JP2008071541A - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP2008071541A
JP2008071541A JP2006247202A JP2006247202A JP2008071541A JP 2008071541 A JP2008071541 A JP 2008071541A JP 2006247202 A JP2006247202 A JP 2006247202A JP 2006247202 A JP2006247202 A JP 2006247202A JP 2008071541 A JP2008071541 A JP 2008071541A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
graphite
density
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006247202A
Other languages
Japanese (ja)
Inventor
Yoshinori Gamo
嘉則 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006247202A priority Critical patent/JP2008071541A/en
Publication of JP2008071541A publication Critical patent/JP2008071541A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline battery excelling in a load characteristic while keeping excellent electrolyte leakage resistance. <P>SOLUTION: A positive electrode part 2 is formed into a hollow cylindrical shape, and is structured such that a positive electrode pellet formed by molding a positive electrode mix into a hollow cylindrical shape is arranged inside a positive electrode can 1. Positive electrode mix density after molding the positive electrode mix before battery assemblage is 2.90-3.20 g/cm<SP>3</SP>; a moisture amount containing the positive electrode mix after the battery assemblage is 6.0-8.0 wt.% with respect to the weight of the positive electrode mix containing an electrolyte after the battery assembly; the average particle diameter of graphite is 10-50 μm; and apparent density of graphite is 0.01-0.05 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、アルカリ電池に関し、さらに詳しくは、良好な耐漏液性を持ちながら、負荷特性に優れたアルカリ電池に関する。   The present invention relates to an alkaline battery, and more particularly to an alkaline battery having excellent load resistance while having good liquid leakage resistance.

近年、アルカリ電池は、デジタルカメラなどの大電流を必要とする電子機器で使われる事が多くなっており、負荷特性の向上が求められている。多くの電子機器においては、作動可能な電圧に下限があり、電池の放電電圧がその電圧を下回ると機器の電源が切れるように設計されている。   In recent years, alkaline batteries are increasingly used in electronic devices such as digital cameras that require large currents, and there is a need for improved load characteristics. In many electronic devices, there is a lower limit on the operable voltage, and the device is designed to turn off when the discharge voltage of the battery falls below that voltage.

大電流を必要とする機器においては、放電中において、内部抵抗に起因する電圧降下(以下、iRドロップと適宜称する)が大きいため、まだ放電できる活物質が十分に残存しているにも関らず、電池の放電電圧が機器の最低作動電圧を下回ってしまい、機器が停止してしまうことがほとんどである。   In a device that requires a large current, a voltage drop (hereinafter referred to as iR drop as appropriate) due to internal resistance is large during discharge, so that there is still enough active material that can be discharged. In most cases, the discharge voltage of the battery falls below the minimum operating voltage of the device and the device stops.

大電流放電における上記のiRドロップを小さくする方法のひとつとして、正極での反応を円滑に進むようにすることが挙げられ、その方法として、例えば、以下に説明するような方法が提案されている。いずれの方法も放電時の正極反応で消費される水分をあらかじめ電池系または正極に多く含ませることにより、正極での反応を円滑に進ませようとするものである。   One of the methods for reducing the above-mentioned iR drop in a large current discharge is to allow the reaction at the positive electrode to proceed smoothly. For example, the following method has been proposed. . In either method, the battery system or the positive electrode contains a large amount of moisture consumed by the positive electrode reaction during discharge in advance, so that the reaction at the positive electrode proceeds smoothly.

例えば、単に電池系全体の水分量を増加するような方法としては、負極亜鉛ゲル中や正極合剤中の電解液増量、あるいはセパレータに含浸させる電解液の増量が考えられ、例えば特許文献1に記載されているように、電池系全体の水分量を二酸化マンガンの理論放電容量1AH当たり0.947g〜1.146gとすることが提案されている。この水分量は、正極活物質1g当たりに換算すると、0.292g〜0.353gの水分が添加されることになり、二酸化マンガン1gの放電反応に必要とする水分量(0.207g)と比べて、かなり多い値である。   For example, as a method of simply increasing the water content of the entire battery system, an increase in the amount of electrolyte in the negative electrode zinc gel or the positive electrode mixture, or an increase in the amount of electrolyte impregnated in the separator can be considered. As described, it has been proposed that the water content of the entire battery system be 0.947 g to 1.146 g per 1 AH of theoretical discharge capacity of manganese dioxide. When converted to the amount per 1 g of the positive electrode active material, 0.292 g to 0.353 g of water is added to this amount of water, which is compared with the amount of water required for the discharge reaction of 1 g of manganese dioxide (0.207 g). It is quite a large value.

特開2001−68121号公報JP 2001-68121 A

また、例えば、電池系の水分量を増やさないようにして、正極により多くの水分を含ませるような方法として、例えば、特許文献2に記載されているように、正極合剤作製時に添加する電解液濃度と、負極ゲル中の電解液濃度およびセパレータに含浸させる電解液濃度に濃度差をつける方法が提案されている。   Further, for example, as described in Patent Document 2, as a method of adding more water to the positive electrode without increasing the water content of the battery system, A method has been proposed in which a concentration difference is made between the solution concentration, the concentration of the electrolyte in the negative electrode gel, and the concentration of the electrolyte impregnated in the separator.

特開2005−203380号公報JP 2005-203380 A

しかしながら、特許文献1で提案されている方法では、電池内部の水分が多いために空隙部分の体積が小さく、ガス発生に起因する漏液が発生しやすくなってしまう。   However, in the method proposed in Patent Document 1, since the moisture inside the battery is large, the volume of the gap is small, and liquid leakage due to gas generation is likely to occur.

また、特許文献2で提案されている方法では、電池作製後にゲル中およびセパレータに注液した電解液中の水分が濃度勾配により一旦は正極へ移動するものの、時間の経過とともに電池内の電解質分布は均一化することから、長期的に正極へ多くの水分を保持できるかどうかに疑問が残る。   In addition, in the method proposed in Patent Document 2, although the moisture in the electrolyte injected into the gel and the separator after the battery production once moves to the positive electrode due to the concentration gradient, the electrolyte distribution in the battery with the passage of time. Since it becomes uniform, there remains a question as to whether a large amount of moisture can be retained in the positive electrode in the long term.

さらに、特許文献1および特許文献2では、正極合剤密度に関して記載されているが、その値は、特許文献1では3.1g/cm3〜3.4g/cm3、特許文献2では3.2g/cm3〜3.35g/cm3と、従来一般的に用いられている正極合剤密度の範囲を記載したに過ぎず、正極合剤密度に関して特に工夫を加えたものでもない。 Furthermore, Patent Document 1 and Patent Document 2 have been described in terms of the positive electrode mixture density, its value, Patent Document 1 3.1g / cm 3 ~3.4g / cm 3 , Patent Document 2 3. and 2g / cm 3 ~3.35g / cm 3 , merely set forth the scope of the positive electrode mixture density have been used in general conventionally, nor particularly plus twist with respect positive electrode mixture density.

したがって、この発明の目的は、正極活物質に二酸化マンガンおよびオキシ水酸化ニッケルのうちの少なくとも何れか1種を主成分として含むアルカリ電池において、良好な耐漏液性を保持しながら、且つ負荷特性に優れたアルカリ電池を提供することにある。   Accordingly, an object of the present invention is to provide an alkaline battery containing, as a main component, at least one of manganese dioxide and nickel oxyhydroxide as a positive electrode active material, while maintaining good liquid leakage resistance and improving load characteristics. The object is to provide an excellent alkaline battery.

本願発明者等は、上述した課題を解決するために、大電流放電時の電池特性には正極反応の起こりやすさが大きな影響を及ぼす点に着目して鋭意検討を重ねた結果、正極合剤の密度を従来より低くして、正極合剤中の空隙により多くの電解液を含ませることで、実質的に電池内の空隙体積を減らすことなく、すなわち漏液発生の危険性を伴わずに負荷特性を向上できることを見出した。また、正極密度の低下に伴う接触抵抗の増加や正極合剤の形態安定性の低下を防止するためには、正極合剤に使用されている従来のグラファイトと比較して、粒径が大きい割に見かけ密度が小さいグラファイトを使用すればよいことを見出した。   In order to solve the above-mentioned problems, the inventors of the present application have conducted earnest studies focusing on the fact that the positive electrode reaction has a great influence on the battery characteristics during large current discharge. By making the density of the battery lower than before and including more electrolyte in the voids in the positive electrode mixture, substantially without reducing the void volume in the battery, that is, without risk of leakage It was found that the load characteristics can be improved. In addition, in order to prevent an increase in contact resistance and a decrease in the form stability of the positive electrode mixture due to a decrease in the positive electrode density, the particle size is larger than that of conventional graphite used in the positive electrode mixture. It has been found that graphite having a small apparent density may be used.

