SOLUTION: In a flat-type alkaline primary battery 1 having a positive electrode mixture 5, a negative electrode mixture 7, and an electrolytic solution in a can, the negative electrode mixture 7 uses zinc powder or zinc alloy powder as a main negative electrode active material, contains carboxymethyl cellulose or a polyacrylic acid, or a mixed liquid of them, and contains a 1-10 mass% of resin powder that does not reacts with the electrolytic solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、扁平形一次電池、扁平形一次電池の負極合剤及びその製造方法に関する。   The present invention relates to a flat primary battery, a negative electrode mixture for a flat primary battery, and a method for producing the same.

電子腕時計、携帯用電子計算機等の小型電子機器に使用されるコイン形或いはボタン形等の扁平形一次電池は、小型電子機器の高性能化及び低価格化に伴い、高性能化及び低価格化に加え、生産性の向上が求められている。   Flat-type primary batteries such as coin-type or button-type used in small electronic devices such as electronic watches and portable electronic computers are becoming more powerful and cheaper as the performance of smaller electronic devices becomes higher and lower. In addition, there is a need for improved productivity.

この扁平形一次電池としては、正極に二酸化マンガン、負極にゲル状亜鉛粉末を用いたアルカリボタン電池や、正極に酸化銀、負極にゲル状亜鉛粉末を用いた酸化銀電池等が知られている。これらの電池は、正極合剤を充填した正極缶と、負極合剤を充填した負極缶とをセパレータを介してかしめることによって形成されている。   As this flat primary battery, an alkaline button battery using manganese dioxide for the positive electrode and gelled zinc powder for the negative electrode, a silver oxide battery using silver oxide for the positive electrode and gelled zinc powder for the negative electrode, etc. are known. . These batteries are formed by caulking a positive electrode can filled with a positive electrode mixture and a negative electrode can filled with a negative electrode mixture via a separator.

この扁平形一次電池は、各電池サイズに求められる電気容量により、正極合剤や負極合剤における活物質の比率を調整している。例えば、特許文献1では、正極合剤のうち、主反応に関与しないカーボンの含有量を減少させることにより、正極活物質の比率を高くしている。また、必要電気容量が低い場合には、活物質の比率を低く設計する。
特開2003−007292号公報
In this flat primary battery, the ratio of the active material in the positive electrode mixture and the negative electrode mixture is adjusted according to the electric capacity required for each battery size. For example, in Patent Document 1, the ratio of the positive electrode active material is increased by reducing the content of carbon that does not participate in the main reaction in the positive electrode mixture. In addition, when the required electric capacity is low, the active material ratio is designed to be low.
JP 2003-007292 A

ところが、亜鉛又は亜鉛合金を用いたゲル状の負極合剤において、負極活物質の比率を低く設計した場合、ゲル化剤や電解液等の比率が増大するため、負極合剤の粘性又は粘弾性が大きくなる。その結果、電池の組み立て工程での負極合剤のハンドリング性や、生産性が低下してしまう問題があった。   However, in a gelled negative electrode mixture using zinc or a zinc alloy, when the ratio of the negative electrode active material is designed to be low, the ratio of the gelling agent or the electrolyte increases, so the viscosity or viscoelasticity of the negative electrode mixture Becomes larger. As a result, there was a problem that the handling property and productivity of the negative electrode mixture in the battery assembly process were lowered.

本発明は、上記問題点に鑑みてなされたものであり、その目的は、生産性を向上することができる扁平形一次電池、扁平形一次電池の負極合剤及びその製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a flat primary battery capable of improving productivity, a negative electrode mixture of the flat primary battery, and a method for manufacturing the same. is there.

上記問題点を解決するために、本発明は、ゲル状の負極合剤及び電解液を缶内に有する扁平形一次電池において、前記負極合剤は、亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物を含むとともに、前記電解液と反応しない樹脂粉末を1質量%〜10質量%含む。   In order to solve the above problems, the present invention provides a flat primary battery having a gel-like negative electrode mixture and an electrolyte in a can, wherein the negative electrode mixture comprises zinc powder or zinc alloy powder as a main negative electrode active material. And 1% by mass to 10% by mass of resin powder that does not react with the electrolyte solution, and contains carboxymethyl cellulose or polyacrylic acid or a mixture thereof.

この構成によれば、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物に加え、電解液と反応しない樹脂粉末を配合するため、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物の比率を高めても、負極合剤の粘弾性を好適に調整することができる。これにより、電池の電気容量を必要容量に維持しつつ、電池組み立て工程でのハンドリング性と生産性とを向上することができる。   According to this configuration, in addition to carboxymethyl cellulose or polyacrylic acid or a mixture thereof, a resin powder that does not react with the electrolytic solution is blended. The viscoelasticity of the agent can be suitably adjusted. Thereby, handling property and productivity in the battery assembling process can be improved while maintaining the electric capacity of the battery at the required capacity.

この扁平形一次電池において、前記樹脂粉末は撥水性を有する。
この構成によれば、樹脂粉末は撥水性を有するため、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物の比率を高めても、負極合剤の粘弾性を、良好なハンドリング性が得られる粘弾性に調整することができる。
In this flat primary battery, the resin powder has water repellency.
According to this configuration, since the resin powder has water repellency, the viscoelasticity of the negative electrode mixture can be changed to a viscoelasticity that provides good handling properties even if the ratio of carboxymethylcellulose or polyacrylic acid or a mixture thereof is increased. Can be adjusted.

この扁平形一次電池において、前記樹脂粉末は、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか1つ又は複数からなる。   In this flat primary battery, the resin powder is made of one or more of polytetrafluoroethylene, polypropylene, polyamide, polyethylene, and acrylic resin.

