JP2010170909A - Manufacturing method for flat primary battery, and flat primary battery - Google Patents

Manufacturing method for flat primary battery, and flat primary battery Download PDF

Info

Publication number
JP2010170909A
JP2010170909A JP2009013425A JP2009013425A JP2010170909A JP 2010170909 A JP2010170909 A JP 2010170909A JP 2009013425 A JP2009013425 A JP 2009013425A JP 2009013425 A JP2009013425 A JP 2009013425A JP 2010170909 A JP2010170909 A JP 2010170909A
Authority
JP
Japan
Prior art keywords
positive electrode
mass
primary battery
silver oxide
nickel oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013425A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009013425A priority Critical patent/JP2010170909A/en
Publication of JP2010170909A publication Critical patent/JP2010170909A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a flat primary battery having suitable battery capacity at low costs, and the flat primary battery. <P>SOLUTION: In the manufacturing method for the flat primary battery 1 for storing a positive electrode mixture 5 in a positive electrode can 2, the positive electrode mixture 5 including nickel oxyhydroxide and silver oxide is stored in the positive electrode can 2, silver-nickel complex oxide is produced by reacting the nickel oxyhydroxide and the silver oxide in the positive electrode can 2, and a mass ratio of the silver oxide is set up to be 1.2 or more to the nickel oxyhydroxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、扁平形一次電池の製造方法及び扁平形一次電池に関する。   The present invention relates to a method for manufacturing a flat primary battery and a flat primary battery.

電子腕時計等の小型電子機器に使用されるコイン形或いはボタン形等の扁平形一次電池としては、正極合剤に酸化銀を用いた酸化銀電池や、正極合剤に二酸化マンガンを用いたアルカリボタン電池等が既に生産されている。   Flat primary batteries, such as coin-type or button-type, used for small electronic devices such as electronic watches, silver oxide batteries using silver oxide as the positive electrode mixture, and alkaline buttons using manganese dioxide as the positive electrode mixture Batteries have already been produced.

酸化銀電池は、体積エネルギー密度が高く、且つ負極活物質を亜鉛としたときの電池電圧が1.56ボルト付近で平坦であるため、終止電圧が1.2ボルト以上の電子腕時計等の小型電子機器用の電源として用いられている。   Since the silver oxide battery has a high volumetric energy density and a flat battery voltage of 1.56 volts when the negative electrode active material is zinc, it is a small electronic device such as an electronic wristwatch with a final voltage of 1.2 volts or more. It is used as a power source for equipment.

しかしながら、酸化銀は、性能的に良好であるももの、貴金属である銀が主成分であるため高価であり、製造原価の低減や安定を図る上で使用し難い。
一方、二酸化マンガンは、質量当たりの価格が、酸化銀の100分の1以下と圧倒的に安価である利点を有する。しかし、二酸化マンガンは、酸化銀に比べ、体積エネルギー密度が低く、且つ放電電位の平坦性が劣る。従って、終止電圧が高めに設定されている機器に用いられる場合、二酸化マンガンの放電に伴う電圧降下から、機器の使用時間が極端に短くなってしまうという問題がある。
However, although silver oxide has good performance, it is expensive because silver, which is a noble metal, is the main component, and is difficult to use in order to reduce and stabilize manufacturing costs.
On the other hand, manganese dioxide has the advantage that the price per mass is over 1/100 that of silver oxide and is overwhelmingly inexpensive. However, manganese dioxide has a lower volumetric energy density and inferior flatness of the discharge potential than silver oxide. Therefore, when used in a device whose end voltage is set high, there is a problem that the usage time of the device becomes extremely short due to a voltage drop caused by discharge of manganese dioxide.

これに対し、正極活物質にオキシ水酸化ニッケルを用いる電池が提案されている(例えば、特許文献1参照)。オキシ水酸化ニッケルは、酸化銀に比べ、高い放電電圧を有する。   On the other hand, a battery using nickel oxyhydroxide as a positive electrode active material has been proposed (see, for example, Patent Document 1). Nickel oxyhydroxide has a higher discharge voltage than silver oxide.

特開2008−210719号公報JP 2008-210719 A

しかし、オキシ水酸化ニッケルは、酸化銀に比べて、放電電圧の平坦性に劣るといった欠点を有している。また、オキシ水酸化ニッケルは、単位質量当たりの理論電気容量が、二酸化マンガンの1価当たりの理論電気容量よりも低く、その電池容量の向上が課題となっている。   However, nickel oxyhydroxide has a defect that the discharge voltage is less flat than silver oxide. Further, nickel oxyhydroxide has a lower theoretical electric capacity per unit mass than the theoretical electric capacity per monovalent of manganese dioxide, and improvement of the battery capacity has been a problem.

本発明は、上記問題点に鑑みてなされたものであり、その目的は、安価で良好な電池容量の扁平形一次電池の製造方法及び扁平形一次電池を提供することにある。
また、本発明の別の目的は、オキシ水酸化ニッケルと酸化銀との反応時間を短縮化することができる扁平形一次電池の製造方法及び扁平形一次電池を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a flat primary battery having a low battery capacity and good battery capacity, and a flat primary battery.
Another object of the present invention is to provide a method for producing a flat primary battery and a flat primary battery capable of shortening the reaction time between nickel oxyhydroxide and silver oxide.