すなわち、上述した課題を解決するために、この発明は、
二酸化マンガンおよびオキシ水酸化ニッケルのうちの少なくとも1種と、グラファイトと、を含む正極合剤を備え、
電池組み立て前の正極合剤成形後の正極合剤密度は、2.90g/cm3〜3.20g/cm3の範囲内であり、
電池組み立て後の正極合剤が含む水分量は、電池組み立て後の電解液を含んだ正極合剤の重量に対して、6.0wt%〜8.0wt%の範囲内であり、
グラファイトの平均粒径は、10μm〜50μmの範囲内であり、
グラファイトの見かけ密度は、0.01g/cm3〜0.05g/cm3の範囲内であること
を特徴とするアルカリ電池である。
That is, in order to solve the above-described problem, the present invention
A positive electrode mixture comprising at least one of manganese dioxide and nickel oxyhydroxide and graphite;
The positive electrode mixture density after forming the positive electrode mixture before battery assembly is in the range of 2.90 g / cm 3 to 3.20 g / cm 3 ,
The amount of water contained in the positive electrode mixture after battery assembly is in the range of 6.0 wt% to 8.0 wt% with respect to the weight of the positive electrode mixture containing the electrolyte solution after battery assembly,
The average particle size of the graphite is in the range of 10 μm to 50 μm,
Apparent density of the graphite is an alkali battery, which is a range of 0.01g / cm 3 ~0.05g / cm 3 .

この発明では、電池内の正極合剤密度は、2.90g/cm3〜3.20g/cm3の範囲内に選ばれる。電池組み立て後の正極合剤が含有する水分量は、電池組み立て後の電解液を含んだ正極合剤の重量に対して、6.0wt%〜8.0wt%の範囲内に選ばれる。これにより、正極合剤量は、実質的に減量しながら、耐漏液特性および負荷特性の両方に優れた電池を実現できる。正極合剤密度および正極合剤が含有する水分量は、上述の上限および下限の範囲から外れると、耐漏液特性および負荷特性の両方が損われてしまう。 In the present invention, the density of the positive electrode mixture in the battery is selected in the range of 2.90 g / cm 3 to 3.20 g / cm 3 . The amount of water contained in the positive electrode mixture after battery assembly is selected within the range of 6.0 wt% to 8.0 wt% with respect to the weight of the positive electrode mixture including the electrolyte solution after battery assembly. As a result, it is possible to realize a battery that is excellent in both leakage resistance and load characteristics while the amount of the positive electrode mixture is substantially reduced. If the positive electrode mixture density and the moisture content contained in the positive electrode mixture deviate from the above upper limit and lower limit ranges, both the leakage resistance characteristics and the load characteristics are impaired.

また、この発明では、平均粒径が10μm〜50μmの範囲内であって、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるグラファイトを正極合剤中に含む。これにより、正極合剤密度を2.90g/cm3〜3.20g/cm3の範囲内とした場合に起こり得る正極合剤と正極缶との接触面積低下による抵抗増大や、正極合剤の強度低下を防止できる。グラファイトの平均密度が上述の上限および下限の範囲から外れると、正極合剤と正極缶との接触面積低下による抵抗増大や、正極合剤の強度低下を招いてしまう。 Further, in this invention, in a range the average particle size is 10 m to 50 m, and an apparent density containing graphite in the range of 0.01g / cm 3 ~0.05g / cm 3 in the positive electrode mixture . Thereby, when the positive electrode mixture density is in the range of 2.90 g / cm 3 to 3.20 g / cm 3, an increase in resistance due to a decrease in the contact area between the positive electrode mixture and the positive electrode can, Strength reduction can be prevented. If the average density of the graphite deviates from the above upper limit and lower limit ranges, an increase in resistance due to a decrease in the contact area between the positive electrode mixture and the positive electrode can and a decrease in the strength of the positive electrode mixture are caused.

この発明によれば、良好な耐漏液性を保持しながら、優れた負荷特性を得ることができる。   According to the present invention, excellent load characteristics can be obtained while maintaining good leakage resistance.

以下、この発明の実施の形態について図面を参照して説明する。図1は、この発明の一実施形態によるアルカリ電池の一構成例を示す。このアルカリ電池は、例えば、単三形状の円筒型アルカリ乾電池である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration example of an alkaline battery according to an embodiment of the present invention. This alkaline battery is, for example, an AA cylindrical alkaline battery.

この電池は、正極缶1と、正極部2と、セパレータ3と、負極合剤4と、封口部材5と、ワッシャ6と、負極端子板7と、集電体8とを備える。   This battery includes a positive electrode can 1, a positive electrode portion 2, a separator 3, a negative electrode mixture 4, a sealing member 5, a washer 6, a negative electrode terminal plate 7, and a current collector 8.

正極缶1は、例えば、鉄にニッケルめっきが施されており、電池の外部正極端子となる。正極部2は、中空円筒状をしており、正極合剤を中空円筒状に成形した正極ペレットが正極缶1の内側に配置されるように構成されている。   The positive electrode can 1 has, for example, iron plated with nickel and serves as an external positive electrode terminal of the battery. The positive electrode portion 2 has a hollow cylindrical shape, and is configured such that a positive electrode pellet obtained by forming a positive electrode mixture into a hollow cylindrical shape is disposed inside the positive electrode can 1.

正極合剤は、二酸化マンガンおよびオキシ水酸化ニッケルのうちの少なくとも1種を活物質として含み、電解液である水酸化カリウムと、平均粒径が10μm〜50μm、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内に選ばれたグラファイトを含むものである。また、正極合剤は、電池組み立て前の正極合剤成形後の正極合剤密度が2.90g/cm3〜3.20g/cm3の範囲内に選ばれたものである。さらに、正極合剤は、電池組み立て後の正極合剤が含有する水分量が6.0wt%〜8.0wt%の範囲内に選ばれたものである。 The positive electrode mixture contains at least one of manganese dioxide and nickel oxyhydroxide as an active material, potassium hydroxide as an electrolytic solution, an average particle diameter of 10 μm to 50 μm, and an apparent density of 0.01 g / cm. It contains graphite selected in the range of 3 to 0.05 g / cm 3 . In addition, the positive electrode mixture was selected so that the positive electrode mixture density after forming the positive electrode mixture before battery assembly was in the range of 2.90 g / cm 3 to 3.20 g / cm 3 . Further, the positive electrode mixture is one in which the amount of water contained in the positive electrode mixture after battery assembly is selected within the range of 6.0 wt% to 8.0 wt%.

正極合剤は、合剤内に存在する空隙に電解液を保持し、電解液中のH2Oを消費しながら放電する。従来のアルカリ乾電池では、大電流放電時において、正極活物質の周囲のH2Oが不足することによって、正極内の拡散抵抗が増大し、放電電圧が低下する傾向があった。 The positive electrode mixture retains the electrolyte in the voids present in the mixture and discharges while consuming H 2 O in the electrolyte. In the conventional alkaline battery, during a large current discharge, there is a tendency that the diffusion resistance in the positive electrode increases and the discharge voltage decreases due to the lack of H 2 O around the positive electrode active material.

そこで、一実施形態では、電池組み立て前の正極合剤成形後の正極合剤密度が2.90g/cm3〜3.20g/cm3の範囲内に選ばれる。この正極合剤密度の範囲は、従来のもの(例えば3.1g/cm3〜3.4g/cm3)より比較的に小さい範囲に選ばれたものであるので、正極合剤中の空隙がより多く、従来の正極の見かけ体積と同様の見かけ体積でも、より多くの電解液を保持できる。したがって、重負荷放電時に正極合剤中のH2Oが急激に消費されても、正極反応に必要なH2Oが正極活物質周辺に十分に存在するため正極反応が円滑に進み、内部抵抗の上昇が少なく放電電圧の低下も小さくなり、大電流放電において優れた持続性を備えることができる。 Therefore, in one embodiment, the density of the positive electrode mixture after forming the positive electrode mixture before assembling the battery is selected in the range of 2.90 g / cm 3 to 3.20 g / cm 3 . The range of the density of the positive electrode mixture is selected to be a range relatively smaller than the conventional one (for example, 3.1 g / cm 3 to 3.4 g / cm 3 ). More electrolyte solution can be retained even with an apparent volume similar to that of a conventional positive electrode. Therefore, even if H 2 O in the positive electrode mixture is rapidly consumed during heavy load discharge, the positive electrode reaction proceeds smoothly because H 2 O necessary for the positive electrode reaction is sufficiently present around the positive electrode active material, and the internal resistance As a result, there is little increase in the discharge voltage, and the decrease in the discharge voltage is small.