この構成によれば、樹脂粉末は、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のいずれか1つ又は複数からなるため、負極合剤の粘弾性を好適に調整することができる。   According to this configuration, since the resin powder is composed of one or more of polytetrafluoroethylene, polypropylene, polyamide, polyethylene, and acrylic resin, the viscoelasticity of the negative electrode mixture can be suitably adjusted.

この扁平形一次電池において、前記樹脂粉末の平均粒径が、1μm〜100μmである。
この構成によれば、樹脂粉末の平均粒径は、1μm〜100μmであるため、秤量ばらつきを抑制することにより、電気容量のばらつきを抑制することができる。
In this flat primary battery, the resin powder has an average particle size of 1 μm to 100 μm.
According to this configuration, since the average particle size of the resin powder is 1 μm to 100 μm, it is possible to suppress variation in electric capacity by suppressing variation in weighing.

本発明は、扁平形一次電池の負極合剤において、亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物を含むとともに、電解液と反応しない樹脂粉末を1質量%〜10質量%含み、ゲル状に形成される。   In the negative electrode mixture of a flat primary battery, the present invention uses zinc powder or zinc alloy powder as a main negative electrode active material, and includes carboxymethyl cellulose, polyacrylic acid, or a mixture thereof, and 1 resin powder that does not react with an electrolytic solution. It contains 10% by mass to 10% by mass and is formed into a gel.

この構成によれば、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物に加え、電解液と反応しない樹脂粉末を配合するため、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物の比率を高めても、負極合剤の粘弾性を好適に調整することができる。これにより、電池の電気容量を必要容量に維持しつつ、電池組み立て工程でのハンドリング性と生産性とを向上することができる。   According to this configuration, in addition to carboxymethyl cellulose or polyacrylic acid or a mixture thereof, a resin powder that does not react with the electrolytic solution is blended. The viscoelasticity of the agent can be suitably adjusted. Thereby, the handling property and productivity in the battery assembly process can be improved while maintaining the electric capacity of the battery at the required capacity.

本発明は、正極合剤及び負極合剤及び電解液を缶内に有する扁平形一次電池の製造方法において、前記負極合剤を、亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸、又はそれらの混合物を配合するとともに、前記電解液と反応しない樹脂粉末を1質量%〜10質量%配合して、ゲル状に形成する。   The present invention provides a method for producing a flat primary battery having a positive electrode mixture, a negative electrode mixture, and an electrolyte solution in a can, wherein the negative electrode mixture is zinc powder or zinc alloy powder as a main negative electrode active material, carboxymethylcellulose or Polyacrylic acid or a mixture thereof is blended, and 1% by mass to 10% by mass of resin powder that does not react with the electrolytic solution is blended to form a gel.

この方法によれば、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物に加え、電解液と反応しない樹脂粉末を配合するため、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物の比率を高めても、負極合剤の粘弾性を好適に調整することができる。これにより、電池の電気容量を必要容量に維持しつつ、電池組み立て工程でのハンドリング性と生産性とを向上することができる。   According to this method, in addition to carboxymethyl cellulose or polyacrylic acid or a mixture thereof, a resin powder that does not react with the electrolyte solution is blended. Therefore, even if the ratio of carboxymethyl cellulose or polyacrylic acid or a mixture thereof is increased, the negative electrode composition is increased. The viscoelasticity of the agent can be suitably adjusted. Thereby, the handling property and productivity in the battery assembly process can be improved while maintaining the electric capacity of the battery at the required capacity.

以下、本発明を具体化した一実施形態を図1に従って説明する。
図1は、正極合剤及び負極合剤及び電解液を扁平形のケース内に収容した扁平形アルカリ一次電池の概略断面図である。図1において、扁平形アルカリ一次電池1はボタン形の一次電池であって、正極缶2及び負極缶3を有している。正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した材質からなり、カップ状に成型されている。この正極缶2は、正極合剤5を収容するとともに、正極端子として機能する。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of a flat alkaline primary battery in which a positive electrode mixture, a negative electrode mixture, and an electrolytic solution are accommodated in a flat case. In FIG. 1, a flat alkaline primary battery 1 is a button-type primary battery, and includes a positive electrode can 2 and a negative electrode can 3. The positive electrode can 2 is made of a material obtained by applying nickel plating to stainless steel (SUS), and is molded into a cup shape. The positive electrode can 2 accommodates the positive electrode mixture 5 and functions as a positive electrode terminal.

負極缶3は、ニッケルよりなる外表面層と、ステンレススチール(SUS)よりなる金属層と、銅よりなる集電体層とを有する3層構造のクラッド材からなり、カップ状に成型されている。また、負極缶3は、その円形の開口部3aが折り返し形成されており、その開口部3aには、例えば、ナイロン製のリング状のガスケット4が装着されている。   The negative electrode can 3 is made of a clad material having a three-layer structure including an outer surface layer made of nickel, a metal layer made of stainless steel (SUS), and a current collector layer made of copper, and is molded into a cup shape. . The negative electrode can 3 has a circular opening 3a formed in a folded shape, and a ring-shaped gasket 4 made of nylon, for example, is attached to the opening 3a.

そして、正極缶2の円形の開口部2aに、負極缶3を、ガスケット4を装着した開口部3a側から嵌合させ、該正極缶2の開口部2aを該ガスケット4に向かってかしめて封口
することによって、円盤状(ボタン形又はコイン形)のケース8が形成される。該ケース8の内部には、密閉空間Sが形成される。
Then, the negative electrode can 3 is fitted into the circular opening 2a of the positive electrode can 2 from the opening 3a side where the gasket 4 is mounted, and the opening 2a of the positive electrode can 2 is caulked toward the gasket 4 to seal it. By doing so, a disk-shaped (button-shaped or coin-shaped) case 8 is formed. A sealed space S is formed inside the case 8.