上記問題点を解決するために、本発明は、正極合剤を正極缶内に収容する扁平形一次電池の製造方法において、オキシ水酸化ニッケル及び酸化銀を含む前記正極合剤を、電解液とともに前記正極缶に収容し、当該正極缶内で前記オキシ水酸化ニッケルと前記酸化銀とを反応させることにより、銀・ニッケル複合酸化物を生成させ、前記酸化銀の質量比を、前記オキシ水酸化ニッケルに対して、1.2以上とする。   In order to solve the above problems, the present invention provides a method for producing a flat primary battery in which a positive electrode mixture is accommodated in a positive electrode can, and the positive electrode mixture containing nickel oxyhydroxide and silver oxide, together with an electrolyte, The positive electrode can is accommodated, and the nickel oxyhydroxide and the silver oxide are reacted in the positive electrode can to produce a silver / nickel composite oxide, and the mass ratio of the silver oxide is determined based on the mass ratio of the silver oxyhydroxide. 1.2 or more with respect to nickel.

これによれば、酸化銀の質量比を、オキシ水酸化ニッケルに対して1.2以上とするので、全てのオキシ水酸化ニッケルを、酸化銀と反応させる。
この扁平形一次電池の製造方法において、前記電解液の比率を、前記正極合剤に対して5質量%以上、10質量%以下とする。
According to this, since the mass ratio of silver oxide is 1.2 or more with respect to nickel oxyhydroxide, all nickel oxyhydroxide is reacted with silver oxide.
In the method for manufacturing a flat primary battery, the ratio of the electrolytic solution is 5% by mass or more and 10% by mass or less with respect to the positive electrode mixture.

これによれば、電解液の比率を、正極合剤に対して5質量%以上10質量%以下としたため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、耐漏液性を向上することができる。   According to this, since the ratio of the electrolytic solution is 5% by mass or more and 10% by mass or less with respect to the positive electrode mixture, the reaction between silver oxide and nickel oxyhydroxide is facilitated and the leakage resistance is improved. be able to.

この扁平形一次電池の製造方法において、前記電解液は、水酸化カリウム水溶液であって、その濃度が30%以上、45%以下である。
これによれば、電解液を、水酸化カリウム水溶液とし、その濃度を30%以上、45%以下とするので、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。
In the method for manufacturing a flat primary battery, the electrolytic solution is an aqueous potassium hydroxide solution, and the concentration thereof is 30% or more and 45% or less.
According to this, since the electrolytic solution is an aqueous potassium hydroxide solution and the concentration thereof is 30% or more and 45% or less, the reaction between silver oxide and nickel oxyhydroxide is facilitated, and the battery characteristics and leakage resistance are improved. Can be improved.

この扁平形一次電池の製造方法において、前記電解液は、水酸化ナトリウム水溶液であって、その濃度が20%以上、35%以下である。
これによれば、電解液を、水酸化ナトリウム水溶液とし、その濃度を20%以上、35%以下とするので、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。
In the method for manufacturing a flat primary battery, the electrolytic solution is an aqueous sodium hydroxide solution having a concentration of 20% or more and 35% or less.
According to this, since the electrolytic solution is a sodium hydroxide aqueous solution and the concentration thereof is 20% or more and 35% or less, the reaction between silver oxide and nickel oxyhydroxide is facilitated, and battery characteristics and leakage resistance are prevented. Can be improved.

本発明の扁平形一次電池は、上記の製造方法で製造される。
これによれば、酸化銀の質量比を、オキシ水酸化ニッケルに対して1.2以上とするので、全てのオキシ水酸化ニッケルを、酸化銀と反応させることができる。
The flat primary battery of the present invention is manufactured by the above manufacturing method.
According to this, since the mass ratio of silver oxide is 1.2 or more with respect to nickel oxyhydroxide, all the nickel oxyhydroxide can be reacted with silver oxide.

本実施形態の扁平形一次電池の断面図。Sectional drawing of the flat primary battery of this embodiment. 実施例及び比較例の検討結果を示す表。The table | surface which shows the examination result of an Example and a comparative example.

以下、本発明の実施形態について図1〜図2に従って説明する。図1は、扁平形一次電池の概略断面図である。図1において、扁平形一次電池1はボタン形の一次電池であって、有底円筒状の正極缶2及び有蓋円筒状の負極缶3を有している。正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した構成であって、正極端子を兼ねている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a flat primary battery. In FIG. 1, a flat primary battery 1 is a button-type primary battery, and includes a bottomed cylindrical positive electrode can 2 and a covered cylindrical negative electrode can 3. The positive electrode can 2 has a structure in which nickel plating is applied to stainless steel (SUS), and also serves as a positive electrode terminal.

負極缶3は、ニッケルよりなる外表面層3Aと、ステンレススチール(SUS)よりなる金属層3Bと、銅よりなる集電体層3Cとの3層クラッド材がカップ状にプレス加工されて形成されている。また、負極缶3は、その開口部が、外周面に沿って折り曲げて形成されており、その折り曲げられた開口部には、例えば、ナイロン製のリング状のガスケット4が装着されている。   The negative electrode can 3 is formed by pressing a three-layer clad material of an outer surface layer 3A made of nickel, a metal layer 3B made of stainless steel (SUS), and a current collector layer 3C made of copper into a cup shape. ing. Further, the negative electrode can 3 is formed such that its opening is bent along the outer peripheral surface, and, for example, a ring-shaped gasket 4 made of nylon is attached to the bent opening.

そして、正極缶2の円形の開口部に、負極缶3を、ガスケット4を装着した開口部側から嵌合させ、該正極缶2の開口部を該ガスケット4に向かってかしめて封口することによって、正極缶2と負極缶3は、互いに連結固定されている。正極缶2と負極缶3を連結固定することによって、ガスケット4を介して正極缶2と負極缶3の間には、密閉空間が形成される。   Then, the negative electrode can 3 is fitted into the circular opening of the positive electrode can 2 from the opening side where the gasket 4 is mounted, and the opening of the positive electrode can 2 is crimped toward the gasket 4 and sealed. The positive electrode can 2 and the negative electrode can 3 are connected and fixed to each other. By connecting and fixing the positive electrode can 2 and the negative electrode can 3, a sealed space is formed between the positive electrode can 2 and the negative electrode can 3 via the gasket 4.