しかしながら、正極合剤密度が従来のものより比較的に小さい範囲に選ばれると、正極缶と正極合剤との接触面積低下によって、正極缶1と正極合剤間との接触抵抗が大きくなり、大電流放電におけるiRドロップが増大してしまい放電特性が低下する傾向にある。また、密度が小さいために正極合剤の強度が弱く、電池の保存中に電池内での正極合剤の形状が崩れやすいので、導電可能な正極合剤の割合が低下して放電特性が低下する傾向にある。   However, when the density of the positive electrode mixture is selected in a range that is relatively smaller than the conventional one, the contact resistance between the positive electrode can 1 and the positive electrode mixture increases due to the decrease in the contact area between the positive electrode can and the positive electrode mixture, IR drop in large current discharge increases and discharge characteristics tend to deteriorate. In addition, since the density of the positive electrode mixture is weak because the density is low and the shape of the positive electrode mixture in the battery tends to collapse during storage of the battery, the proportion of the positive electrode mixture that can be conductive is reduced and the discharge characteristics are reduced. Tend to.

そこで、この発明の一実施形態では、正極合剤中にグラファイトを含ませるようにする。これにより、放電特性の低下を防止できる。   Therefore, in one embodiment of the present invention, graphite is included in the positive electrode mixture. Thereby, the fall of a discharge characteristic can be prevented.

グラファイト含有の効果は、電池組み立て前の正極合剤密度が上述の範囲内(2.90g/cm3〜3.20g/cm3)に選ばれた場合に有効である。正極合剤密度が2.9g/cm3より小さくなると、グラファイトを使用しても、正極合剤の密度低下による放電特性の低下を防止することが難しくなるからである。正極合剤密度が3.2g/cm3より大きいと、正極合剤中の空隙が少ないため、保持できる電解液量が少なく、正極およびセパレータ3に吸液されない電解液が多量に存在することになり、負極ゲル注入工程において、電解液が正極缶から飛び出してしまう等の不具合が生じるからである。 The effect of containing graphite is effective when the density of the positive electrode mixture before battery assembly is selected within the above range (2.90 g / cm 3 to 3.20 g / cm 3 ). This is because if the density of the positive electrode mixture is smaller than 2.9 g / cm 3, it is difficult to prevent a decrease in discharge characteristics due to a decrease in the density of the positive electrode mixture even if graphite is used. If the density of the positive electrode mixture is larger than 3.2 g / cm 3 , since there are few voids in the positive electrode mixture, the amount of electrolyte that can be held is small, and there is a large amount of electrolyte that is not absorbed by the positive electrode and the separator 3. This is because, in the negative electrode gel injection step, problems such as the electrolyte jumping out of the positive electrode can occur.

グラファイトとしては、見かけ密度が小さく、且つ見かけ密度が小さい割に粒径が小さくないものを用いる。このようなグラファイトとしては、例えば、高度に薄片化されたグラファイト等が挙げられる。このようなグラファイトは、見かけ密度が小さいため正極合剤中に極めて均一に分散させることできる。また、粒径がそれほど小さくないため、正極合剤中で隣り合うグラファイト粒子同士の接触が良好であり電気伝導性が高い。したがって、正極合剤密度を従来よりも小さくして正極缶との接触面積が多少減少しても、従来のアルカリ電池に比べて正極合剤と正極缶との接触抵抗が大きくなるということはない。   As the graphite, a material having a small apparent density and a small particle size is used although the apparent density is small. Examples of such graphite include highly exfoliated graphite. Since such graphite has a small apparent density, it can be dispersed extremely uniformly in the positive electrode mixture. Moreover, since the particle size is not so small, the contact between the adjacent graphite particles in the positive electrode mixture is good and the electrical conductivity is high. Therefore, even if the density of the positive electrode mixture is made smaller than before and the contact area with the positive electrode can slightly decreases, the contact resistance between the positive electrode mixture and the positive electrode can does not increase compared to the conventional alkaline battery. .

また、このグラファイトは、導電剤としての機能に加えて正極活物質同士の結着剤としての機能も持っている。このグラファイトは、極めて均一に正極合剤中に分散可能であるため、成形後の正極合剤密度が高く、従来よりも正極合剤の密度を小さくしてもその強度を補うことができる。   Further, this graphite has a function as a binder between the positive electrode active materials in addition to a function as a conductive agent. Since this graphite can be dispersed very uniformly in the positive electrode mixture, the density of the positive electrode mixture after molding is high, and the strength can be supplemented even if the density of the positive electrode mixture is made smaller than before.

具体的には、平均粒径が10μm〜50μm、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内に選ばれたグラファイトを用いる。 Specifically, the average particle diameter of 10 m to 50 m, and an apparent density used graphite chosen in the range of 0.01g / cm 3 ~0.05g / cm 3 .

グラファイトの平均粒径が10μmより小さいと、グラファイトと正極活物質との接触が悪化し、放電特性が低下してしまうからである。グラファイトの平均粒径が50μmより大きいと、同様にグラファイトと正極活物質との接触が悪化してしまい放電特性が低下してしまうからである。グラファイトの見かけ密度が0.01g/cm3より小さいと、正極材料混合時のハンドリング性に難があり、0.05g/cm3より大きいと正極合剤中での分散性があまり良くないからである。 This is because if the average particle size of the graphite is smaller than 10 μm, the contact between the graphite and the positive electrode active material is deteriorated, and the discharge characteristics are deteriorated. This is because if the average particle diameter of graphite is larger than 50 μm, the contact between the graphite and the positive electrode active material is similarly deteriorated and the discharge characteristics are deteriorated. If the apparent density of the graphite is less than 0.01 g / cm 3 , the handling property at the time of mixing the positive electrode material is difficult, and if it exceeds 0.05 g / cm 3 , the dispersibility in the positive electrode mixture is not so good. is there.

グラファイトは、より優れた特性を得られる点から、二酸化マンガンおよびオキシ水酸化ニッケルと、グラファイトと、電解液である水酸化カリウム溶液とを含む正極合剤の総重量に対して、5wt%〜10wt%の範囲内で配合されるのが好ましい。5wt%より少ないと、十分な導電が得られない、また、10wt%より多いと、相対的に正極活物質である二酸化マンガンまたはオキシ水酸化ニッケルの量が減少するため、電池特性が低下してしまうからである。   From the point which can acquire the more outstanding characteristic, a graphite is 5 wt%-10 wt% with respect to the total weight of the positive mix containing manganese dioxide and nickel oxyhydroxide, a graphite, and the potassium hydroxide solution which is electrolyte solution. % Is preferably blended within the range of%. If the amount is less than 5 wt%, sufficient conductivity cannot be obtained. If the amount is more than 10 wt%, the amount of manganese dioxide or nickel oxyhydroxide, which is a positive electrode active material, is relatively reduced. Because it ends up.

また、この発明の一実施形態によると、電池組み立て後の正極合剤が含む水分量は、6.0wt%〜8.0wt%に選ばれる。従来のアルカリ電池では、電池組み立て後の正極合剤が含有する水分量は、漏液しないことを前提とすると、正極合剤が含有する電解液量も含めた正極合剤重量に対して約5.7wt%以下である必要があった。   Further, according to one embodiment of the present invention, the amount of water contained in the positive electrode mixture after battery assembly is selected to be 6.0 wt% to 8.0 wt%. In a conventional alkaline battery, the amount of water contained in the positive electrode mixture after battery assembly is about 5 with respect to the weight of the positive electrode mixture including the amount of electrolyte contained in the positive electrode mixture, assuming that no leakage occurs. It was necessary to be 7 wt% or less.

一方、この発明の一実施形態は、正極合剤密度が従来よりも比較的に低い範囲内(2.90g/cm3〜3.20g/cm3)に選ばれたものであり、正極合剤中の空隙がより多いので、従来のアルカリ電池に使用されているような正極合剤と同じ見かけ体積でも、より多くの電解液を保持し、5.7wt%より多い水分を含むことができる。 On the other hand, in one embodiment of the present invention, the density of the positive electrode mixture is selected within the range (2.90 g / cm 3 to 3.20 g / cm 3 ) that is relatively lower than the conventional density. Since there are more voids inside, even with the same apparent volume as the positive electrode mixture used in the conventional alkaline battery, more electrolytic solution can be retained and more than 5.7 wt% water can be contained.