この密閉空間Sには、正極合剤5、セパレータ6、負極合剤7が収容され、セパレータ6を挟んで正極缶2側に正極合剤5、負極缶3側に負極合剤7がそれぞれ配置されている。   In this sealed space S, the positive electrode mixture 5, the separator 6, and the negative electrode mixture 7 are accommodated, and the positive electrode mixture 5 is disposed on the positive electrode can 2 side and the negative electrode mixture 7 is disposed on the negative electrode can 3 side with the separator 6 interposed therebetween. Has been.

この扁平形アルカリ一次電池1を組み立てる際には、ペレット状に成型された正極合剤5を正極缶2に充填する。また、正極合剤5の上に、セパレータ6を敷設し、正極缶2にガスケット4を圧入する。そして、セパレータ6の上に、ゲル状の負極合剤7を載置し、この上に負極缶3を被せる。さらに、正極缶2の開口縁部をかしめて、ケース8を密閉する。   When assembling the flat alkaline primary battery 1, the positive electrode mixture 5 formed into a pellet is filled in the positive electrode can 2. Further, a separator 6 is laid on the positive electrode mixture 5, and the gasket 4 is press-fitted into the positive electrode can 2. And the gel-like negative mix 7 is mounted on the separator 6, and the negative electrode can 3 is covered on this. Furthermore, the case 8 is sealed by crimping the opening edge of the positive electrode can 2.

正極合剤5は、正極活物質、導電剤、電解液、結着剤等を含んでいる。正極活物質としては、亜鉛又は亜鉛合金を負極活物質とした場合に正極活物質として使用可能であるものであれば特に限定されない。例えば、正極活物質を、酸化銀顆粒又は二酸化マンガン粉末又はそれらの混合物にしてもよい。又は、正極活物質を、オキシ水酸化ニッケル単独、又はコバルト等を固溶したオキシ水酸化ニッケル等にしてもよい。   The positive electrode mixture 5 includes a positive electrode active material, a conductive agent, an electrolytic solution, a binder, and the like. The positive electrode active material is not particularly limited as long as it can be used as the positive electrode active material when zinc or a zinc alloy is used as the negative electrode active material. For example, the positive electrode active material may be silver oxide granules or manganese dioxide powder or a mixture thereof. Alternatively, the positive electrode active material may be nickel oxyhydroxide alone or nickel oxyhydroxide in which cobalt or the like is dissolved.

負極合剤7は、負極活物質、伝導度安定剤、ゲル化剤、電解液及び粘弾性調整材を含んでいる。
負極活物質としては、亜鉛粉末又は亜鉛合金粉末を用いている。伝導度安定剤としては、酸化亜鉛(ZnO)等を用いることができる。また、ゲル化剤としては、カルボキシメチルセルロース、又はポリアクリル酸、又はカルボキシメチルセルロースとポリアクリル酸との混合物が好ましい。カルボキシメチルセルロース又はポリアクリル酸を用いることによって、負極合剤7の電解液に対する親液性及び保液性を向上することができる。
The negative electrode mixture 7 includes a negative electrode active material, a conductivity stabilizer, a gelling agent, an electrolytic solution, and a viscoelasticity adjusting material.
As the negative electrode active material, zinc powder or zinc alloy powder is used. As the conductivity stabilizer, zinc oxide (ZnO) or the like can be used. The gelling agent is preferably carboxymethyl cellulose, polyacrylic acid, or a mixture of carboxymethyl cellulose and polyacrylic acid. By using carboxymethylcellulose or polyacrylic acid, the lyophilicity and liquid retention of the negative electrode mixture 7 with respect to the electrolytic solution can be improved.

電解液は、水酸化カリウム水溶液、又は水酸化ナトリウム水溶液、又はそれらの混合液を用いることができる。
粘弾性調整材は、負極合剤7の粘弾性を、良好なハンドリング性が得られる粘弾性とし、且つ生産性を向上するために配合される。この粘弾性調整材としては、強アルカリ性である電解液と反応しない樹脂粉末が用いられる。ここでは、電解液と化学的反応をせず、且つ電解液を吸収しない状態を、電解液と反応しない状態とする。
As the electrolytic solution, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or a mixture thereof can be used.
The viscoelasticity adjusting material is blended in order to make the viscoelasticity of the negative electrode mixture 7 a viscoelasticity capable of obtaining good handling properties and to improve productivity. As the viscoelasticity adjusting material, a resin powder that does not react with an electrolyte solution that is strongly alkaline is used. Here, the state that does not chemically react with the electrolyte and does not absorb the electrolyte is defined as the state that does not react with the electrolyte.

例えば、必要とする電池の電気容量が低く、負極活物質の比率を小さく設計する場合、その分、粘性の高いゲル化剤や電解液の比率が高くなるが、上記樹脂粉末を加えることで、電解液を含んだゲル化剤と樹脂粉末との間の粘着力が小さくなり、負極合剤7の粘弾性を良好な範囲に調整することができる。   For example, when the required capacity of the battery is low and the ratio of the negative electrode active material is designed to be small, the ratio of the gelling agent or the electrolytic solution with high viscosity is increased accordingly, but by adding the resin powder, The adhesive force between the gelling agent containing the electrolytic solution and the resin powder is reduced, and the viscoelasticity of the negative electrode mixture 7 can be adjusted in a favorable range.