この密閉空間には、正極合剤5、セパレータ6、負極合剤7が収容されている。正極合剤5は、円柱状のペレットに形成され、正極缶2の底面2bに載置されている。この正極合剤5は、オキシ水酸化ニッケル及び酸化銀が正極缶内で反応することにより生成された
銀・ニッケル複合酸化物(AgNiO)を含有する正極活物質と、結着剤等から構成されている。
In this sealed space, a positive electrode mixture 5, a separator 6, and a negative electrode mixture 7 are accommodated. The positive electrode mixture 5 is formed in a cylindrical pellet and is placed on the bottom surface 2 b of the positive electrode can 2. This positive electrode mixture 5 is composed of a positive electrode active material containing a silver / nickel composite oxide (AgNiO 2 ) produced by the reaction of nickel oxyhydroxide and silver oxide in a positive electrode can, and a binder. Has been.

詳述すると、扁平形一次電池1の製造工程において、正極缶2に、オキシ水酸化ニッケル、酸化銀及び結着剤等を混合したペレットを、アルカリ電解液とともに収容する。これにより、オキシ水酸化ニッケル及び酸化銀が正極缶内で反応し(式1参照)、銀・ニッケル複合酸化物が生成される。   More specifically, in the manufacturing process of the flat primary battery 1, pellets in which nickel oxyhydroxide, silver oxide, a binder and the like are mixed are accommodated in the positive electrode can 2 together with an alkaline electrolyte. As a result, nickel oxyhydroxide and silver oxide react in the positive electrode can (see Formula 1) to produce a silver / nickel composite oxide.

2NiOOH+AgO → 2AgNiO+HO・・・(1)
銀・ニッケル複合酸化物は、正極において活物質として機能し、その電池電圧は、平均1.35V程度であり、終止電圧が1.2Vの機器にも十分使用できる。また、銀・ニッケル複合酸化物は、その理論エネルギー密度が酸化銀に比べ高く、容量に優れた電池を得ることができるといった利点を有する。さらに、銀・ニッケル複合酸化物は、高導電率を有するとともに、高い結着力を有し、正極合剤内の各粒子を結着させて膨潤を抑制する。
2NiOOH + Ag 2 O → 2AgNiO 2 + H 2 O (1)
The silver / nickel composite oxide functions as an active material in the positive electrode, and its battery voltage is about 1.35V on average, and can be sufficiently used for devices having a final voltage of 1.2V. Further, the silver / nickel composite oxide has an advantage that a theoretical energy density is higher than that of silver oxide, and a battery having excellent capacity can be obtained. Furthermore, the silver / nickel composite oxide has a high conductivity and a high binding force, and binds each particle in the positive electrode mixture to suppress swelling.

この銀・ニッケル複合酸化物の加工費は、オキシ水酸化ニッケルの加工費に対し10倍程度、酸化銀の加工費と比べても数倍と高い。このため、電池内でオキシ水酸化ニッケルと酸化銀とから銀・ニッケル複合酸化物を生成させることにより、電池特性に優れた銀・ニッケル複合酸化物を、安価に作製することができる。   The processing cost of this silver / nickel composite oxide is about 10 times that of nickel oxyhydroxide and several times higher than the processing cost of silver oxide. For this reason, by producing a silver / nickel composite oxide from nickel oxyhydroxide and silver oxide in the battery, a silver / nickel composite oxide having excellent battery characteristics can be produced at low cost.

また、正極合剤5におけるオキシ水酸化ニッケルと酸化銀との質量比は、1:1.2を下限として、酸化銀を増加させることが好ましい。換言すると、酸化銀は、オキシ水酸化ニッケルに対し、1.2(倍)以上の質量比で含まれていることが好ましい。正極合剤5におけるオキシ水酸化ニッケルと酸化銀の質量比を上記範囲とすることにより、正極合剤5に含まれる全てのオキシ水酸化ニッケルを、酸化銀と残さず反応させることができる。   The mass ratio of nickel oxyhydroxide to silver oxide in the positive electrode mixture 5 is preferably 1: 1.2, and the silver oxide is increased. In other words, the silver oxide is preferably contained in a mass ratio of 1.2 (times) or more with respect to nickel oxyhydroxide. By setting the mass ratio of nickel oxyhydroxide and silver oxide in the positive electrode mixture 5 within the above range, all of the nickel oxyhydroxide contained in the positive electrode mixture 5 can be reacted without leaving silver oxide.

酸化銀に対する比率が、1.2を下回ると、反応完了後に、正極合剤中に未反応のオキシ水酸化ニッケルが残留する可能性がある。正極合剤中に未反応のオキシ水酸化ニッケルが残る場合、扁平形一次電池1の放電カーブに、オキシ水酸化ニッケルの1.6V付近の電位が現れる。従って、1.56V付近の酸化銀の電位との間に、電位の段差が生じ、例えば扁平形一次電池1を時計に用いた場合に、時計に内蔵された水晶発振器の動作が不安定となり、時計の進度が変化してしまうおそれがある。   If the ratio to silver oxide is less than 1.2, unreacted nickel oxyhydroxide may remain in the positive electrode mixture after completion of the reaction. When unreacted nickel oxyhydroxide remains in the positive electrode mixture, a potential near 1.6 V of nickel oxyhydroxide appears in the discharge curve of the flat primary battery 1. Therefore, there is a potential step between the potential of silver oxide near 1.56V, and for example, when the flat primary battery 1 is used in a watch, the operation of the crystal oscillator built in the watch becomes unstable, The progress of the watch may change.