例えば、電池組み立て後の水分含有量が6.0wt%より少ないと、正極合剤中の空隙を全て電解液で埋めることができないので、正極での放電反応が円滑に進まず放電特性が悪くなる。また、電池組み立て後の水分含有量が8.0wt%より多いと、保存時において正極合剤の形態が崩れてしまい、接触している正極合剤の割合が低下して放電特性が低下してしまう傾向にある。   For example, if the moisture content after battery assembly is less than 6.0 wt%, the voids in the positive electrode mixture cannot be completely filled with the electrolytic solution, so the discharge reaction at the positive electrode does not proceed smoothly and the discharge characteristics deteriorate. . Also, if the water content after battery assembly is more than 8.0 wt%, the shape of the positive electrode mixture will be lost during storage, and the proportion of the positive electrode mixture in contact will be reduced, resulting in reduced discharge characteristics. It tends to end up.

セパレータ3は、有底の中空円筒状をしており、正極部2の内側に配される。負極合剤4は、負極活物質となる粒状亜鉛(Zn)と、水酸化カリウム(KOH)を使用した電解液と、負極合剤4をゲル状にして粒状亜鉛および電解液を均一に分散させておくためのゲル化剤と、を含む。   The separator 3 has a hollow cylindrical shape with a bottom, and is disposed inside the positive electrode part 2. The negative electrode mixture 4 is composed of granular zinc (Zn) serving as a negative electrode active material, an electrolytic solution using potassium hydroxide (KOH), and the negative electrode mixture 4 is gelled to uniformly disperse the granular zinc and the electrolytic solution. And a gelling agent for storing.

正極部2と、負極合剤4が充填されたセパレータ3とが内部に収納された正極缶1の開口部には、開口部を封口するための封口部材5が嵌合されている。封口部材5は、プラスティックからなり、さらに、封口部材5を覆うようにワッシャ6と負極端子板7とが取り付けられている。   A sealing member 5 for sealing the opening is fitted into the opening of the positive electrode can 1 in which the positive electrode 2 and the separator 3 filled with the negative electrode mixture 4 are housed. The sealing member 5 is made of plastic, and a washer 6 and a negative electrode terminal plate 7 are attached so as to cover the sealing member 5.

上記ワッシャ6が取り付けられた封口部材5の貫通孔には、例えば、真鍮にスズメッキが施された集電体8が上方から圧入されている。負極の集電は、負極端子板7に接着された釘状の集電体8が封口部材5の中央部に形成された貫通孔に圧入されて、負極合剤4に達することで確保されている。また、正極の集電は、正極部2と正極缶1とが接続されることで確保される。正極缶1の外周面は、図示しない外装ラベルによって覆われており、正極缶1の下部に正極端子が位置する。   In the through hole of the sealing member 5 to which the washer 6 is attached, for example, a current collector 8 in which tin is plated on brass is press-fitted from above. Current collection for the negative electrode is ensured by reaching the negative electrode mixture 4 by pressing a nail-like current collector 8 bonded to the negative electrode terminal plate 7 into a through-hole formed in the central portion of the sealing member 5. Yes. Moreover, the current collection of the positive electrode is ensured by connecting the positive electrode part 2 and the positive electrode can 1. The outer peripheral surface of the positive electrode can 1 is covered with an exterior label (not shown), and the positive electrode terminal is located below the positive electrode can 1.

この発明の一実施形態によるアルカリ電池の製造方法の一例について説明する。まず、正極缶1の内部に、正極活物質と、平均粒径が10μm〜50μm、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内に選ばれたグラファイトと、電解液である水酸化カリウム水溶液とを含む正極合剤を中空円筒状に成形した正極ペレットを配置する。 An example of a method for manufacturing an alkaline battery according to an embodiment of the present invention will be described. First, the inside of the positive electrode can 1, a positive electrode active material, the average particle size of 10 m to 50 m, and apparent density was chosen in the range of 0.01g / cm 3 ~0.05g / cm 3 of graphite, electrolytic The positive electrode pellet which shape | molded the positive mix containing the potassium hydroxide aqueous solution which is a liquid in the shape of a hollow cylinder is arrange | positioned.

次に、正極ペレットの中空部に有底円筒状のセパレータ3を設けた後、正極缶1内にアルカリ電解液を注液して、正極ペレットおよびセパレータ3を湿潤させる。次に、セパレータ3の内側にゲル状の負極合剤4を充填する。   Next, after providing the bottomed cylindrical separator 3 in the hollow part of the positive electrode pellet, an alkaline electrolyte is injected into the positive electrode can 1 to wet the positive electrode pellet and the separator 3. Next, the gelled negative electrode mixture 4 is filled inside the separator 3.

次に、集電体8に、封口部材5と、ワッシャ6と、負極端子板7とをあらかじめ取り付けた後、この集電体8を負極合剤4の中央に差し込む。次に、正極缶1の開口端部を封口部材5の周縁端部を介して負極端子板7の周縁部にかしめることにより、正極缶1の開口部を密封する。次に、正極缶1の外表面を図示しない外装ラベルで被覆する。以上により、この発明の一実施形態によるアルカリ電池を製造できる。   Next, after the sealing member 5, the washer 6, and the negative electrode terminal plate 7 are attached in advance to the current collector 8, the current collector 8 is inserted into the center of the negative electrode mixture 4. Next, the opening end of the positive electrode can 1 is sealed by caulking the opening end portion of the positive electrode can 1 to the peripheral edge portion of the negative electrode terminal plate 7 via the peripheral edge portion of the sealing member 5. Next, the outer surface of the positive electrode can 1 is covered with an exterior label (not shown). As described above, an alkaline battery according to an embodiment of the present invention can be manufactured.

この発明の具体的な実施例について図1を参照しながら説明する。ただし、この発明はこれらの実施例のみに限定されるものではない。   A specific embodiment of the present invention will be described with reference to FIG. However, the present invention is not limited to these examples.

<実施例1>
二酸化マンガンと、平均粒径10μm、見かけ密度0.01g/cm3のグラファイトと、水酸化カリウム水溶液と、をグラファイトの配合率が5wt%となるように混合して得られた正極合剤を中空円筒状に成形して、正極ペレットを得た。ここで、成形後の正極合剤の密度を測定したところ、2.90g/cm3であった。なお、正極合剤密度の測定は、得られた正極合剤の重量を、内径、外形、高さ寸法から計算される正極合剤の体積で割ることにより測定した。グラファイトの平均粒径は、レーザ散乱法で測定した。グラファイトの見かけ密度は、静置法で測定した。
<Example 1>
A positive electrode mixture obtained by mixing manganese dioxide, graphite having an average particle diameter of 10 μm, an apparent density of 0.01 g / cm 3 , and a potassium hydroxide aqueous solution so that the blending ratio of graphite is 5 wt% is hollow. Molded into a cylindrical shape to obtain a positive electrode pellet. Here, when the density of the positive electrode mixture after molding was measured, it was 2.90 g / cm 3 . The positive electrode mixture density was measured by dividing the weight of the obtained positive electrode mixture by the volume of the positive electrode mixture calculated from the inner diameter, the outer shape, and the height dimension. The average particle diameter of graphite was measured by a laser scattering method. The apparent density of graphite was measured by a stationary method.

次に、得られた正極ペレットを複数個、正極缶1の内部に配置した。次に、ペレットの中空部に有底円筒状のセパレータ3を設けた後、正極缶1内にアルカリ電解液を注液して、正極ペレットおよびセパレータ3を湿潤させた。   Next, a plurality of the obtained positive electrode pellets were arranged inside the positive electrode can 1. Next, after the bottomed cylindrical separator 3 was provided in the hollow portion of the pellet, an alkaline electrolyte was injected into the positive electrode can 1 to wet the positive electrode pellet and the separator 3.

次に、セパレータ3の内側にゲル状の負極合剤4を充填した。なお、負極合剤4は、粒状亜鉛、ゲル化剤、水酸化カリウム水溶液を混合することにより得られた。   Next, the gelled negative electrode mixture 4 was filled inside the separator 3. The negative electrode mixture 4 was obtained by mixing granular zinc, a gelling agent, and an aqueous potassium hydroxide solution.

次に、封口部材5と、ワッシャ6と、負極端子板7とが集電体8にあらかじめ取り付けた後、この集電体8を負極合剤4の中央に差込み、その後、正極缶1の開口端部を封口部材5の周縁端部を介して負極端子板7の周縁部にかしめることにより、正極缶1の開口部密封した。以上により、実施例1のアルカリ電池を作製した。   Next, after the sealing member 5, the washer 6, and the negative electrode terminal plate 7 are attached to the current collector 8 in advance, the current collector 8 is inserted into the center of the negative electrode mixture 4, and then the positive electrode can 1 is opened. The opening of the positive electrode can 1 was sealed by caulking the end portion to the peripheral edge portion of the negative electrode terminal plate 7 via the peripheral edge portion of the sealing member 5. Thus, the alkaline battery of Example 1 was produced.