例えば、所定量の負極合剤7をセパレータ上に載置する際、所定容積の丸穴が形成された組立装置に、圧力を付与しながら負極合剤7を充填し、その丸穴の上下を擦り切り用の工具等を用いて擦り切る。さらに、ピンを用いて、成型された負極合剤7を丸穴から抜き出す。上記樹脂粉末を含有した負極合剤7の場合、負極合剤7の切れが向上されるので、負極合剤7が、丸穴の内周面や、ピンから容易に剥がれ落ち、負極合剤7の取り扱いが容易となり、ハンドリング性を向上できる。また、負極合剤7を、一定量擦り切った際のばらつき、セパレータ上に載置する際の載置ばらつき、秤量ばらつきが抑制され、生産性が向上する。   For example, when a predetermined amount of the negative electrode mixture 7 is placed on the separator, the negative electrode mixture 7 is filled while applying pressure to an assembly device in which a predetermined volume of the round hole is formed. Use a scraping tool or the like. Further, using a pin, the molded negative electrode mixture 7 is extracted from the round hole. In the case of the negative electrode mixture 7 containing the resin powder, since the breakage of the negative electrode mixture 7 is improved, the negative electrode mixture 7 is easily peeled off from the inner peripheral surface of the round hole and the pin. Can be easily handled and handling can be improved. Moreover, the dispersion | variation when the negative mix 7 is worn out a fixed amount, the mounting | distribution dispersion | variation at the time of mounting on a separator, and the dispersion | variation in weighing are suppressed, and productivity improves.

この樹脂粉末は、撥水性を有することが好ましい。撥水性を有する樹脂粉末を用いると、電解液及びゲル化剤と樹脂粉末との間の粘着力が、より低減され、負極合剤7を秤量す
る際の切れが向上される。
This resin powder preferably has water repellency. When the resin powder having water repellency is used, the adhesive force between the electrolytic solution and the gelling agent and the resin powder is further reduced, and the breakage when the negative electrode mixture 7 is weighed is improved.

また、樹脂粉末は、負極合剤7に対して、配合率が1質量%〜10質量%であることが好ましい。樹脂粉末の配合率が1質量%を下回ると、電解液及び増粘剤に対する比率が低くなり、十分なハンドリング性が得られない。また、10質量%を上回ると、負極合剤7の粘弾性が過度に低くなり、負極合剤7の強度が低下してしまう。負極合剤7の強度が低下すると、負極合剤7がセパレータ上に載置される際に崩れたり、負極缶3が嵌められる際に壊れたりすることがある。   Moreover, it is preferable that a resin powder is 1 mass%-10 mass% with respect to the negative mix 7. When the blending ratio of the resin powder is less than 1% by mass, the ratio to the electrolytic solution and the thickener becomes low, and sufficient handling properties cannot be obtained. Moreover, when it exceeds 10 mass%, the viscoelasticity of the negative mix 7 will become low too much, and the intensity | strength of the negative mix 7 will fall. When the strength of the negative electrode mixture 7 is lowered, the negative electrode mixture 7 may collapse when placed on the separator, or may break when the negative electrode can 3 is fitted.

また、樹脂粉末は、撥水性、純度、価格、粉砕化のし易さ(加工性)、耐アルカリ性等の点から、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか一つ、又は複数を組み合わせて用いることが好ましい。   The resin powder is any one of polytetrafluoroethylene, polypropylene, polyamide, polyethylene and acrylic resin from the viewpoints of water repellency, purity, price, ease of pulverization (processability), alkali resistance, etc. Or it is preferable to use a combination of plural.

さらに、この樹脂粉末の平均粒径としては、1μm以上、100μm以下が好ましい。尚、平均粒径は、粒度分布曲線において積算値が50%にあたる粒径(D50)である。
平均粒径が、1μmを下回ると、体積単価の点で好ましくない。また、100μmを上回ると、秤量ばらつきが生じやすくなる。
Furthermore, the average particle diameter of the resin powder is preferably 1 μm or more and 100 μm or less. The average particle size is a particle size (D50) corresponding to an integrated value of 50% in the particle size distribution curve.
If the average particle diameter is less than 1 μm, it is not preferable in terms of volume unit price. On the other hand, if it exceeds 100 μm, variation in weighing tends to occur.

さらに、樹脂粉末は、球形であることが好ましい。球形の樹脂粉末を用いると、電解液を含んだゲル化剤等との摩擦力が小さくなり、負極合剤7の切れが、より向上される。
次に、負極合剤7の組成を変更した実施例を行い、当該発明の効果を検証した。
(実施例1)
本実施例では、SR527SW型(外径5.8mm、高さ2.7mm)の扁平形アルカリ一次電池を作製した。
Furthermore, the resin powder is preferably spherical. When the spherical resin powder is used, the frictional force with the gelling agent containing the electrolytic solution is reduced, and the breakage of the negative electrode mixture 7 is further improved.
Next, the example which changed the composition of the negative mix 7 was performed, and the effect of the said invention was verified.
Example 1
In this example, an SR527SW type (outer diameter 5.8 mm, height 2.7 mm) flat alkaline primary battery was fabricated.

負極合剤7に配合する粘弾性調整材は、ポリプロプレン粉末とし、その平均粒径を50μmとした。さらに、負極合剤7を構成する各組成物の配合率を、亜鉛合金粉末62質量%、酸化亜鉛(ZnO)2.3質量%、カルボキシメチルセルロース2.5質量%、濃度28%の水酸化ナトリウム水溶液23.4質量%、濃度45%の水酸化カリウム水溶液5.8質量%、ポリプロピレン4質量%とした。また、亜鉛合金粉末の粒径は、100〜200メッシュとした。これらの組成物を混合し、ゲル状の負極合剤7を作製した。   The viscoelasticity adjusting material to be blended with the negative electrode mixture 7 was made of polypropylene powder, and the average particle size was 50 μm. Furthermore, the mixing ratio of each composition constituting the negative electrode mixture 7 is as follows: zinc alloy powder 62% by mass, zinc oxide (ZnO) 2.3% by mass, carboxymethyl cellulose 2.5% by mass, concentration 28% sodium hydroxide An aqueous solution of 23.4% by mass, a concentration of 45% potassium hydroxide aqueous solution of 5.8% by mass, and polypropylene of 4% by mass were obtained. The particle size of the zinc alloy powder was 100 to 200 mesh. These compositions were mixed to prepare a gelled negative electrode mixture 7.