また、正極缶2の収容凹部10に収容され、正極合剤5に含浸させる電解液は、正極合剤5に対する質量比が、5質量%以上、10質量%以下であることが好ましい。電解液を、この範囲内で加えることにより、オキシ水酸化ニッケルと酸化銀との反応を円滑にして、銀・ニッケル複合酸化物の生成を促進することができる。電解液の質量比率が、正極合剤5に対して5質量%未満である場合、全てのオキシ水酸化ニッケルが反応するまでの反応時間が、質量比率が上記範囲である場合に比べて数倍長くなる傾向が見られる。或いは、全てのオキシ水酸化ニッケルが反応しきれずに、未反応のオキシ水酸化ニッケルが残ることもある。また、電解液を、正極合剤5に対して、10質量%以上加えると、電池からの電解液の漏液性が高まる傾向がある。   Moreover, it is preferable that mass ratio with respect to the positive mix 5 is 5 mass% or more and 10 mass% or less of the electrolyte solution accommodated in the accommodation recessed part 10 of the positive electrode can 2 and impregnating the positive mix 5. By adding the electrolytic solution within this range, the reaction between nickel oxyhydroxide and silver oxide can be facilitated to promote the formation of a silver / nickel composite oxide. When the mass ratio of the electrolytic solution is less than 5% by mass with respect to the positive electrode mixture 5, the reaction time until all the nickel oxyhydroxide reacts is several times that when the mass ratio is in the above range. There is a tendency to become longer. Alternatively, not all nickel oxyhydroxide can be reacted and unreacted nickel oxyhydroxide may remain. Moreover, when 10 mass% or more of electrolyte solution is added with respect to the positive electrode mixture 5, the liquid leakage property of the electrolyte solution from a battery tends to increase.

さらに、この電解液は、濃度20〜35%(w/v)の水酸化ナトリウム水溶液か、濃度30〜45%(w/v)の水酸化カリウム水溶液とすることが好ましい。この濃度範囲にすると、銀・ニッケル複合酸化物が生成した後の電池内の電解液の導電性を好適な範囲とし、閉路電圧特性及び耐漏液性に優れた電池を得ることができる。また、電解液を、水酸化ナトリウム水溶液及び水酸化カリウム水溶液を混合して生成する場合にも、上記濃度範囲の水酸化ナトリウム水溶液及び水酸化カリウム水溶液を混合することが好ましい。   Further, this electrolytic solution is preferably a sodium hydroxide aqueous solution having a concentration of 20 to 35% (w / v) or a potassium hydroxide aqueous solution having a concentration of 30 to 45% (w / v). When the concentration is within this range, the conductivity of the electrolytic solution in the battery after the silver / nickel composite oxide is formed is in a suitable range, and a battery having excellent closed circuit voltage characteristics and leakage resistance can be obtained. Further, when the electrolytic solution is produced by mixing a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution, it is preferable to mix a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution in the above concentration range.

電解液の濃度が上記範囲未満である場合、電解液の粘性が不足するため、正極缶内で流動しやすくなり、その結果、漏液性が高まる傾向がある。さらに、電解液の濃度が上記範囲未満である場合、オキシ水酸化ニッケルと酸化銀との反応時間が長くなる傾向が見られる。また、電解液の質量比率が、上記範囲外を超える場合、電解液の粘性が高すぎて、正極合剤5に対する吸収性が低下し、これも漏液性が高まる傾向がある。   When the concentration of the electrolytic solution is less than the above range, since the viscosity of the electrolytic solution is insufficient, the electrolytic solution tends to flow in the positive electrode can, and as a result, liquid leakage tends to increase. Furthermore, when the concentration of the electrolytic solution is less than the above range, the reaction time between nickel oxyhydroxide and silver oxide tends to be long. Moreover, when the mass ratio of electrolyte solution exceeds the said range, the viscosity of electrolyte solution is too high, the absorptivity with respect to the positive mix 5 falls, and this also has the tendency for liquid-leakage property to increase.

また、オキシ水酸化ニッケルの表面は、導電性に優れるオキシ水酸化コバルト(CoOOH)で被覆することが好ましい。オキシ水酸化ニッケルの表面をオキシ水酸化コバルトで被覆することにより、グラファイト等の放電容量に寄与しない導電剤を正極合剤中に添加する必要が無く、その分、容量に優れた電池を得ることができるためである。   The surface of nickel oxyhydroxide is preferably coated with cobalt oxyhydroxide (CoOOH) having excellent conductivity. By coating the surface of nickel oxyhydroxide with cobalt oxyhydroxide, there is no need to add a conductive agent such as graphite that does not contribute to the discharge capacity into the positive electrode mixture, and a battery with excellent capacity can be obtained. It is because it can do.

次に、扁平形一次電池1の製造方法について説明する。正極合剤5を形成する際は、オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケルと、酸化銀とを上記した質量比とし、結着剤であるフッ素樹脂粉末とともにブレンダーで混合した後、打錠機にてペレット状に成型する。   Next, a method for manufacturing the flat primary battery 1 will be described. When the positive electrode mixture 5 is formed, the nickel oxyhydroxide coated with cobalt oxyhydroxide and silver oxide have the above-mentioned mass ratio, mixed with the fluororesin powder as a binder in a blender, Mold into pellets with a tablet.