また、実施例1のアルカリ電池を解体して電解液を含んだ正極合剤を取り出し、107℃で2時間乾燥させ、その重量減少分を電池組み立て後の正極合剤が含む水分量として、電解液を含んだ正極合剤に対する重量パーセント濃度として算出した。3個のアルカリ電池について、電解液を含んだ正極合剤に対する重量パーセント濃度として算出して、その平均値を、実施例1の電池組み立て後の正極合剤が含む水分量としたところ、その値は6.0wt%であった。   In addition, the alkaline battery of Example 1 was disassembled, the positive electrode mixture containing the electrolytic solution was taken out, dried at 107 ° C. for 2 hours, and the reduced weight was used as the amount of water contained in the positive electrode mixture after battery assembly. The weight percent concentration was calculated based on the positive electrode mixture containing the liquid. For the three alkaline batteries, the concentration was calculated as the weight percent concentration with respect to the positive electrode mixture containing the electrolytic solution, and the average value was taken as the amount of water contained in the positive electrode mixture after the battery assembly of Example 1; Was 6.0 wt%.

<実施例2>
平均粒径10μm、見かけ密度0.03g/cm3のグラファイトを配合率6wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例2のアルカリ電池を作製した。
<Example 2>
Graphite having an average particle size of 10 μm and an apparent density of 0.03 g / cm 3 is used at a blending ratio of 6 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. The alkaline battery of Example 2 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例3>
平均粒径10μm、見かけ密度0.05g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.20g/cm3、電池組み立て後の正極合剤が含む水分量を8.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例3のアルカリ電池を作製した。
<Example 3>
The average particle size of 10 [mu] m, using a graphite apparent density 0.05 g / cm 3 at the mixing ratio 7 wt%, 8.0 wt moisture content comprising a positive electrode mixture density 3.20 g / cm 3, the positive electrode mixture after battery assembly The alkaline battery of Example 3 was made in the same manner as Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例4>
平均粒径30μm、見かけ密度0.01g/cm3のグラファイトを配合率5wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を8.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例4のアルカリ電池を作製した。
<Example 4>
Graphite having an average particle size of 30 μm and an apparent density of 0.01 g / cm 3 is used at a blending rate of 5 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 8.0 wt. An alkaline battery of Example 4 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例5>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率6wt%で用い、正極合剤密度を3.20g/cm3、電池組み立て後の正極合剤が含む水分量を6.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例5のアルカリ電池を作製した。
<Example 5>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending ratio of 6 wt%, the positive electrode mixture density is 3.20 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 6.0 wt. The alkaline battery of Example 5 was produced in the same manner as Example 1 except that the positive electrode mixture was prepared so that the content of the positive electrode mixture was 5%.

<実施例6>
平均粒径30μm、見かけ密度0.05g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を2.90g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例6のアルカリ電池を作製した。
<Example 6>
Graphite having an average particle size of 30 μm and an apparent density of 0.05 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 2.90 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. The alkaline battery of Example 6 was made in the same manner as Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例7>
平均粒径50μm、見かけ密度0.01g/cm3のグラファイトを配合率5wt%で用い、正極合剤密度を3.20g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例7のアルカリ電池を作製した。
<Example 7>
Graphite having an average particle size of 50 μm and an apparent density of 0.01 g / cm 3 is used at a blending rate of 5 wt%, the positive electrode mixture density is 3.20 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Example 7 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例8>
平均粒径50μm、見かけ密度0.03g/cm3のグラファイトを配合率6wt%で用い、正極合剤密度を2.90g/cm3、電池組み立て後の正極合剤が含む水分量を8.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例8のアルカリ電池を作製した。
<Example 8>
Graphite having an average particle size of 50 μm and an apparent density of 0.03 g / cm 3 is used at a blending ratio of 6 wt%, the positive electrode mixture density is 2.90 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 8.0 wt. An alkaline battery of Example 8 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例9>
平均粒径50μm、見かけ密度0.05g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を6.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例9のアルカリ電池を作製した。
<Example 9>
Graphite having an average particle size of 50 μm and an apparent density of 0.05 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 6.0 wt. The alkaline battery of Example 9 was made in the same manner as Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例10>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率4wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例10のアルカリ電池を作製した。
<Example 10>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 4 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Example 10 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<実施例11>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率11wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、実施例11のアルカリ電池を作製した。
<Example 11>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 11 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Example 11 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例1>
平均粒径9μm、見かけ密度0.03g/cm3のグラファイトを配合率6wt%で用い、正極合剤密度を2.85g/cm3、電池組み立て後の正極合剤が含む水分量を5.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例1のアルカリ電池を作製した。
<Comparative Example 1>
Graphite having an average particle size of 9 μm and an apparent density of 0.03 g / cm 3 is used at a compounding ratio of 6 wt%, the positive electrode mixture density is 2.85 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 5.0 wt. An alkaline battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例2>
平均粒径30μm、見かけ密度0.1g/cm3のグラファイトを配合率8wt%で用い、正極合剤密度を2.85g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例2のアルカリ電池を作製した。
<Comparative example 2>
Graphite having an average particle size of 30 μm and an apparent density of 0.1 g / cm 3 is used at a blending rate of 8 wt%, the positive electrode mixture density is 2.85 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例3>
平均粒径55μm、見かけ密度0.06g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を2.85g/cm3、電池組み立て後の正極合剤が含む水分量を9.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例3のアルカリ電池を作製した。
<Comparative Example 3>
Graphite having an average particle size of 55 μm and an apparent density of 0.06 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 2.85 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 9.0 wt. An alkaline battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例4>
平均粒径55μm、見かけ密度0.1g/cm3のグラファイトを配合率9wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を5.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例4のアルカリ電池を作製した。
<Comparative Example 4>
Graphite having an average particle size of 55 μm and an apparent density of 0.1 g / cm 3 is used at a compounding rate of 9 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 5.0 wt. An alkaline battery of Comparative Example 4 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例5>
平均粒径9μm、見かけ密度0.06g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例5のアルカリ電池を作製した。
<Comparative Example 5>
Graphite having an average particle size of 9 μm and an apparent density of 0.06 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 5 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例6>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率8wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を9.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例6のアルカリ電池を作製した。
<Comparative Example 6>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a compounding ratio of 8 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 9.0 wt. An alkaline battery of Comparative Example 6 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例7>
平均粒径30μm、見かけ密度0.06g/cm3のグラファイトを配合率6wt%で用い、正極合剤密度を3.25g/cm3、電池組み立て後の正極合剤が含む水分量を5.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例7のアルカリ電池を作製した。
<Comparative Example 7>
Graphite having an average particle size of 30 μm and an apparent density of 0.06 g / cm 3 is used at a blending ratio of 6 wt%, the positive electrode mixture density is 3.25 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 5.0 wt. An alkaline battery of Comparative Example 7 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例8>
平均粒径55μm、見かけ密度0.03g/cm3のグラファイトを配合率9wt%で用い、正極合剤密度を3.25g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例8のアルカリ電池を作製した。
<Comparative Example 8>
Graphite having an average particle size of 55 μm and an apparent density of 0.03 g / cm 3 is used at a compounding rate of 9 wt%, the positive electrode mixture density is 3.25 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 8 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例9>
平均粒径12μm、見かけ密度0.08g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.25g/cm3、電池組み立て後の正極合剤が含む水分量を6.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例9のアルカリ電池を作製した。
<Comparative Example 9>
Graphite having an average particle size of 12 μm and an apparent density of 0.08 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.25 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 6.0 wt. An alkaline battery of Comparative Example 9 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例10>
平均粒径5μm、見かけ密度0.03g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例10のアルカリ電池を作製した。
<Comparative Example 10>
Graphite having an average particle diameter of 5 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. The alkaline battery of Comparative Example 10 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例11>
平均粒径55μm、見かけ密度0.03g/cm3のグラファイトを配合率8wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例11のアルカリ電池を作製した。
<Comparative Example 11>
Graphite having an average particle size of 55 μm and an apparent density of 0.03 g / cm 3 is used at a compounding ratio of 8 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 11 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例12>
平均粒径30μm、見かけ密度0.005g/cm3のグラファイトを配合率6wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例12のアルカリ電池を作製した。
<Comparative Example 12>
Graphite having an average particle size of 30 μm and an apparent density of 0.005 g / cm 3 is used at a blending ratio of 6 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 12 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例13>
平均粒径30μm、見かけ密度0.1g/cm3のグラファイトを配合率8wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例13のアルカリ電池を作製した。
<Comparative Example 13>
Graphite having an average particle size of 30 μm and an apparent density of 0.1 g / cm 3 is used at a blending rate of 8 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 13 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例14>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を2.85g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例14のアルカリ電池を作製した。
<Comparative example 14>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 2.85 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 14 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例15>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.25g/cm3、電池組み立て後の正極合剤が含む水分量を7.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例15のアルカリ電池を作製した。
<Comparative Example 15>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.25 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 7.0 wt. An alkaline battery of Comparative Example 15 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例16>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を5.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例16のアルカリ電池を作製した。
<Comparative Example 16>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 5.0 wt. An alkaline battery of Comparative Example 16 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