正極合剤5を構成する各組成物の配合率は、酸化銀(AgO)92質量%、二酸化マンガン5質量%、グラファイト2質量%、ランタンニッケル(LaNi)1質量%とした。尚、酸化銀の平均粒径は10μm、二酸化マンガンの平均粒径は30μm、グラファイトの平均粒径は15μm、ランタンニッケルの平均粒径は35μmとした。 The mixing ratio of each composition constituting the positive electrode mixture 5 was 92% by mass of silver oxide (Ag 2 O), 5% by mass of manganese dioxide, 2% by mass of graphite, and 1% by mass of lanthanum nickel (LaNi 5 ). The average particle size of silver oxide was 10 μm, the average particle size of manganese dioxide was 30 μm, the average particle size of graphite was 15 μm, and the average particle size of lanthanum nickel was 35 μm.

そして、これらの組成物を混合し、ペレット状に圧縮成型することで、正極合剤5を作製した。このようにして作製された正極合剤5をニッケルメッキが施された鉄製の正極缶2に収容し、その上からセパレータ6を敷設した。また、その正極缶2に圧入となるリング状のガスケット4を挿入した。さらに、セパレータ上に負極合剤7を載置し、この上にガスケット4を介して負極缶3を被せた。そして、正極缶2の開口縁部をかしめることで前述した扁平形アルカリ一次電池1を作製した。   And these compositions were mixed and the positive mix 5 was produced by compression-molding to a pellet form. The positive electrode mixture 5 thus prepared was housed in an iron positive electrode can 2 plated with nickel, and a separator 6 was laid thereon. Further, a ring-shaped gasket 4 to be press-fitted into the positive electrode can 2 was inserted. Further, the negative electrode mixture 7 was placed on the separator, and the negative electrode can 3 was put on the negative electrode mixture 7 via the gasket 4. And the flat alkali primary battery 1 mentioned above was produced by caulking the opening edge part of the positive electrode can 2. As shown in FIG.

尚、セパレータ6は、ポリエチレンフィルム、セロファン及び不織布から構成され、ガスケット4は、ポリアミド製である。
(実施例2)
実施例1に対し、負極合剤7に対するポリプロピレンの配合率を1質量%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例3)
実施例1に対し、負極合剤7に対するポリプロピレンの配合率を10質量%とした点のみが異なり、その他の構成は、実施例1と同様にした。
(実施例4)
実施例1に対し、ポリプロピレンの平均粒径を1μmとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例5)
実施例1に対し、ポリプロピレンの平均粒径を100μmとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例6)
実施例1に対し、負極合剤7に添加する粘弾性調整材をポリアミドとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例7)
実施例1に対し、負極合剤7へ添加する粘弾性調整材をポリエチレンとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例8)
実施例1に対し、負極合剤7へ添加する粘弾性調整材をポリテトラフルオロエチレンとした点のみが異なり、その他の構成は実施例1と同様にした。
(実施例9)
実施例1に対し、負極合剤7へ添加する粘弾性調整材をアクリル樹脂とした点のみが異なり、その他の構成は実施例1と同様にした。
(比較例1)
実施例1に対し、粘弾性調整材を添加しない点のみが異なり、その他の構成は実施例1と同様にした。
(比較例2)
実施例1に対し、粘弾性調整材として添加するポリプロピレンの配合率を0.5質量%とし、その他の構成は実施例1と同様にした。
(比較例3)
実施例1に対し、粘弾性調整材として添加するポリプロピレンの配合率を12質量%とし、その他の構成は実施例1と同様にした。
(比較例4)
実施例に対し、粘弾性調整材として添加するポリプロピレンの平均粒径を150μmとし、その他の構成は実施例1と同様にした。
<検証>
そして、実施例1〜9、及び比較例1〜4の扁平形アルカリ一次電池1を作製し、負極合剤7を載置する際の形状変化、載置性、放電容量とその変動係数を調べるために、以下の検証を行った。
<検証1>
所定の容積の丸穴に所定の圧力を加えて負極合剤7を充填後、丸穴の上下を擦り切りながら、丸穴に対し一回り小さい円柱状のピンを用いて、負極合剤7を丸穴から抜き出した。そして、その丸穴に対する負極合剤の形状変化を調査し、各実施例及び比較例の形状変化の有無について評価した。その結果を、図2の表に示す。
<検証2>
電池組立機を1時間稼働して、実施例1〜9及び比較例1〜4の扁平形アルカリ一次電池1を作製した。そして、負極合剤7の載置ずれによる、扁平形アルカリ一次電池1の不良個数を調査した。その結果を、図2の表に示す。
<検証3>
実施例1〜9及び比較例1〜4の各条件で作製した各扁平形アルカリ一次電池1のうち、それぞれ5個を、負荷抵抗30kΩで連続放電させ、0.9Vを終止電圧とした際の放電容量[mAh]を調べた。また、放電容量の変動係数(標準偏差/平均値×100)を算出し、秤量ばらつきに起因する容量ばらつきを調べた。その結果を、図2の表に示す。
In addition, the separator 6 is comprised from a polyethylene film, a cellophane, and a nonwoven fabric, and the gasket 4 is a product made from polyamide.
(Example 2)
The only difference from Example 1 was that the blending ratio of polypropylene with respect to the negative electrode mixture 7 was 1% by mass, and other configurations were the same as in Example 1.
(Example 3)
The only difference from Example 1 was that the blending ratio of polypropylene with respect to the negative electrode mixture 7 was 10% by mass, and other configurations were the same as in Example 1.
Example 4
The only difference from Example 1 was that the average particle size of polypropylene was 1 μm, and the rest of the configuration was the same as Example 1.
(Example 5)
The difference from Example 1 was that the average particle diameter of polypropylene was 100 μm, and the other configuration was the same as Example 1.
(Example 6)
The only difference from Example 1 was that the viscoelasticity adjusting material added to the negative electrode mixture 7 was polyamide, and the rest of the configuration was the same as in Example 1.
(Example 7)
The difference from Example 1 was that polyethylene was used as the viscoelasticity adjusting material to be added to the negative electrode mixture 7, and other configurations were the same as in Example 1.
(Example 8)
The difference from Example 1 was that polytetrafluoroethylene was used as the viscoelasticity adjusting material to be added to the negative electrode mixture 7, and the other configuration was the same as that of Example 1.
Example 9
The only difference from Example 1 was that the viscoelasticity adjusting material added to the negative electrode mixture 7 was an acrylic resin, and the other configurations were the same as in Example 1.
(Comparative Example 1)
It differs from Example 1 only in that the viscoelasticity adjusting material is not added, and the other configurations are the same as in Example 1.
(Comparative Example 2)
Compared to Example 1, the blending ratio of polypropylene added as a viscoelasticity adjusting material was 0.5% by mass, and other configurations were the same as Example 1.
(Comparative Example 3)
Compared to Example 1, the blending ratio of polypropylene added as a viscoelasticity adjusting material was 12% by mass, and other configurations were the same as Example 1.
(Comparative Example 4)
In contrast to the examples, the average particle diameter of polypropylene added as a viscoelasticity adjusting material was 150 μm, and other configurations were the same as those in Example 1.
<Verification>
And the flat alkaline primary battery 1 of Examples 1-9 and Comparative Examples 1-4 is produced, and the shape change at the time of mounting the negative mix 7 and mounting property, discharge capacity, and its variation coefficient are investigated. Therefore, the following verification was performed.
<Verification 1>
After filling the negative electrode mixture 7 by applying a predetermined pressure to a round hole of a predetermined volume, the negative electrode mixture 7 is rounded using a cylindrical pin that is slightly smaller than the round hole while scraping the top and bottom of the round hole. Extracted from the hole. And the shape change of the negative mix with respect to the round hole was investigated, and the presence or absence of the shape change of each Example and a comparative example was evaluated. The results are shown in the table of FIG.
<Verification 2>
The battery assembly machine was operated for 1 hour to produce flat alkaline primary batteries 1 of Examples 1 to 9 and Comparative Examples 1 to 4. Then, the number of defective flat alkaline primary batteries 1 due to the displacement of the negative electrode mixture 7 was investigated. The results are shown in the table of FIG.
<Verification 3>
Of each of the flat alkaline primary batteries 1 produced under the conditions of Examples 1 to 9 and Comparative Examples 1 to 4, 5 were each continuously discharged with a load resistance of 30 kΩ, and 0.9 V was used as the end voltage. The discharge capacity [mAh] was examined. Further, the coefficient of variation (standard deviation / average value × 100) of the discharge capacity was calculated, and the capacity variation due to the weighing variation was examined. The results are shown in the table of FIG.