さらに、成型した正極合剤5を正極缶2内に挿入し、電解液を注入して正極合剤5に電解液を吸収させる。このときの電解液の濃度は、上記濃度範囲とする。
また、正極合剤5上に、微多孔膜と不織布の2層構造の円形状に打ち抜いたセパレータ6を装填し、水酸化カリウム水溶液を含むアルカリ電解液を滴下して、セパレータ6に含浸させる。
Further, the molded positive electrode mixture 5 is inserted into the positive electrode can 2, and an electrolytic solution is injected to cause the positive electrode mixture 5 to absorb the electrolytic solution. The concentration of the electrolytic solution at this time is within the above concentration range.
In addition, a separator 6 punched into a circular shape having a two-layer structure of a microporous membrane and a nonwoven fabric is loaded on the positive electrode mixture 5, and an alkaline electrolyte containing an aqueous potassium hydroxide solution is dropped to impregnate the separator 6.

このセパレータ6上に、亜鉛を負極活物質とするジェル状の負極合剤7を載置する。具体的には、亜鉛合金粉、酸化亜鉛、高架橋型ポリアクリル酸ソーダ、カルボキシメチルセルロース、電解液である水酸化カリウム水溶液を混合して、負極合剤7とする。そして、負極缶3と正極缶2とをガスケット4を介してかしめることで密封する。   On the separator 6, a gel-like negative electrode mixture 7 containing zinc as a negative electrode active material is placed. Specifically, zinc alloy powder, zinc oxide, highly cross-linked sodium polyacrylate, carboxymethylcellulose, and an aqueous potassium hydroxide solution as an electrolyte are mixed to obtain negative electrode mixture 7. Then, the negative electrode can 3 and the positive electrode can 2 are sealed by caulking through the gasket 4.

次に、密封した扁平形一次電池1を、予め設定された反応時間だけ保管して、オキシ水酸化ニッケルと酸化銀とを反応させる。反応時間は、常温では600〜700時間、60℃の温度下では50時間程度である。その結果、全てのオキシ水酸化ニッケルが酸化銀と反応し、未反応のオキシ水酸化ニッケルが残らない状態となる。   Next, the sealed flat primary battery 1 is stored for a preset reaction time to react nickel oxyhydroxide and silver oxide. The reaction time is about 600 to 700 hours at room temperature and about 50 hours at a temperature of 60 ° C. As a result, all of the nickel oxyhydroxide reacts with the silver oxide, leaving no unreacted nickel oxyhydroxide remaining.

このように、電池使用前にオキシ水酸化ニッケルと酸化銀とを正極缶内で反応させることで、加工費の高い銀・ニッケル複合酸化物を、低コストで製造することができる。
次に、前述した正極合剤の組成を種々変更した実施例を行い、当該発明の効果を検証した。
(実施例1)
正極合剤5の質量比率を、γ−オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケル40.0質量%、酸化銀59.0質量%、結着剤であるフッ素樹脂粉末1.0質量%とした。また、オキシ水酸化ニッケルに対するγ−オキシ水酸化コバルトの質量比率は3質量%としたため、オキシ水酸化ニッケルの質量比率は37.0質量%である。
Thus, by reacting nickel oxyhydroxide and silver oxide in the positive electrode can before using the battery, a silver / nickel composite oxide having a high processing cost can be produced at a low cost.
Next, examples in which the composition of the positive electrode mixture described above was variously changed were performed to verify the effects of the present invention.
Example 1
The mass ratio of the positive electrode mixture 5 was 40.0% by mass of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide, 59.0% by mass of silver oxide, and 1.0% by mass of fluororesin powder as a binder. It was. Moreover, since the mass ratio of γ-cobalt oxyhydroxide with respect to nickel oxyhydroxide was 3 mass%, the mass ratio of nickel oxyhydroxide was 37.0 mass%.

これらの組成物を、ブレンダーで混合した後、打錠機にて質量140mgのペレット状の正極合剤5を形成した。
そして、この正極合剤5を、正極缶内に収容し、濃度37%水酸化カリウム水溶液10mgを注入して正極合剤5に吸収させた。
After mixing these compositions with a blender, a pellet-shaped positive electrode mixture 5 having a mass of 140 mg was formed with a tableting machine.
And this positive electrode mixture 5 was accommodated in the positive electrode can, and 10 mg of 37% concentration potassium hydroxide aqueous solution was inject | poured into the positive electrode mixture 5, and it was made to absorb.