<比較例17>
平均粒径30μm、見かけ密度0.03g/cm3のグラファイトを配合率7wt%で用い、正極合剤密度を3.05g/cm3、電池組み立て後の正極合剤が含む水分量を9.0wt%となるように正極合剤を調製した点以外は、実施例1と同様にして、比較例17のアルカリ電池を作製した。
<Comparative Example 17>
Graphite having an average particle size of 30 μm and an apparent density of 0.03 g / cm 3 is used at a blending rate of 7 wt%, the positive electrode mixture density is 3.05 g / cm 3 , and the moisture content contained in the positive electrode mixture after battery assembly is 9.0 wt. An alkaline battery of Comparative Example 17 was produced in the same manner as in Example 1 except that the positive electrode mixture was prepared so as to be%.

放電特性の評価
大電流放電における放電特性は、アルカリ電池をSONY製デジタルスチールカメラS−40に実装し、雰囲気温度25℃、CIPA条件にて撮影した場合の撮影枚数より評価した。CIPA条件とは、ズーム(片方向)→撮影1回(フラッシュの有無を交互に)を30秒間隔で計10回繰り返し、を10回の撮影ごとに適当な休止(電源OFF)時間を置いて繰り返す試験条件である。デジタルスチールカメラの電源が切れた時点での撮影枚数を計数した。各実施例および比較例について、同条件で試験を3回繰り返し、計数した撮影枚数の平均値で放電特性の評価を行った。
Evaluation of discharge characteristics The discharge characteristics in large current discharge were evaluated based on the number of shots when an alkaline battery was mounted on a digital still camera S-40 manufactured by SONY and shot under an ambient temperature of 25 ° C. and CIPA conditions. The CIPA condition is that zoom (one direction) → one shot (alternately with or without flash) is repeated a total of 10 times at 30-second intervals, with an appropriate pause (power OFF) time for each 10 shots. Repeated test conditions. The number of photographs taken when the digital still camera was turned off was counted. For each of the examples and comparative examples, the test was repeated three times under the same conditions, and the discharge characteristics were evaluated by the average value of the counted number of shots.

保存安定性の評価
アルカリ電池を60℃dryの条件下で放置し、20日後におけるデジタルスチールカメラの撮影枚数により評価した。保存後の撮影枚数が、保存前の撮影枚数の90%以上であれば○、90%より少なければ×として評価した。
Evaluation of Storage Stability The alkaline battery was left under the condition of 60 ° C. dry and evaluated by the number of photographs taken with a digital still camera after 20 days. When the number of shots after storage was 90% or more of the number of shots before storage, the evaluation was ○, and when it was less than 90%, the evaluation was ×.

未放電時の漏液発生率
アルカリ電池20個を60℃の温度環境下、相対湿度90%R.H.の条件下で放置して、10日後の漏液の有無を判定し、以下の式により漏液発生率を算出した。
「漏液発生率」=(「漏液が発生した電池の個数」/20)×100(%)
Leakage occurrence rate when undischarged 20 alkaline batteries in a temperature environment of 60 ° C. and a relative humidity of 90% H. The liquid leakage occurrence rate was calculated by the following equation by determining the presence or absence of leakage after 10 days.
“Leakage occurrence rate” = (“number of batteries in which leakage occurred” / 20) × 100 (%)

過放電時の漏液発生率
アルカリ電池20個を40Ωで0.1Vまで放電することで過放電状態にして、そのまま60℃の温度環境下で放置し、10日後の漏液の有無を判定した。漏液発生率は、以下の式により算出した。
「漏液発生率」=(「漏液が発生した電池の個数」/20)×100(%)
Leakage occurrence rate during overdischarge 20 alkaline batteries were discharged to 40V to 0.1 V to be overdischarged and left in a temperature environment of 60 ° C. to determine the presence or absence of leakage after 10 days. . The leakage occurrence rate was calculated by the following formula.
“Leakage occurrence rate” = (“number of batteries in which leakage occurred” / 20) × 100 (%)

実施例1〜実施例11の測定結果および評価を表1に示す。比較例1〜比較例17の測定結果および評価を表2に示す。   The measurement results and evaluations of Examples 1 to 11 are shown in Table 1. The measurement results and evaluation of Comparative Examples 1 to 17 are shown in Table 2.

Figure 2008071541
Figure 2008071541

Figure 2008071541
Figure 2008071541

ここで、表2中の比較例9は、現行仕様のものを想定した従来のアルカリ乾電池である。耐漏液特性、保存特性は良好であり、ゲル詰め工程での電解液の飛び出しもなく、デジタルスチールカメラでの撮影枚数は123枚であった。   Here, Comparative Example 9 in Table 2 is a conventional alkaline dry battery assuming the current specification. The liquid leakage resistance and storage characteristics were good, the electrolyte did not pop out in the gel filling process, and the number of photographs taken with a digital still camera was 123.

表1および表2に示すように、実施例1〜実施例11のアルカリ電池は、電池組み立て前の正極合剤成形後の正極合剤密度が2.90g/cm3〜3.20g/cm3、且つ電池組み立て後の正極合剤が含有する水分量が、電解液を含んだ正極合剤の重量に対して、6.0wt%〜8.0wt%の範囲内に選ばれたものであるので、漏液発生率が0%であり耐漏液特性が良好であった。 As shown in Table 1 and Table 2, in the alkaline batteries of Examples 1 to 11, the positive electrode mixture density after the positive electrode mixture molding before battery assembly was 2.90 g / cm 3 to 3.20 g / cm 3. In addition, the amount of water contained in the positive electrode mixture after battery assembly is selected within the range of 6.0 wt% to 8.0 wt% with respect to the weight of the positive electrode mixture including the electrolytic solution. The leak occurrence rate was 0%, and the leak-proof characteristics were good.

また、実施例1〜実施例9のアルカリ電池では、平均粒径が10μm〜50μm、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるグラファイトを正極合剤中に含むので、正極合剤密度が従来(例えば3.1g/cm3〜3.4g/cm3)より比較的に低い範囲内にある場合(2.90g/cm3〜3.20g/cm3)でも、正極合剤と正極缶1との接触抵抗が増加しないため、現行仕様を想定した比較例9のアルカリ電池に比べて、デジタルスチールカメラでの撮影枚数を増加できた。実施例11のアルカリ電池では、グラファイトの配合率が4wt%、実施例12のアルカリ電池では、グラファイトの配合率が11wt%であるので、実施例1〜実施例9に比較するとデジタルスチールカメラでの撮影枚数が若干減少した。 Further, the alkaline battery of Example 1 to Example 9, an average particle diameter of 10 m to 50 m, and an apparent density of graphite in the positive electrode mixture is in the range of 0.01g / cm 3 ~0.05g / cm 3 since comprising, if the positive electrode mixture density is in the conventional (e.g., 3.1g / cm 3 ~3.4g / cm 3 ) than the relatively low range (2.90g / cm 3 ~3.20g / cm 3 However, since the contact resistance between the positive electrode mixture and the positive electrode can 1 does not increase, the number of photographs taken with a digital still camera can be increased as compared with the alkaline battery of Comparative Example 9 assuming the current specification. In the alkaline battery of Example 11, the blending ratio of graphite is 4 wt%, and in the alkaline battery of Example 12, the blending ratio of graphite is 11 wt%. The number of shots decreased slightly.