・実施例1〜9及び比較例1を比較するに、負極合剤7に、樹脂粉末を添加することによって、負極合剤7の載置ばらつきを低減できるため、生産性を向上できることがわかる。これは、負極合剤7に樹脂粉末を適量添加することで、負極合剤7の粘弾性を好ましい状態にすることができるためである。また、検証3で得た放電容量の変動係数から、負極合剤7に樹脂粉末を添加することにより、電気容量のばらつきも低減できることがわかる。これは、負極合剤7に撥水性を有する樹脂粉末を添加することにより、負極合剤自身の切れを向上し秤量ばらつきを低減できるためである。   -When Examples 1-9 and Comparative Example 1 are compared, it can be seen that by adding resin powder to the negative electrode mixture 7, variation in placement of the negative electrode mixture 7 can be reduced, and thus productivity can be improved. This is because the viscoelasticity of the negative electrode mixture 7 can be brought into a preferable state by adding an appropriate amount of resin powder to the negative electrode mixture 7. In addition, it can be seen from the coefficient of variation of the discharge capacity obtained in the verification 3 that by adding resin powder to the negative electrode mixture 7, variation in electric capacity can be reduced. This is because adding the resin powder having water repellency to the negative electrode mixture 7 improves the breakage of the negative electrode mixture itself and reduces the weighing variation.

・樹脂粉末の配合率を0.5質量%とした比較例2は、配合率をそれぞれ1質量%、10質量%とした実施例2〜3に比べ、負極合剤7の載置不良が発生した。また、検証3で得られた放電容量の変動係数から、容量のばらつきも大きくなることがわかった。これは、比較例2の配合率が、好適な範囲の下限である1質量%を下回ることにより、負極合剤7の粘弾性が増大し、上記ピンへの付着や、擦り切りの際のばらつき増大が発生したためである。   ・ Comparative Example 2 in which the blending ratio of the resin powder was 0.5% by mass produced poor placement of the negative electrode mixture 7 as compared with Examples 2 to 3 in which the blending ratios were 1% by mass and 10% by mass, respectively. did. Further, it was found from the coefficient of variation of the discharge capacity obtained in the verification 3 that the variation in capacity becomes large. This is because the viscoelasticity of the negative electrode mixture 7 is increased when the blending ratio of Comparative Example 2 is less than 1% by mass, which is the lower limit of the preferred range, and the dispersion on the pin and the abrasion is increased. This is because of the occurrence.