また負極合剤7の質量比率を、亜鉛合金粉64質量%、酸化亜鉛2.48質量%、高架橋型ポリアクリル酸ソーダ0.68質量%、カルボキシメチルセルロース2.04質量%、45%水酸化カリウム水溶液30.80質量%とした。そして、負極缶3と正極缶2と
をガスケット4を介してかしめることで密封し、60℃の温度下で50時間保存して扁平形一次電池1を作製した。
(実施例2)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。その他の構成は、実施例1と同様とした。
(実施例3)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、正極合剤5に対して5質量%とした。その他の構成は、実施例1と同様とした。
(実施例4)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、正極合剤5に対して10質量%とした。その他の構成は、実施例1と同様とした。
(実施例5)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が30%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(実施例6)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が45%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(実施例7)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が20%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
(実施例8)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が35%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例1)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。その他の構成は、実施例1と同様とした。
(比較例2)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液の正極合剤5に対する比率を、1質量%とした。その他の構成は、実施例1と同様とした。
(比較例3)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液の正極合剤5に対する比率を、15質量%とした。その他の構成は、実施例1と同様とした。
(比較例4)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液を、濃度が25%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例5)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液を、濃度が50%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例6)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化
銀40質量%とした。また、電解液を、濃度が15%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例7)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液を、濃度が40%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
<検証>
そして、前記した実施例1〜8、比較例1〜7のアルカリ電池を、それぞれ130個作製し、以下の検証を行った。
The mass ratio of the negative electrode mixture 7 was as follows: zinc alloy powder 64% by mass, zinc oxide 2.48% by mass, highly crosslinked sodium polyacrylate 0.66% by mass, carboxymethyl cellulose 2.04% by mass, 45% potassium hydroxide The aqueous solution was 30.80% by mass. Then, the negative electrode can 3 and the positive electrode can 2 were sealed by caulking through a gasket 4 and stored at a temperature of 60 ° C. for 50 hours to produce a flat primary battery 1.
(Example 2)
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Other configurations were the same as those in Example 1.
(Example 3)
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Further, the electrolytic solution absorbed in the positive electrode mixture 5 was set to 5 mass% with respect to the positive electrode mixture 5. Other configurations were the same as those in Example 1.
Example 4
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). In addition, the electrolytic solution absorbed in the positive electrode mixture 5 was 10 mass% with respect to the positive electrode mixture 5. Other configurations were the same as those in Example 1.
(Example 5)
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Moreover, the electrolyte solution absorbed by the positive electrode mixture 5 was a potassium hydroxide aqueous solution having a concentration of 30%. Other configurations were the same as those in Example 1.
(Example 6)
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Moreover, the electrolyte solution absorbed by the positive electrode mixture 5 was a potassium hydroxide aqueous solution having a concentration of 45%. Other configurations were the same as those in Example 1.
(Example 7)
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Moreover, the electrolyte solution absorbed by the positive electrode mixture 5 was a sodium hydroxide aqueous solution having a concentration of 20%. Other configurations were the same as those in Example 1.
(Example 8)
The content was 45% by mass of nickel oxyhydroxide and 54% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Moreover, the electrolyte solution absorbed by the positive electrode mixture 5 was a sodium hydroxide aqueous solution having a concentration of 35%. Other configurations were the same as those in Example 1.
(Comparative Example 1)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Other configurations were the same as those in Example 1.
(Comparative Example 2)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). The ratio of the electrolytic solution to the positive electrode mixture 5 was 1% by mass. Other configurations were the same as those in Example 1.
(Comparative Example 3)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). Further, the ratio of the electrolytic solution to the positive electrode mixture 5 was set to 15% by mass. Other configurations were the same as those in Example 1.
(Comparative Example 4)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). The electrolytic solution was a potassium hydroxide aqueous solution having a concentration of 25%. Other configurations were the same as those in Example 1.
(Comparative Example 5)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). The electrolytic solution was a 50% potassium hydroxide aqueous solution. Other configurations were the same as those in Example 1.
(Comparative Example 6)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). The electrolytic solution was a sodium hydroxide aqueous solution having a concentration of 15%. Other configurations were the same as those in Example 1.
(Comparative Example 7)
The content was 59% by mass of nickel oxyhydroxide and 40% by mass of silver oxide coated with cobalt oxyhydroxide (3% by mass). The electrolytic solution was a sodium hydroxide aqueous solution having a concentration of 40%. Other configurations were the same as those in Example 1.
<Verification>
And 130 alkaline batteries of above-mentioned Examples 1-8 and Comparative Examples 1-7 were produced, respectively, and the following verification was performed.

具体的には、作製した電池のうち20個ずつを、30kΩで定抵抗放電させ、1.2Vの終止電圧とした時の放電容量〔mAh〕を、図2の表に示した。
また、定抵抗放電させて得られた放電カーブにて、オキシ水酸化ニッケルの放電電位の有無を、図2の表に示した。
Specifically, the discharge capacity [mAh] when 20 of the produced batteries were each subjected to constant resistance discharge at 30 kΩ to a final voltage of 1.2 V is shown in the table of FIG.
The presence or absence of the discharge potential of nickel oxyhydroxide in the discharge curve obtained by constant resistance discharge is shown in the table of FIG.

さらに、作成した電池のうち、100個ずつを、温度45℃、相対湿度93%の過酷環境下で保存し、80日後及び100日後の漏液発生率を、図2の表に示した。
また、作製した電池のうち、10個ずつを、−10℃の環境下、DoD(放電深度80%)、負荷抵抗2kΩといった条件で、7.8m秒後の閉路電圧(放電特性)〔V〕を測定し、その結果を、図2の表に示した。
Furthermore, 100 pieces of each of the batteries prepared were stored in a harsh environment at a temperature of 45 ° C. and a relative humidity of 93%, and the liquid leakage occurrence rates after 80 days and 100 days are shown in the table of FIG.
In addition, among the fabricated batteries, 10 batteries were each subjected to a closed circuit voltage (discharge characteristics) [V] after 7.8 ms under the conditions of DoD (discharge depth 80%) and load resistance 2 kΩ in an environment of −10 ° C. The results are shown in the table of FIG.

図2の表に基づき、実施例1〜8は、比較例1〜7に比べ、大きい初期容量が得られた。また、比較例1〜7は、オキシ水酸化ニッケルの放電電位が見られたのに対し、実施例1〜8は、オキシ水酸化ニッケルの放電電位が見られなかった。これは、酸化銀の比率を、オキシ水酸化ニッケルに対し、1.2倍以上とすることにより、容量が小さいオキシ水酸化ニッケルが、全て酸化銀と反応し、高容量の銀・ニッケル複合酸化物となったためである。   Based on the table of FIG. 2, Examples 1-8 had a larger initial capacity than Comparative Examples 1-7. Moreover, while the discharge potential of nickel oxyhydroxide was seen in Comparative Examples 1-7, the discharge potential of nickel oxyhydroxide was not seen in Examples 1-8. This is because when the ratio of silver oxide is 1.2 times or more that of nickel oxyhydroxide, all of the nickel oxyhydroxide with a small capacity reacts with silver oxide, resulting in a high capacity silver / nickel composite oxidation. Because it became a thing.