さらに、実施例1〜実施例11のアルカリ電池では、平均粒径が10μm〜50μm、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるグラファイトが、正極合剤の形状が崩れるのを防止しているので、保存安定性も良好で、60℃の温度環境下で20日間保存した後においても、保存前のデジタルスチールカメラでの撮影枚数に対して、90%以上の枚数を撮影することができ、保存安定性は良好であった。 Furthermore, in the alkaline battery of Example 1 to Example 11, the average particle diameter of 10 m to 50 m, the graphite and the apparent density is in the range of 0.01g / cm 3 ~0.05g / cm 3 , the positive electrode mixture The storage stability is also good, and even after storage for 20 days in a 60 ° C temperature environment, 90% of the number of shots taken with a digital still camera before storage. The above number of images could be taken and the storage stability was good.

さらに、比較例1〜比較例5では、グラファイトの平均粒径が10μm〜50μm、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内を満たさないので、保存安定性が悪化した。さらに、比較例1〜比較例6では、デジタルスチールカメラでの撮影枚数も、平均粒径が10μm〜50μmの範囲内、且つ見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるグラファイトを用いた実施例1〜実施例11より、減少したものがあった。 Further, in Comparative Example 1 to Comparative Example 5, since the average particle diameter of the graphite is 10 m to 50 m, and an apparent density does not satisfy the range of 0.01g / cm 3 ~0.05g / cm 3 , storage stability It got worse. Further, in Comparative Example 1 to Comparative Example 6, the number of shots in the digital still cameras, within an average particle size of 10 m to 50 m, and an apparent density of 0.01g / cm 3 ~0.05g / cm 3 range There was a decrease from Examples 1 to 11 using graphite as the inner layer.

さらに、正極合剤密度が2.9g/cm3より小さい比較例1〜比較例3では、正極合剤中の水分量を5.0wt%〜9.0wt%の範囲内に調整しても、デジタルスチールカメラの撮影枚数は、現行仕様を想定した比較例9より減少した。さらに、比較例3では、正極合剤中の水分量が8.0wt%より多い9.0wt%であるので、漏液が発生した。 Furthermore, in Comparative Example 1 to Comparative Example 3 in which the positive electrode mixture density is smaller than 2.9 g / cm 3 , even if the moisture content in the positive electrode mixture is adjusted within the range of 5.0 wt% to 9.0 wt%, The number of photographs taken by the digital still camera was smaller than that of Comparative Example 9 assuming the current specification. Furthermore, in Comparative Example 3, since the amount of water in the positive electrode mixture was 9.0 wt%, which was higher than 8.0 wt%, liquid leakage occurred.

さらに、正極合剤密度が3.05g/cm3である比較例4〜比較例6では、電池組み立て後の正極合剤が含む水分量を、電解液を含んだ正極合剤に対して、比較例4では5.0wt%、比較例5では7.0wt%、比較例6では9.0wt%とした場合でも、デジタルスチールカメラの撮影枚数は、現行仕様を想定した比較例9と同等または多かった。中でも、比較例6では、デジタルスチールカメラの撮影枚数が最も多かったが、正極合剤中の水分量が8.0wt%より多い9.0wt%であったので、漏液が発生した。 Furthermore, in Comparative Example 4 to Comparative Example 6 in which the positive electrode mixture density is 3.05 g / cm 3 , the moisture content included in the positive electrode mixture after battery assembly is compared with the positive electrode mixture including the electrolytic solution. Even in the case of 5.0 wt% in Example 4, 7.0 wt% in Comparative Example 5, and 9.0 wt% in Comparative Example 6, the number of shots of the digital still camera is the same as or greater than that in Comparative Example 9 assuming the current specifications. It was. Among them, in Comparative Example 6, the number of photographs taken with the digital still camera was the largest, but the amount of water in the positive electrode mixture was 9.0 wt%, which was more than 8.0 wt%, and thus liquid leakage occurred.

さらに、比較例7では、電池組み立て後の正極合剤が含む水分量が6.0wt%より少ない5.0wt%であるので、漏液の発生は発生しないものの、デジタルスチールカメラの撮影枚数は少なかった。さらに、比較例8では水分量が6.0wt%より多いので、漏液が発生した。さらに、比較例9では、水分量が6.0wt%であるが、正極合剤密度が3.2g/cm3を超える3.25g/cm3であるので、漏液が発生した。 Furthermore, in Comparative Example 7, the positive electrode mixture after the battery assembly contains 5.0 wt%, which is less than 6.0 wt%. Therefore, no leakage occurs, but the number of photographs taken by the digital still camera is small. It was. Further, in Comparative Example 8, the amount of water was more than 6.0 wt%, and thus liquid leakage occurred. In Comparative Example 9, although the water content is 6.0 wt%, since it is 3.25 g / cm 3 which the positive electrode mixture density exceeding 3.2 g / cm 3, leakage occurs.

比較例10および比較例11では、正極合剤密度が2.90g/cm3〜3.20g/cm3の範囲内、正極合剤中の水分量が6.0wt%〜8.0wt%の範囲内、グラファイトの見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるが、グラファイトの平均粒径が比較例10では5μm、比較例11では55μmであって、10μm〜50μmの範囲外であるため、正極合剤中でのグラファイト同士、またはグラファイトと正極活物質との接触が悪く、デジタルスチールカメラの撮影枚数は、現行仕様を想定した比較例9とほぼ同等であった。 In Comparative Example 10 and Comparative Example 11, the positive electrode mixture density is in the range of 2.90 g / cm 3 to 3.20 g / cm 3 , and the water content in the positive electrode mixture is in the range of 6.0 wt% to 8.0 wt%. among them, although the apparent density of the graphite is in the range of 0.01g / cm 3 ~0.05g / cm 3 , an average particle diameter of the graphite Comparative example 10 in 5 [mu] m, a 55μm Comparative example 11, 10 m to Since it is outside the range of 50 μm, the contact between graphite in the positive electrode mixture or between graphite and the positive electrode active material is poor, and the number of shots of the digital still camera is almost the same as in Comparative Example 9 assuming the current specification. It was.

比較例12および比較例13では、正極合剤密度が2.90g/cm3〜3.20g/cm3の範囲内、正極合剤中の水分量が6.0wt%〜8.0wt%の範囲内、グラファイトの平均粒径が10μm〜50μmの範囲内であるが、グラファイトの見かけ密度が比較例12では0.005g/cm3であって、0.01g/cm3より小さいため、正極材料混合物のハンドリング性が悪く大量生産には向いていなかった。また、グラファイトの見かけ密度が比較例13では0.1g/cm3であって、0.05g/cm3より大きいため、グラファイトの分散性が悪く負荷特性は従来と比べてほとんど変わらなかった。 In Comparative Example 12 and Comparative Example 13, the positive electrode mixture density is in the range of 2.90 g / cm 3 to 3.20 g / cm 3 , and the water content in the positive electrode mixture is in the range of 6.0 wt% to 8.0 wt%. among them, the average particle size of the graphite is in the range of 10 m to 50 m, apparent density of the graphite is a 0.005 g / cm 3 Comparative example 12, since less than 0.01 g / cm 3, a positive electrode material mixture Because of its poor handling, it was not suitable for mass production. Further, a apparent density of the graphite Comparative Example 13 In 0.1 g / cm 3, since larger 0.05 g / cm 3, poor load characteristics dispersibility of graphite hardly changed as compared with the conventional.

比較例14および比較例15では、正極合剤中の水分量が6.0wt%〜8.0wt%の範囲内、グラファイトの平均粒径が10μm〜50μm、グラファイトの見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるが、正極合剤密度が比較例14では2.85g/cm3であって、2.9g/cm3より小さいため、保存中に正極缶1との接触が悪くなって保存特性が悪化してしまった。また、正極合剤密度が比較例15では3.25g/cm3であって、3.20g/cm3より大きいため、正極の充填量が多くなって空隙量が少なくなり、漏液が発生した。さらに、比較例15では、セパレータ3に注液した電解液が十分に正極に吸収されないため、ゲル詰め工程時に電解液が電池外へ飛び出してしまい、製品の特性のばらつきを大きくしてしまった。 In Comparative Example 14 and Comparative Example 15, the water content in the positive electrode mixture is in the range of 6.0 wt% to 8.0 wt%, the average particle diameter of graphite is 10 μm to 50 μm, and the apparent density of graphite is 0.01 g / cm. 3 is a range of ~0.05g / cm 3, a 2.85 g / cm 3 in the positive electrode mixture density Comparative example 14, since less than 2.9 g / cm 3, the positive electrode can 1 during storage As a result, the storage characteristics deteriorated. Moreover, since the positive electrode mixture density was 3.25 g / cm 3 in Comparative Example 15 and larger than 3.20 g / cm 3 , the positive electrode filling amount increased, the void amount decreased, and liquid leakage occurred. . Furthermore, in Comparative Example 15, the electrolyte solution injected into the separator 3 was not sufficiently absorbed by the positive electrode, so that the electrolyte solution jumped out of the battery during the gel filling process, resulting in large variations in product characteristics.