・また、樹脂粉末の配合率を12質量%とした比較例3では、負極合剤中の樹脂粉末が多すぎるために、僅かな応力でも形状を保てず形が崩れた。これに対し、配合率をそれぞれ1質量%、10質量%とした実施例2〜3では、形状を良好に維持できた。   Further, in Comparative Example 3 in which the blending ratio of the resin powder was 12% by mass, since the resin powder in the negative electrode mixture was too much, the shape could not be maintained even with a slight stress. On the other hand, in Examples 2-3 in which the mixing ratios were 1% by mass and 10% by mass, respectively, the shape could be maintained well.

・樹脂粉末の平均粒径を、150μとした比較例4は、平均粒径をそれぞれ1μm、100μmとした実施例4〜5に比べ、載置不良の発生数が多く、検証2で得られた変動係数も大きかった。このため、平均粒径を1μm〜100μmとすることにより、扁平形アルカリ一次電池1の生産性の低下を防止し、且つ容量のばらつきを低減できることがわかる。   Comparative Example 4 in which the average particle size of the resin powder was 150 μm was larger in the number of placement defects than in Examples 4 to 5 in which the average particle size was 1 μm and 100 μm, respectively, and was obtained in Verification 2. The coefficient of variation was also large. For this reason, it turns out that the fall of productivity of the flat alkaline primary battery 1 can be prevented, and the dispersion | variation in capacity | capacitance can be reduced by making an average particle diameter into 1 micrometer-100 micrometers.

上記実施形態によれば、以下のような効果を得ることがわかる。
(1)上記実施形態によれば、負極合剤7は、亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸、又はそれらの混合物を含むとともに、粘弾性調整材として電解液と反応しない樹脂粉末を、1質量%〜10質量%含む。このため、粘性の高いカルボキシメチルセルロース又はポリアクリル酸の比率が大きくなっても、樹脂粉末を加えることにより、負極合剤7の粘弾性を調整することができる。従って、電池の電気容量を必要容量に維持しつつ、負極合剤7を秤量及び成型する際のハンドリング性を向上させることができる。また、載置ばらつき及び秤量ばらつきが抑制され、生産性を向上することができる。
According to the embodiment, it can be seen that the following effects are obtained.
(1) According to the above embodiment, the negative electrode mixture 7 includes zinc powder or zinc alloy powder as a main negative electrode active material, and includes carboxymethyl cellulose, polyacrylic acid, or a mixture thereof, and electrolysis as a viscoelasticity adjusting material. 1 mass%-10 mass% of resin powder which does not react with a liquid is contained. For this reason, even if the ratio of highly viscous carboxymethylcellulose or polyacrylic acid increases, the viscoelasticity of the negative electrode mixture 7 can be adjusted by adding resin powder. Therefore, it is possible to improve the handling property when weighing and molding the negative electrode mixture 7 while maintaining the required electric capacity of the battery. Moreover, the mounting variation and the weighing variation are suppressed, and the productivity can be improved.

(2)上記実施形態によれば、粘弾性調整材として負極合剤7に配合する樹脂粉末を、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のいずれか1つ、又は複数からなる粉末とした。このため、撥水性、価格、加工性、耐アルカリ性等の条件を満たす粉末を用いて、負極合剤7の粘弾性を調整することができる。   (2) According to the above embodiment, the resin powder blended in the negative electrode mixture 7 as a viscoelasticity adjusting material is a powder composed of one or more of polytetrafluoroethylene, polypropylene, polyamide, polyethylene and acrylic resin. It was. For this reason, the viscoelasticity of the negative electrode mixture 7 can be adjusted using powder satisfying conditions such as water repellency, price, workability, and alkali resistance.

(3)上記実施形態によれば、粘弾性調整材として負極合剤7に配合する樹脂粉末の平均粒径を、1μm〜100μmとした。このため、コストを低減させるとともに、秤量ばらつきを抑制することにより、電気容量のばらつきを抑制することができる。   (3) According to the said embodiment, the average particle diameter of the resin powder mix | blended with the negative mix 7 as a viscoelasticity adjusting material was 1 micrometer-100 micrometers. For this reason, while reducing cost, the dispersion | variation in an electrical capacitance can be suppressed by suppressing the measurement dispersion | variation.

尚、上記実施形態は以下のように変更してもよい。
・扁平形一次電池1としては、上記したように、正極活物質を二酸化マンガンとするアルカリボタン電池、酸化銀とする酸化銀電池、オキシ水酸化ニッケルとする電池の他、空気極を有する空気亜鉛電池でもよい。
In addition, you may change the said embodiment as follows.
As the flat primary battery 1, as described above, an alkaline button battery using manganese dioxide as a positive electrode active material, a silver oxide battery using silver oxide, a battery using nickel oxyhydroxide, and an air zinc having an air electrode A battery may be used.

扁平形アルカリ一次電池の断面図。Sectional drawing of a flat alkaline primary battery. 実施例及び比較例の表。The table | surface of an Example and a comparative example.

符号の説明Explanation of symbols

1…扁平形一次電池としての扁平形アルカリ一次電池、5…正極合剤、7…負極合剤、8…ケース。   DESCRIPTION OF SYMBOLS 1 ... Flat alkaline primary battery as a flat primary battery, 5 ... Positive electrode mixture, 7 ... Negative electrode mixture, 8 ... Case.