また、水酸化カリウム水溶液の質量比率をそれぞれ5質量%及び10質量%とした実施例3〜4は、漏液が見られないのに対し、水酸化カリウム水溶液の質量比率を15質量%とした比較例3は、漏液が見られた。これは、電解液を10質量%を超えて注入すると、正極合剤5が電解液を吸収しきれずに、耐漏液性が低下するためである。また、水酸化カリウム水溶液の質量比率を1質量%とした比較例2は、閉路電圧が低く、オキシ水酸化ニッケルの放電電位が見られた。これは、電解液の質量比率が、5質量%を下回ると、オキシ水酸化ニッケルと酸化銀との反応が円滑に進まず、オキシ水酸化ニッケルが残留してしまうためである。   In Examples 3 to 4, in which the mass ratio of the potassium hydroxide aqueous solution was 5 mass% and 10 mass%, respectively, no leakage was observed, whereas the mass ratio of the potassium hydroxide aqueous solution was 15 mass%. In Comparative Example 3, leakage was observed. This is because when the electrolyte solution is injected in excess of 10% by mass, the positive electrode mixture 5 cannot absorb the electrolyte solution and the leakage resistance is lowered. Moreover, the comparative example 2 which made the mass ratio of potassium hydroxide aqueous solution 1 mass% had a low closed circuit voltage, and the discharge potential of the nickel oxyhydroxide was seen. This is because when the mass ratio of the electrolytic solution is less than 5% by mass, the reaction between nickel oxyhydroxide and silver oxide does not proceed smoothly and nickel oxyhydroxide remains.

さらに、水酸化カリウム水溶液の濃度をそれぞれ30%、45%とした実施例5〜6は、漏液が見られないのに対し、濃度をそれぞれ25%及び50%とした比較例4〜5は、漏液が見られた。つまり、濃度が30%を下回ると、銀・ニッケル複合酸化物に対して低すぎる粘性により、漏液が発生してしまう。また、濃度が45%を上回ると、銀・ニッケル複合酸化物に対して高すぎる粘性により、正極合剤中に電解液を吸収しきれず、漏液してしまう。また、実施例5〜6は、比較例4〜5に比べ、閉路電圧が高かった。これは、水酸化カリウム水溶液の濃度を上記範囲とすることにより、好適な導電性が得られるためである。   Further, in Examples 5 to 6 in which the concentration of the aqueous potassium hydroxide solution was 30% and 45%, respectively, no leakage was observed, whereas in Comparative Examples 4 to 5 in which the concentrations were 25% and 50%, respectively, Leakage was seen. That is, when the concentration is less than 30%, leakage occurs due to a viscosity that is too low with respect to the silver / nickel composite oxide. On the other hand, if the concentration exceeds 45%, the electrolyte solution cannot be absorbed in the positive electrode mixture due to a viscosity that is too high with respect to the silver / nickel composite oxide, resulting in leakage. Moreover, Examples 5-6 had a high closed circuit voltage compared with Comparative Examples 4-5. This is because suitable conductivity can be obtained by setting the concentration of the potassium hydroxide aqueous solution within the above range.

また、水酸化ナトリウム水溶液の濃度をそれぞれ20%、35%とした実施例7〜8は、濃度をそれぞれ15%及び40%とした比較例6〜7に比べ、高い閉路電圧が得られた。これは、水酸化ナトリウム水溶液の濃度を上記範囲とすることにより、好適な導電性が得られるためである。   Further, in Examples 7 to 8 in which the concentration of the aqueous sodium hydroxide solution was 20% and 35%, respectively, a higher closed circuit voltage was obtained than in Comparative Examples 6 to 7 in which the concentrations were 15% and 40%, respectively. This is because suitable conductivity can be obtained by setting the concentration of the sodium hydroxide aqueous solution within the above range.

上記実施形態によれば、以下のような効果を得ることができる。
(1)上記実施形態では、オキシ水酸化ニッケル及び酸化銀を含む正極合剤5を、正極缶2に収容し、その正極缶内でオキシ水酸化ニッケルと酸化銀とを反応させて、銀・ニッケル複合酸化物を生成するようにした。また、酸化銀の質量比を、オキシ水酸化ニッケルに対して、1.2(倍)以上としたため、電池使用前に、全てのオキシ水酸化ニッケルを酸化銀と正極缶内で反応させることができる。このため、高体積エネルギー密度且つ放電電位の平坦性に優れる扁平形一次電池1を安価に作製することができる。
According to the above embodiment, the following effects can be obtained.
(1) In the above embodiment, the positive electrode mixture 5 containing nickel oxyhydroxide and silver oxide is accommodated in the positive electrode can 2, and the nickel oxyhydroxide and silver oxide are reacted in the positive electrode can to produce silver / silver A nickel composite oxide was produced. Moreover, since the mass ratio of silver oxide is 1.2 (times) or more with respect to nickel oxyhydroxide, all nickel oxyhydroxide can be reacted with silver oxide in the positive electrode can before using the battery. it can. Therefore, the flat primary battery 1 having a high volume energy density and excellent discharge potential flatness can be produced at low cost.

(2)上記実施形態では、電解液の比率を、正極合剤5に対して5質量%以上、10質量%以下とした。このため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、耐漏液性を向上することができる。   (2) In the said embodiment, the ratio of electrolyte solution was 5 mass% or more with respect to the positive mix 5 and 10 mass% or less. For this reason, while making the reaction of silver oxide and nickel oxyhydroxide smooth, leak-proof property can be improved.