比較例16および比較例17では、正極合剤密度が2.90g/cm3〜3.20g/cm3、グラファイトの平均粒径が10μm〜50μm、グラファイトの見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内であるが、正極合剤中の水分量が比較例16では5.0wt%であって、6.0wt%より少ないため、正極反応に必要な水分が十分ではなく負荷特性は従来品程度であった。また、正極合剤中の水分量が比較例17では9.0wt%であって、8.0wt%より多いため、デジタルスチールカメラの枚数は従来より多いが、漏液が生じやすくなってしまった。 In Comparative Example 16 and Comparative Example 17, the density of the positive electrode mixture is 2.90 g / cm 3 to 3.20 g / cm 3 , the average particle diameter of graphite is 10 μm to 50 μm, and the apparent density of graphite is 0.01 g / cm 3 to Although it is within the range of 0.05 g / cm 3, the amount of water in the positive electrode mixture is 5.0 wt% in Comparative Example 16 and less than 6.0 wt%, so that the water necessary for the positive electrode reaction is not sufficient. The load characteristics were almost the same as the conventional products. In addition, in Comparative Example 17, the amount of water in the positive electrode mixture was 9.0 wt%, which is larger than 8.0 wt%. Therefore, the number of digital still cameras is larger than the conventional one, but liquid leakage is likely to occur. .

また、表には示さなかったが正極合剤密度が3.25g/cm3である比較例7〜比較例9および比較例15では、セパレータ3に多くの電解液を注液すると、ゲル状の負極合剤4を注入する工程において電解液が飛び出す現象が発生した。 Although not shown in the table, in Comparative Examples 7 to 9 and Comparative Example 15 in which the positive electrode mixture density is 3.25 g / cm 3 , when a large amount of electrolytic solution is injected into the separator 3, In the process of injecting the negative electrode mixture 4, a phenomenon that the electrolyte solution jumped out occurred.

以上より、二酸化マンガンおよびオキシ水酸化ニッケルのうちの少なくとも1種を正極活物質として含み、導電剤としてグラファイトを含む正極合剤を備えたアルカリ電池において、電池組み立て前の正極合剤成形後の密度が2.90g/cm3〜3.20g/cm3の範囲内、電池組み立て後の正極合剤が含む水分量が電解液を含めた正極合剤の重量に対して6.0wt%〜8.0wt%の範囲内、グラファイトの平均粒径が10μm〜50μmの範囲内、グラファイトの見かけ密度が0.01g/cm3〜0.05g/cm3の範囲内に選ばれることで、優れた耐漏液性および重負荷特性を得られることがわかった。また、グラファイト配合率は、5wt%〜10wt%の範囲内が好ましいことがわかった。 As described above, in an alkaline battery including a positive electrode mixture containing at least one of manganese dioxide and nickel oxyhydroxide as a positive electrode active material and containing graphite as a conductive agent, the density after forming the positive electrode mixture before battery assembly Is in the range of 2.90 g / cm 3 to 3.20 g / cm 3, and the amount of water contained in the positive electrode mixture after assembling the battery is 6.0 wt% to 8. wt% with respect to the weight of the positive electrode mixture including the electrolytic solution. in the range of 0 wt%, in the range the average particle size of the graphite is 10 m to 50 m, that the apparent density of the graphite is selected in the range of 0.01g / cm 3 ~0.05g / cm 3 , excellent leakage-resistance And heavy load characteristics can be obtained. Moreover, it turned out that the graphite mixture rate has the preferable within the range of 5 wt%-10 wt%.

この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、一実施形態では円筒形のアルカリ電池について説明したがこれに限定されるものではなく、扁平形、角型等の他の形状にも適用可能である。   The present invention is not limited to the above-described embodiments of the present invention, and various modifications and applications are possible without departing from the spirit of the present invention. For example, in the embodiment, a cylindrical alkaline battery has been described. However, the present invention is not limited to this, and can be applied to other shapes such as a flat shape and a square shape.

この発明の一実施形態によるアルカリ電池の構成例を示す断面図である。It is sectional drawing which shows the structural example of the alkaline battery by one Embodiment of this invention.

符号の説明Explanation of symbols

1・・・正極缶
2・・・正極部
3・・・セパレータ
4・・・負極合剤
5・・・封口部材
6・・・ワッシャ
7・・・負極端子板
8・・・集電体
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can 2 ... Positive electrode part 3 ... Separator 4 ... Negative electrode mixture 5 ... Sealing member 6 ... Washer 7 ... Negative electrode terminal board 8 ... Current collector

Claims (3)

二酸化マンガンおよびオキシ水酸化ニッケルのうちの少なくとも1種と、グラファイトと、を含む正極合剤を備え、
電池組み立て前の上記正極合剤成形後の正極合剤密度は、2.90g/cm3〜3.20g/cm3の範囲内であり、
電池組み立て後の上記正極合剤が含む水分量は、電池組み立て後の電解液を含んだ上記正極合剤の重量に対して、6.0wt%〜8.0wt%の範囲内であり、
上記グラファイトの平均粒径は、10μm〜50μmの範囲内であり、
上記グラファイトの見かけ密度は、0.01g/cm3〜0.05g/cm3の範囲内であること
を特徴とするアルカリ電池。
A positive electrode mixture comprising at least one of manganese dioxide and nickel oxyhydroxide and graphite;
The positive electrode mixture density after forming the positive electrode mixture before battery assembly is in the range of 2.90 g / cm 3 to 3.20 g / cm 3 ,
The amount of water contained in the positive electrode mixture after battery assembly is in the range of 6.0 wt% to 8.0 wt% with respect to the weight of the positive electrode mixture containing the electrolyte solution after battery assembly,
The average particle size of the graphite is in the range of 10 μm to 50 μm,
The apparent density of the graphite, alkaline batteries, characterized in that it is in the range of 0.01g / cm 3 ~0.05g / cm 3 .
上記グラファイトは、薄片化されたものであること
を特徴とする請求項1記載のアルカリ電池。
2. The alkaline battery according to claim 1, wherein the graphite is made into a thin piece.
上記グラファイトは、上記正極合剤に対して、5wt%〜10wt%の範囲内で配合されたこと
を特徴とする請求項1記載のアルカリ電池。
2. The alkaline battery according to claim 1, wherein the graphite is blended in a range of 5 wt% to 10 wt% with respect to the positive electrode mixture.
JP2006247202A 2006-09-12 2006-09-12 Alkaline battery Pending JP2008071541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247202A JP2008071541A (en) 2006-09-12 2006-09-12 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247202A JP2008071541A (en) 2006-09-12 2006-09-12 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2008071541A true JP2008071541A (en) 2008-03-27

Family

ID=39292964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247202A Pending JP2008071541A (en) 2006-09-12 2006-09-12 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2008071541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158457A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack
JP2013120742A (en) * 2011-12-09 2013-06-17 Hitachi Maxell Ltd Flat alkaline battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158457A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack
US7794874B2 (en) 2007-12-07 2010-09-14 Panasonic Corporation Alkaline battery and battery pack
US8206850B2 (en) 2007-12-07 2012-06-26 Panasonic Corporation Alkaline battery and battery pack
JP2013120742A (en) * 2011-12-09 2013-06-17 Hitachi Maxell Ltd Flat alkaline battery

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
US7179310B2 (en) Zinc/air cell with improved anode
AU670897B2 (en) Alkaline manganese battery
CN1171336C (en) Alkaline cell with improved anode
US8338023B2 (en) AA alkaline battery
US9219270B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for manufacturing flat primary battery
JP5172181B2 (en) Zinc alkaline battery
US9040196B2 (en) Alkaline primary battery
US20060005663A1 (en) Alkaline electrochemical cell with a blended zinc powder
US8206851B2 (en) AA alkaline battery and AAA alkaline battery
JP2008071541A (en) Alkaline battery
JP2008041490A (en) Alkaline battery
JP6691738B2 (en) Alkaline battery
US8283069B2 (en) Zinc-alkaline battery
WO2016117127A1 (en) Alkaline cell
JP2008047497A (en) Alkaline battery
JP5081387B2 (en) Positive electrode mixture and alkaline battery
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP2009129638A (en) Lithium battery
JP2002117859A (en) Alkaline battery
JP7146545B2 (en) Cathode mixture for alkaline batteries
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2022143474A (en) alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP2021114377A (en) Alkaline battery