Claims (6)

ゲル状の負極合剤及び電解液を缶内に有する扁平形一次電池において、
前記負極合剤は、
亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物を含むとともに、前記電解液と反応しない樹脂粉末を1質量%〜10質量%含むことを特徴とする扁平形一次電池。
In a flat primary battery having a gel-like negative electrode mixture and an electrolyte in a can,
The negative electrode mixture is
A flat product comprising zinc powder or zinc alloy powder as a main negative electrode active material, containing carboxymethyl cellulose, polyacrylic acid or a mixture thereof, and containing 1% by mass to 10% by mass of a resin powder which does not react with the electrolytic solution. Primary battery.
請求項1に記載の扁平形一次電池において、
前記樹脂粉末は撥水性を有することを特徴とする扁平形一次電池。
The flat primary battery according to claim 1,
The flat primary battery, wherein the resin powder has water repellency.
請求項1又は2に記載の扁平形一次電池において、
前記樹脂粉末は、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン及びアクリル樹脂のうちいずれか1つ又は複数からなることを特徴とする扁平形一次電池。
The flat primary battery according to claim 1 or 2,
2. The flat primary battery according to claim 1, wherein the resin powder is one or more of polytetrafluoroethylene, polypropylene, polyamide, polyethylene, and acrylic resin.
請求項1〜3のいずれか1項に記載の扁平形一次電池において、
前記樹脂粉末の平均粒径が、1μm〜100μmであることを特徴とする扁平形一次電池。
The flat primary battery according to any one of claims 1 to 3,
A flat primary battery, wherein the resin powder has an average particle diameter of 1 μm to 100 μm.
扁平形一次電池の負極合剤において、
亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸又はそれらの混合物を含むとともに、電解液と反応しない樹脂粉末を1質量%〜10質量%含み、ゲル状に形成されることを特徴とする扁平形一次電池の負極合剤。
In the negative electrode mixture of flat primary batteries,
Zinc powder or zinc alloy powder is used as the main negative electrode active material, and it contains carboxymethyl cellulose, polyacrylic acid or a mixture thereof, and contains 1% by mass to 10% by mass of resin powder that does not react with the electrolyte, and is formed into a gel. A negative electrode mixture for a flat primary battery.
ゲル状の負極合剤及び電解液を缶内に有する扁平形一次電池の製造方法において、
前記負極合剤を、亜鉛粉末又は亜鉛合金粉末を主負極活物質とし、カルボキシメチルセルロース又はポリアクリル酸、又はそれらの混合物を配合するとともに、前記電解液と反応しない樹脂粉末を1質量%〜10質量%配合して形成することを特徴とする扁平形一次電池の製造方法。
In a method for producing a flat primary battery having a gelled negative electrode mixture and an electrolyte in a can,
The negative electrode mixture is composed of zinc powder or zinc alloy powder as a main negative electrode active material, carboxymethyl cellulose, polyacrylic acid, or a mixture thereof is blended, and 1% by mass to 10% by mass of a resin powder that does not react with the electrolytic solution. A method for producing a flat primary battery, comprising:
JP2008206900A 2008-08-11 2008-08-11 Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery Pending JP2010044906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206900A JP2010044906A (en) 2008-08-11 2008-08-11 Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206900A JP2010044906A (en) 2008-08-11 2008-08-11 Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery

Publications (1)

Publication Number Publication Date
JP2010044906A true JP2010044906A (en) 2010-02-25

Family

ID=42016145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206900A Pending JP2010044906A (en) 2008-08-11 2008-08-11 Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery

Country Status (1)

Country Link
JP (1) JP2010044906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660901A1 (en) 2012-05-02 2013-11-06 Seiko Instruments Inc. Flat primary battery, negative electrode mixture for flat primary battery, and method for manufacturing flat primary battery
JP2016136530A (en) * 2016-03-22 2016-07-28 セイコーインスツル株式会社 Flat primary battery, negative electrode mixture of flat primary battery, and method of manufacturing the same
WO2022196358A1 (en) 2021-03-16 2022-09-22 セイコーインスツル株式会社 Terminal-equipped button cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660901A1 (en) 2012-05-02 2013-11-06 Seiko Instruments Inc. Flat primary battery, negative electrode mixture for flat primary battery, and method for manufacturing flat primary battery
US20130295438A1 (en) * 2012-05-02 2013-11-07 Seiko Instruments Inc. Flat primary battery, negative electrode mixture for flat primary battery, and method for manufacturing flat primary battery
JP2013235654A (en) * 2012-05-02 2013-11-21 Seiko Instruments Inc Flat primary battery, negative electrode mixture of the same, and process of manufacturing the same
US9219270B2 (en) 2012-05-02 2015-12-22 Seiko Instruments Inc. Flat primary battery, negative electrode mixture for flat primary battery, and method for manufacturing flat primary battery
JP2016136530A (en) * 2016-03-22 2016-07-28 セイコーインスツル株式会社 Flat primary battery, negative electrode mixture of flat primary battery, and method of manufacturing the same
WO2022196358A1 (en) 2021-03-16 2022-09-22 セイコーインスツル株式会社 Terminal-equipped button cell

Similar Documents

Publication Publication Date Title
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP5602313B2 (en) Alkaline battery
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP4281275B2 (en) Alkaline zinc battery
JP2002117859A (en) Alkaline battery
JP6548417B2 (en) Flat alkaline primary battery
JP4759900B2 (en) Alkaline zinc battery
JP2010040334A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP2001068121A (en) Cylindrical alkaline battery
JP4892796B2 (en) Alkaline zinc battery
JP3505824B2 (en) Flat alkaline battery
JP2010044907A (en) Flat-type alkaline primary battery and manufacturing method of flat-type alkaline primary battery
JP2003168473A (en) Cylinder type storage battery
JP5464651B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
EP2096694B1 (en) Flat alkaline primary battery
JP2003123745A (en) Alkaline zinc battery
US20090291362A1 (en) Flat-type alkaline primary battery
JP2008258098A (en) Flat alkaline cell
JP2010170908A (en) Manufacturing method for flat primary battery, and flat primary battery
JP2010170909A (en) Manufacturing method for flat primary battery, and flat primary battery
JP2010092770A (en) Flat alkaline primary battery and its positive electrode mixture
JP2017162798A (en) Flat-shaped alkali primary battery
JP2010238671A (en) Alkaline zinc battery
JP2006012493A (en) Alkaline battery