(3)上記実施形態では、電解液は、水酸化カリウム水溶液であって、その濃度が、30%以上、45%以下である。このため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。   (3) In the said embodiment, electrolyte solution is potassium hydroxide aqueous solution, Comprising: The density | concentration is 30% or more and 45% or less. For this reason, while making the reaction of silver oxide and nickel oxyhydroxide smooth, battery characteristics and leakage resistance can be improved.

(4)上記実施形態では、電解液は、水酸化ナトリウム水溶液であって、その濃度が20%以上、35%以下である。このため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。   (4) In the said embodiment, electrolyte solution is sodium hydroxide aqueous solution, Comprising: The density | concentration is 20% or more and 35% or less. For this reason, while making the reaction of silver oxide and nickel oxyhydroxide smooth, battery characteristics and leakage resistance can be improved.

1…扁平形一次電池、2…正極缶、3…負極缶、4…ガスケット、5…正極合剤、6…セパレータ、7…負極合剤。   DESCRIPTION OF SYMBOLS 1 ... Flat primary battery, 2 ... Positive electrode can, 3 ... Negative electrode can, 4 ... Gasket, 5 ... Positive electrode mixture, 6 ... Separator, 7 ... Negative electrode mixture.

Claims (5)

正極合剤を正極缶内に収容する扁平形一次電池の製造方法において、
オキシ水酸化ニッケル及び酸化銀を含む前記正極合剤を、電解液とともに前記正極缶に収容し、当該正極缶内で前記オキシ水酸化ニッケルと前記酸化銀とを反応させることにより、銀・ニッケル複合酸化物を生成させるとともに、
前記酸化銀の質量比を、前記オキシ水酸化ニッケルに対して、1.2以上とすることを特徴とする扁平形一次電池の製造方法。
In the method for producing a flat primary battery containing the positive electrode mixture in the positive electrode can,
The positive electrode mixture containing nickel oxyhydroxide and silver oxide is accommodated in the positive electrode can together with an electrolytic solution, and the nickel oxyhydroxide and the silver oxide are reacted in the positive electrode can, thereby producing a silver / nickel composite. Producing oxides,
A method for producing a flat primary battery, wherein a mass ratio of the silver oxide is 1.2 or more with respect to the nickel oxyhydroxide.
請求項1に記載の扁平形一次電池の製造方法において、
前記電解液の比率を、前記正極合剤に対して5質量%以上、10質量%以下とすることを特徴とする扁平形一次電池の製造方法。
In the manufacturing method of the flat primary battery according to claim 1,
A method for producing a flat primary battery, wherein a ratio of the electrolytic solution is 5% by mass or more and 10% by mass or less with respect to the positive electrode mixture.
請求項1又は2に記載の扁平形一次電池の製造方法において、
前記電解液は、水酸化カリウム水溶液であって、その濃度が30%以上、45%以下であることを特徴とする扁平形一次電池の製造方法。
In the manufacturing method of the flat primary battery according to claim 1 or 2,
The method for manufacturing a flat primary battery, wherein the electrolytic solution is an aqueous potassium hydroxide solution and has a concentration of 30% to 45%.
請求項1又は2に記載の扁平形一次電池の製造方法において、
前記電解液は、水酸化ナトリウム水溶液であって、その濃度が20%以上、35%以下であることを特徴とする扁平形一次電池の製造方法。
In the manufacturing method of the flat primary battery according to claim 1 or 2,
The method for producing a flat primary battery, wherein the electrolytic solution is an aqueous solution of sodium hydroxide and has a concentration of 20% to 35%.
請求項1〜4のいずれか1項に記載の製造方法で製造された扁平形一次電池。   The flat primary battery manufactured with the manufacturing method of any one of Claims 1-4.
JP2009013425A 2009-01-23 2009-01-23 Manufacturing method for flat primary battery, and flat primary battery Pending JP2010170909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013425A JP2010170909A (en) 2009-01-23 2009-01-23 Manufacturing method for flat primary battery, and flat primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013425A JP2010170909A (en) 2009-01-23 2009-01-23 Manufacturing method for flat primary battery, and flat primary battery

Publications (1)

Publication Number Publication Date
JP2010170909A true JP2010170909A (en) 2010-08-05

Family

ID=42702834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013425A Pending JP2010170909A (en) 2009-01-23 2009-01-23 Manufacturing method for flat primary battery, and flat primary battery

Country Status (1)

Country Link
JP (1) JP2010170909A (en)

Similar Documents

Publication Publication Date Title
CN104067437B (en) Zinc secondary cell
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2005056733A (en) Alkaline battery and manufacturing method for cathode active material for alkaline batteries
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
JP2010170909A (en) Manufacturing method for flat primary battery, and flat primary battery
JP2008210720A (en) Flat alkaline primary battery
US20090291362A1 (en) Flat-type alkaline primary battery
JP5447772B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP2010170908A (en) Manufacturing method for flat primary battery, and flat primary battery
JP2010040334A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP3505824B2 (en) Flat alkaline battery
JP5464651B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP2002117859A (en) Alkaline battery
JP2010044907A (en) Flat-type alkaline primary battery and manufacturing method of flat-type alkaline primary battery
JP2009104996A (en) Flat alkaline primary battery
JP2009193706A (en) Flat alkaline primary battery, and manufacturing method of flat alkaline primary battery
EP2096694B1 (en) Flat alkaline primary battery
JP4374430B2 (en) Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same
JP2010033962A (en) Flat alkaline primary cell, and method for manufacturing flat alkaline primary cell
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2008210719A (en) Flat alkaline primary battery
JP2003168473A (en) Cylinder type storage battery
JP2008288162A (en) Flat alkaline primary battery
JP2009054535A (en) Flat alkaline primary battery